
PERFORMANCE EVALUATION OF AN IP VOICE
TERMINAL

Harri Marjamald & Raimo Kantola
Harri Marjamliki, MSc.
Raimo Kantola, Ph.D., Professor of Telecommunications Technology

Key words: Voice over IP, Playout algorithms, Performance evaluation

Abstract: This paper examines the issues related to the transmission of voice over packet
networks using the Internet Protocol (IP). We focus on studying the delays that
are generated in the terminal, which is a Unix workstation equipped with IP
voice application software.

Delay components in the terminal are presented. We measure the processing
delays in the terminal using different audio codecs and measure the end-to-end
delays using different scheduling parameters for the IP voice application. A
significant part of the delay is shown to be caused by buffering at the receiving
terminal. This is a feature of the application software and can be removed by
modifYing the source code.

We also make a comparison of adaptive algorithms that are used to calculate
the playout times of the voice packets. Algorithms are simulated using
different network loads and thus different delay distributions of the voice
packets in an Ethernet. We present a new playout algorithm, which is a
combination of two existing algorithms. This algorithm is shown to
outperform the other two real-time algorithms that are compared in our
studies.

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35581-8 35

T. Yongchareon et al. (eds.), Intelligence in Networks
© IFIP International Federation for Information Processing 2000

http://dx.doi.org/10.1007/978-0-387-35581-8_35

350 Harri Marjamiiki & Raimo Kantola

1. INTRODUCTION

The Internet provides a simple single class best effort service. From a
connection's point of view, the best effort service amounts in practice to
offering a channel with time-varying characteristics such as delay and loss
distributions. These characteristics are not known in advance since they
depend on the behaviour of other connections throughout the network. A
variety of audio tools have been available for a few years, and they have
been used to audiocast conferences. Experimental evidence suggests that,
although the quality of the audio delivered by Internet tools has improved,
audio quality is still mediocre in many audio conferences. This is clearly a
concern since audio quality has been found to be more important than video
quality or audio/video synchronization to succesfully carry out collaborative
work.

For audio quality in packet audio applications, the main concerns are the
delay and delay variance. In earlier studies [1], [2] it was noted that in LANs
and campus networks where network caused delay and delay variance was
relatively small, most of the end-to-end delay was accumulated in the
terminals.

In the terminal, delay is accumulated both by the hardware and the
software. In the audio hardware, voice samples are AID converted at the
sender and D/ A converted at the receiver. In the packet audio application
software processing delay is introduced. Processing delay is very much
dependent on the used speech codec. Some codecs, like PCM codec have
very little to do and introduce very little delay whereas, for example, a GSM
codec requires excessive computation and causes significantly more
processing delay. Buffering of voice samples is necessary both at sending
and receiving end. Buffering delays are introduced both in the audio
hardware and in the packet audio software. Delays are introduced also by the
operating system because it has to assign processor time also to other
processes that are simultaneously running in the terminal.

The network caused delay variance has to be smoothed in the application
software in order to preserve the sound quality. Voice packets are buffered at
the receiver and they are played out periodically. The algorithms used to
calculate the appropriate play out time for each packet of voice are called
playout algorithms.

The rest of the paper is organized as follows: Chapter two explains
playout delay adaptation: the mathematics and algorithms used in delay
estimation. Chapter three reports performed measurements and obtained
results. Chapter four presents conclusions and topics for future work.

Performance Evaluation of an IP Voice Terminal 351

2. PLAYOUT DELAY ADJUSTMENT

Packet audio tools operate by periodically gathering audio samples
generated at the sending host, packetizing them, and transmitting the
resulting packet to receiving site(s). For efficiency, the source audio is
typically divided into talkspurts (periods of audio activity) and silence
periods (periods of audio inactivity, during which no audio packets are
generated). In order to faithfully reconstruct the audio at the receiving site,
data in packets within a talkspurt must be played out in the same periodic
manner in which packets were generated.

If the underlying network is free of variations Gitter) in packet delays, a
receiving site can simply play out an audio packet as soon as it is received.
However, jitter-free, in-order, on-time packet delivery rarely, if ever, occurs
in today's packet-switched networks. In order to compensate for these
variable delays, a smoothing buffer is thus typically used at a receiver.
Received packets are first queued into the smoothing buffer and the periodic
playout of packets within a talkspurt is delayed for some amount of time
beyond the reception of the first packet in the talkspurt. We refer to this
delay as the playout delay of the talkspurt. Clearly, the longer the playout
delay, the more likely it is that a packet will have arrived before its
scheduled playout time. Excessively long playout delays, however, can
significantly impair human conversations. There is thus a critical tradeoff
between the length of playout delay and the amount of loss (due to late
packet arrival) that is incurred. Generally, delays between talkspurt
generation and receiver playout of less than 400 ms [3] and a loss percentage
of up to 5% [4] are considered to be quite tolerable in human conversations.

The talkspurt playout delays themselves can be either fixed for the
duration of the audio session, or adaptively adjusted. In the Internet, end-to­
end delays fluctuate significantly and a constant, non-adaptive, playout delay
would thus likely yield unsatisfactory audio quality for interactive audio
applications. There are two approaches for adaptive playout adjustment: per­
talkspurt and per-packet adjustment. The former uses the same playout delay
throughout a talkspurt (and, as a result, faithfully reconstructs the original
periodic nature of the received audio data from the sender), but allows
different playout delays from one talkspurt to another. While this may result
in artificially elongated or compressed silence periods, this is not noticeable
in played out speech if the change is reasonably small [5]. In the latter
approach, the play out delay varies from packet to packet. A per-packet
adaptive adjustment introduces gaps inside talkspurts and is cited as
damaging to the audio quality [6].

352 Barri Marjamiiki & Raimo Kantola

2.1 End-to-end delay characteristics

Previous studies [7] have indicated the presence of "spikes" in end-to-end
Internet delays. A spike constitutes a sudden, large increase in the end-to-end
network delay, followed by a series of packets arriving almost
simultaneously, leading to the completion of the spike.

With periodically generated packets, the initial steep rise in the delay
spike and the linear, monotonic decrease after the initial rise, is due to
"probe compression" - the accumulation of a number of packets from the
connection under consideration (the audio session, in our case) in a router
queue behind a large number of packets from other sources. Probe
compression is a plausible conjecture about the cause(s) of delay spikes.

2.2 Performance of a playout algorithm

The tradeoff between the average play out delay and loss due to late
packet arrival is used as the performance measure in comparing one adaptive
playout delay adjustment algorithm with another. Loss and delay are
considered on a per-packet rather than per-talkspurt basis for two reasons.
First we note that the lengths of talkspurts depend on silence detection
algorithms and their parameters. Per-talksurt results are thus closely tied to
the silence detection algorithm used. More importantly, different talkspurts
have different lengths.

Here the end-to-end application-to-application delay is defined to be the
difference between the playout time at the receiver and the generation time
at the sender. We refer to Figure 1 to show the timing information of audio
packets and formally define the average playout delay [9].

k-th talkspurt silence (k+1)-th talkspurt

ti ... t;
Sender

Receiver

Figure 1. Timings associated with the i-th packet in the k-th talkspurt

Performance Evaluation of an IP Voice Terminal 353

Consider a trace consisting of M talkspurts. We define the following
quantities:
- ti: sender timestamp of the i-th packet in the k-th talkspurt
- ai: receiver timestamp of the i-th packet in the k-th talkspurt
- nk : number of packets in the k-th talkspurt. Here we only consider those

packets actually received at the receiver.
- N: total number of packets in a trace,

M

N= Ink (1)
k=1

The playout time of a packet depends on which algorithm is used at the
receiver to estimate the playout delay of the packet. Consider a playout
algorithm A. Then pitA) is the playout timestamp of the i-th packet in the
k-th talkspurt under A. If the i-th packet of the k-th talkspurt arrives later
than pi (A) (Le., pi (A) < aiJ, it is considered lost. Otherwise, it is played
out with the playout delay of (pi (A) - ti). Let ric (A) be an indicator variable
for whether the i-th packet of the k-th talkspurt arrives before its playout
time, as computed by playout algorithm A:

(2)
1, otherwise

The total number of packets played under algorithm A is denoted as N(A)
and computed using ric (A):

(3)
k=1 ;=1

Then the average playout delay ofthose played-out packets is defined as:
1 M nk

(4)
N(A) k=1 ;=1

If there are N packets in a trace and, among them, N(A) packets are played
out under algorithm A, the loss percentage I is:

1= N -N(A) *100
N

2.3 Some playout algorithms

(5)

In this section we present 4 different play out algorithms. Algorithms 1
and 2 are originally reported in [8] and algorithm 3 is suggested in [9].
Algorithm 4 is a combination of algorithms 1 and 3. The mathematical
descriptions of the algorithms are not presented because of the lack of space.

354 Harri Marjamiiki & Raimo Kantola

2.3.1 Algorithm 1

This algorithm is based on stochastic gradient algorithms used in
estimation and control theory [5], and operates by estimating two statistics
characterizing the network delay incurred by audio packets: the delay itself,
and a variational measure of the observed delays. Each of these estimates is
recomputed each time a new packet arrives.

Algorithm I is a linear filter that is slow in catching up with a change in
delays, but is good at maintaining a steady value, when the gain of the
estimator (I-a), is set to be very low.

2.3.2 Algorithm 2

Algorithm 2 has two modes of operation, depending on whether a spike
has been detected. In normal mode, it operates like algorithm I with a
different gain, but in spike-detection mode, the playout delay is updated
differently.

Algorithm 2 works as follows: It is checked if the delay between
consecutive packets at the receiver is large enough for it to be called a spike.
On detection of a spike, we enter the spike mode and "follow" the spike.
Thus, in the spike mode, we allow our estimate to be dictated only by the
most recently observed delay values.

2.3.3 Algorithm 3

The key idea behind this algorithm is to collect statistics on packets that
have already arrived and to use them to estimate the playout delay. Instead
of using the linear filter mechanism, each packet's delay is logged and the
distribution of packet delays is updated at every packet arrival. When a new
talkspurt starts, the algorithm calculates a given percentile point q in the
distribution function of the packet delays for the last w packets, and uses it as
the playout delay for the new talkspurt. As in algorithm 2, it detects spikes
and behaves accordingly: once a spike is detected, it stops collecting packet
delays and follows the spike until it detects the end of a spike. Upon
detecting the end of a delay spike, it resumes its normal operation.

2.3.4 Algorithm 4

With algorithm 3, the problem is that it first needs to collect some delay
statistics. In a real-time implementation it is not possible to use algorithm 3
from the beginning of a call. Therefore we can combine together algorithms
1 and 3 and the resulting algorithm is called here algorithm 4. The idea is

Performance Evaluation of an IP Voice Terminal 355

simply to calculate the playout delays with algorithm 1 until we have
received 5000 voice packets and then switch to algorithm 3. The switch can't
be done earlier because then algorithm 3 would probably give worse results
than algorithm 1. The extension to algorithm 1 is that we use the two
operating modes from algorithm 3 since the beginning of the call.

3. MEASUREMENTS AND RESULTS

In this chapter we present the results of our experiments. The
presentation is divided in three parts. First part handles the processor time
consumption in an IP voice terminal, the second part handles the end-to-end
delays in an IP voice connection, and in the third part different play out
algorithms are compared. The used VoIP client in all experiments is Nevot
(Network Voice Terminal) [10]. Nevot was chosen because of its high
configurability compared with other VoIP tools. Nevot provides for example
a feature to switch off the additional playout delay for testing purposes.
Nevot's source codes are freely downloadable in the Internet, which made it
possible to compile it from sources and examine the program
implementation in practise. Thirdly, Nevot provides a debugging option to
record sent and received RTP-headers which is useful for playout algorithm
simulations.

3.1 Measurement of the CPU consumption

We wanted to know how much processor time is consumed by Nevot
using different audio codecs. In order to do this, version 3.35 of Nevot was
compiled from sources using -p flag. This enables us after running the
program by using the prof command to produce a profile file which shows
for each external text symbol the number of times that function was called
and the average amount of time per call.

Nevot provides the following speech codecs: PCM 64 kbitls, ADPCM 32
kbitls, GSM 13 kbitls and LPC 4,8 kbitls. PCM and ADPCM are
computationally light codecs compared to GSM and LPC, which are
computationally rather intensive.

3.1.1 Setup of the measurement

We had two Sun Ultra Enterprise 1 workstations connected to a 10BaseT
Ethernet. Both workstations were running Nevot version 3.35 for 5 minutes
in each measurement. Packet sizes were set to 20 ms and silence detection

356 Harri Marjamiiki & Raimo Kantola

was disabled so that both clients were continuously sending and receiving
packets.

3.1.2 Results of the measurements

Consumption of CPU time for different codecs is presented in table 1.
These results show that the processing delay increases with the complexity
of the codec. The values in Table 1 include both coding and decoding in one
workstation.

Table 1. Used CPU time in milliseconds and percent of used CPU time from total CPU time
with different audio codings

Used CPU time PCM
in milliseconds 0.26
in percent 1.3

ADPCM
0.49
2.5

GSM
1.14
5.7

3.2 Measurement of the end-to-end delay

LPC
1.83
9.1

In this measurement we had two Sun Ultra Enterprise 1 workstations
with SunOS 5.5.1 connected to a 10BaseT Ethernet. Both workstations were
running Nevot version 3.35. Delays were measured with four different audio
codings. For each audio coding both half-duplex and full-duplex traffic was
measured. We also used two different process priorities for Nevot to see if
the operating system has some contribution to the delay. Used priorities were
normal time-shared class priority with user priority 0 and realtime priority
with the highest possible priority 59 and time slice of 1 second. Each type of
measurement was repeated 10 times. Packet size was set to 20 ms in all
measurements.

3.2.1 Results of the measurements

Delays were measured 10 times for each configuration. Table 2 presents
the averaged results.

Table 2. Average end-to-end delays in different audio codings

PCM
ADPCM
GSM
LPC

TS, half duplex
[msl

32.7
33.4
34.7
35.0

TS, full duplex
[msl

32.7
34.9
33.5
36.4

RT ,half duplex
[msl

31.3
31.6
32.5
33.0

RT, full duplex
[msl

31.4
32.0
33.6
35.2

Performance Evaluation of an IP Voice Terminal 357

3.2.2 Analysis of the measurements

Measurements were done over a non-loaded LAN and network caused
delay was measured with Ping and was shown to be constantly around 0.5
ms. The framing delay of 20 ms is included in all results.

Hardware caused delays were measured by directing the signal from
microphone input to headphones output by Audio tool program. Thus, a 1
kHz square-wave input signal was NO converted and then D/ A converted in
the audio hardware. Input signal was connected to the first channel of an
oscilloscope and output signal to the second channel of the oscilloscope. HW
delay was measured several times and was constantly 2.2 ms.

If we take for example full duplex measurement with real time priorities
and PCM audio coding and subtract 31.4 ms - 20 ms (framing delay) -
2*0.26 ms (processing delay) - 0.5 ms (network delay)- 2.2 (HW delay) we
are left with 8.2 milliseconds. This delay is caused by buffering. Operating
system can increase the delay ifNevot is run as a time-sharing class process
because then it's not guaranteed to be scheduled at predicted time intervals.
In these measurements it varied between 0 and 2.9 milliseconds.
Components of the end-to-end delay are illustrated in Table 3.

Table 3. Components of the end-to-end delay
Delay component Delay in ms
Framing delay 20.0
Processing delay 0.5 - 3.7
HW delay 2.2
Network delay 0.5
OS delay 0 - 2.9
Buffering delay 8.2 - 8.8

An interesting thing was noted in the end-to-end delay behaviour with
Nevot. When a new talkspurt is started, the delay is first around 30 ms as
shown earlier, but within two seconds it increases by 40 ms and after about
10 seconds it increases by another 20 ms. Similar behaviour was noted in
[1]. This was found out to be caused by the Nevot that was receiving
packets. The reason is just to avoid buffer underflows in case of late packets.

We removed this feature by modifying the source code. No reduction to
sound quality caused by this change was noticed in our informal subjective
listening tests. The playout delays in Nevot are calculated with algorithm 1,
which was presented in section 2.3. After the correction no additional
playout delays are presented.

358 Harri Marjamiiki & Raimo Kantola

3.3 Comparison of playout algorithms

In this section we compare the performance of the playout algorithms
that were presented in Section 2.3. The performance metric we use to
compare different playout algorithms is the average playout delay vs. loss
percentage. To evaluate algorithms 1-4, we generate some traces, which
include the sender and received timestamps of each packet from a trace.
Using Matlab programs we can simulate the different algorithms. Playout
delays for each packet are calculated and we can determine if a packet has
arrived before its playout time. Thus we are able to calculate the loss
percentage and average play out delay for each algorithm with each trace.

3.3.1 Generation of the traces

In order to simulate playout algorithms, we have to generate some traces
which illustrate the delays experienced by voice packets. In the setup of this
measurement a half-duplex voice connection is established between the two
Sun Ultra Enterprise 1 workstations. A 1 kHz sinus signal is supplied by a
function generator to the sendind workstation's microphone input. The
signal generator is manually switched on/off to generate talkspurts and silent
periods. Both workstations are running Nevot 3.35 and transmitted and
received RTP-timestamps are recorded to files using the debugging option of
Nevot. Network load was generated using Radcom Prism 200 protocol
analyzer. Loads used with different traces are shown in Table 4.

Table 4. Used network loads
Tr. Traffic description Framesls Bits/frame Load/Mbps Length!

e.ackets
Small packets 3000-5000 160 3.936-6.560 25830

Small packets, 2000-3500 320 5.184-9.072 25023
2 high load

Large packets, 100-860 1450 1.163-10.000 24048

3 bursty load

Variable size pac- 200-860 160-1450 0.2624-10.000 25337
4 kets, bursty load

3.3.2 Comparison of algorithms 1-4

In this section we compare algorithms 1-4 using each of the traces with
parameters that gave the best performance in our experiments. For algorithm
1, a = 0.999 is used for traces 1 and 2, a = 0.990 is used for trace 3, and a =

0.998002 is used for trace 4. For algorithm 2, a = 0.990 in all traces and for

Performance Evaluation of an IP Voice Terminal 359

algorithm 3, W == 5000 in all traces. Algorithm 4 uses the same values for a
as algorithm 1, and the value for w = 5000. Results are shown in Figures 2-5 .

0.12

0.1
>-

.!!I

'S

£0.06

g>
<0.04

0.02

algori thm 1

algorittvn 2

algorithm 3 -

algorithm 4 -,.

".:::-

10 ' 100 10 '

0 .8

$
>-

-c
'S

Q. 0.4

t
0.2

Lale loss (%)

Figure 2. Algorithms 1-4 on trace I

algorithm I - - . .
algorithm 2 .. __
aigori ttvn 3 . __ ._ ..
algorithm 4

10 ' 10° 10'
Late loss ("!o)

Figure 3. Algorithms 1-4 on trace 2

360

0.8

$

Cb 0.6
"0
'.5

Q. 0.4

1
0,2

algorithm 1 ••••
algorithm 2
algoritlm 3
algorithm 4 ..•.•..

Harri Marjamaki & Raimo Kantola

\ ' .

\ '.
\ ",

\ "
\ "

\ '.
\ " ,

$
>-
.!l!
III

10" 10° 10'
Late loss (%)

Figure 4, Algorithms 1-4 on trace 3

algorithm 1 •..•

algoritlm 2

algori tim 3 _._.

algorittrn 4 •.. , ...

"0 0 ,1
'.5

Q.

g>
<: 0 ,05

10·' 10· 10'
Late loss ("!o)

Figure 5, Algorithms 1-4 on trace 4

We can see that algorithm 3 gives the best performance over the other
algorithms on all traces except on trace 3, where algorithm 1 gives the best
performance at the loss rates of 4-8 %. The differences between the
performance of different algorithms seemed to increase with smaller loss
rates and greater delay variance. With traces 2 and 3, algorithms 1,3 and 4
gave almost similar performance at loss ratios over 4 %, but when loss ratios
decrease, algorithms 3 and 4 perform a lot better.

Performance Evaluation of an IP Voice Terminal 361

Logically, algorithm 4 shows performance between algorithms 1 and 3
except with trace 1 where the results are about the same for algorithms 1 and
4. In the higher scale of packet loss, algorithms 1,3 and 4 perform equally
well. When packet loss reduces, algorithm 3's and algorithm 4's
performances improve compared to algorithm 1.

If we are using 20 ms voice packets then 5000 packets would mean 100
seconds of voice. When we consider that in average 40 % of the time the
sender is active, this means that the switch from algorithm 1 to algorithm 3
happens approximately 250 seconds after the beginning of a call. The actual
benefit of algorithm 4 is obtained during long calls, with duration over 4
minutes. But compared to algorithms 1 and 2, the use of a better spike
detection mode from algorithm 3, improves the presentation from the
beginning of a call.

4. CONCLUSIONS

In this paper we concentrated on the delays in an IP voice terminal. We
measured the processing delays in a Voice over IP application software
using different audio codecs. Even with the heaviest codec, the contribution
of processing delay to the end-to-end delay stayed under 4 ms in a 20 ms
frame time.

We also studied the end-to-end delay between two Sun Ultra
workstations in a situation where the network between the workstations was
unloaded and practically all delay was generated in the workstations. The
components of the end-to-end delay were measured and a significant part of
the delay was found out to be generated in the receiving workstation where
the application software starts collecting voice packets to the playout buffer
in order to avoid buffer underflows. Other components of the end-to-end
delay were framing delay, processing delay, other buffering delays, HW
delay in the soundcard and the operating system delay.

In our measurements, the difference in the end-to-end delays between
real-time and time-sharing class processes was relatively small, between 0
and 3 ms, but these measurements were performed in the summertime when
the workstations were lightly loaded.

Our experiments show that the Sun Ultra platform provides an
environment where it is possible to provide bounds on the delays presented
in the workstations. This can be accomplished with real-time scheduled
processes that are provided by the operating system. If the application
software is implemented so that it presents no additional delays and the used
network connection is lightly loaded, it is possible to achieve end-to-end
delays in the order of 30-40 milliseconds using 20 ms packet size.

362 Harri Marjamiiki & Raimo Kantola

We also made comparison of different play out algorithms under different
network delay characteristics. The best performance in our simulations was
obtained by an algorithm that was based on previous delay history. This
algorithm was not real-time implementable as such and therefore we
presented a new algorithm that was a combination of this and an existing
real-time algorithm. Our algorithm was shown to outperform the other
existing real-time algorithms that were compared in our studies. This
algorithm gives best performance with calls that last over 250 seconds.
During the first 250 seconds, delay statistics are collected and from there on,
play out delays are calculated using the delay distribution of previous 5000
packets.

In this paper we simulated play out algorithms using traces that were
generated by loading the network with a protocol analyzer. Future work
includes simulations by using actual network traces obtained between
different geographical locations and comparing the results with those
presented in this paper.

ACKNOWLEDGEMENTS
This work was carried out in IPANA-project funded by Tekes and the

industrial partners Miratel, Helsinki Telephone Company, Telecom Finland,
Tellabs, Nokia Research Center and Nokia Telecommunications.

REFERENCES
[1] Yletyinen, T. (1997). Quality of voice over IP. Master's thesis, Helsinki University of

technology, Telecomm tech. http://keskus.hut.fi/tutkimus/ipanaJpaperit.
[2] Yletyinen, T. and Kantola, R. (1998). Voice packet interarrival jitter over IP switching.

ITS '98, Brazil.
[3] Telecommunication Standardization Sector Of ITU. (1993). ITU-T Recommendation

G.114. Technical report, International Telecommunication Union.
[4] Jayant, N. (1980). Effects of packet loss on waveform coded speech. Fifth Int.

Conference on Computer Communications, pp.275-280, Atlanta, GA.
[5] Montgomery, W. (1983). Techiques for packet voice synchronization. IEEE Journal on

Selected Areas In Communications, 6(1), pp.l 022-1 028.
[6] Alvarez-Cuevas, F., Bertran, M., Oller, F., Selga, J. (1993). Voice synchronization in

packet switching networks. IEEE Networks Magazine, 7(5), pp.20-25.
[7] Bolot, J. (1993). End-to-end packet delay and loss behavior in the Internet, Proceedings

of ACM SIGCOMM '93, pp.289-298, San Francisco, CA.
[8] Ramjee, R., Kurose, J., Towsley, D., Schulzrinne, H. (1994). Adaptive playout

mechanisms for packetized audio applications in wide area networks. Proc. IEEE
In/ocom '94, Montreal, Canada

[9] Moon, S., Kurose, J., Towsley, D. (1995). Packet Audio Playout Delay Adjustment:
Performance Bounds and Algorithms. Technical Paper, Dept. of Computer Science,
Univ. of Massachusetts at Amherst.

[10] Schulzrinne, H. (1992). Voice communication across the Internet: A network voice
terminal. Univ. of Massachusetts, USA.

	PERFORMANCE EVALUATION OF AN IP VOICETERMINAL
	1. INTRODUCTION
	2. PLAYOUT DELAY ADJUSTMENT
	2.1 End-to-end delay characteristics
	2.2 Performance of a playout algorithm
	2.3 Some playout algorithms

	3. MEASUREMENTS AND RESULTS
	3.1 Measurement of the CPU consumption
	3.2 Measurement of the end-to-end delay
	3.3 Comparison of playout algorithms

	4. CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

