
Test Bed for Plain C/C++ Protocol Implementations

Henry Haverinen and Lassi Lehtinen
Nokia Mobile Phones

Abstract This paper presents a protocol software test bed, which was developed for the
testing ofa Network Access Authentication Protocol (NAAP) implementation.
We demonstrate how modular software design can help in protocol testing and
we present a simple software interface that enables flexible protocol testing of
protocol implementations. Besides normal use scenarios, the test bed allows
automatic testing ofvarious error cases, such as dropped, delayed, duplicated
and modified packets.

The presented protocol software test bed was successfully used in the testing
of a NAAP implementation, and several normally difficult-to-find errors were
fixed during the testing. The same test bed design was also used to test a
Mobile IP implementation, and it can be applied to other implementations as
weil.

Keywords: Protocol testing, modular software design

1. INTRODUCTION

Formal Description Techniques (FDTs) and high-level protocol
implementation tools that are based on FDTs often include simulation and
testing features. SDL [1] is an example of such a language. There also are C
and C++ protocol implementation libraries that can assist in the testing or
simulation of implementations, such as CVOPS [2] and x-kernel [3].
However, many communication protocols are still implemented without
implementation frameworks or libraries, in plain C and C++. This paper
describes a protocol software design, which can be used in the testing of
such plain C/C++ protocol implementations. The goals of the software
design are to make the protocol implementation portable to various
platforms and to allow the testing of the implementation in different error

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35584-9 19

O. Martikainen et al. (eds.), Smart Networks
© IFIP International Federation for Information Processing 2002

http://dx.doi.org/10.1007/978-0-387-35584-9_19

294 Henry Haverinen and Lassi Lehtinen

scenarios. Thanks to its simplicity, the underlying idea of the test bed
implementation could be used to test almost any C/C++ protocol
implementation, in many cases even after the implementation has been
completed. This is contrary to the testing support of high-level protocol
implementation frameworks, which only work for protocol software that has
been implemented using the particular frameworks.

The protocol test bed was developed for the testing of a Network Access
Authentication Protocol (NAAP) [4] implementation. NAAP is a
client/server protocol that runs over the User Datagram Protocol (UDP).

An overview of the relevant parts of the NAAP software architecture is
given in Section 2. The architecture and the operation of the test bed is
described in Section 3. Section 4 presents the results ofNAAP testing. The
generality of the test bed is discussed in Section 5. Section 6 contains
conclusions.

2. NAAP IMPLEMENTATION

The software architecture of the NAAP implementation, shown inFigure
1, uses a well-known principle in modular software design: the platform­
independent parts have been separated from the platform-specific parts with
a clearly defined interface. This principle is currently considered one of the
advantages of object-oriented design, but software has been structured for
portability already in the early 1970's [5].

I I NAAP Core ro
NAAPCore .

utlnes Adaptation Module I
I '---_--'I-g-

Adaptation r outines

b
Platform-spec f1c Interfa ces

Platform 11

I
FigureI. Software architecture ofthe NAAP implementation

The NAAP Core module contains the platform-independent parts of the
protocol implementation, while all the system dependent code is in a
platform-specific adaptation module. This division makes it easy to port the

Test Bed tor Plain C/C++ Protocollmplementations 295

implementation to new platforms. One only needs to write an adaptation
module for the new platform.

The NAAP Core is a collection of functions and data. It does not own
any threads of execution. The adaptation module controls the operation of
the NAAP Core by calling the NAAP Core routines in a suitable order. The
NAAP Core routines are non-blocking; they complete without waiting for
any external events to occur. All waiting needs to be implemented in the
adaptation module.

Sending and receiving data are examples of system-specific tasks that are
needed in all protocol implementations. For instance, when the protocol
needs to send a packet to the network, the NAAP Core calls the
arn_sendto () routine in the adaptation module, which then invokes a
platform-specific routine to send the packet, as illustrated in Figure When
the conventional socket interface is used, the socket operation to send a
packet is sendto () .

INAAP core:1 NAAP
Adaptation Modul :

am_sendtoO

sendtoO

sendto return

Figure 2. Packet sends in the NAAP implementation

Figure shows how packet receives are implemented. Because the
implementation is run by a single thread of execution, non-blocking receives
are used. First, the operating system signals the NAAP process that data is
available in a socket. On the Unix adaptation, the NAAP adaptation module
uses the select () system call to wait for multiple waitable objects. When
the select call returns and indicates that data has been received to one of the
sockets, the NAAP adaptation module passes the indication on to the NAAP
Core by calling the NAAP Core nc_handle_socket () operation. The
NAAP Core has allocated a data buffer, which it passes to the
arn_recvfrorn () adaptation routine. This adaptation routine calls the

296 Henry Haverinen and Lassi Lehtinen

system call to receive the data to NAAP Core's buffer. The adaptation
module does not need to manage buffers for NAAP packets.

INAAP Core:1 NAAP
Adaptation Modul .

nc _handle _ socket(socket

Data received. Signal th
process that is
waiting on the socket

recvfrom(socket, buffer)

recvfrom return

Figure 3. Packet receives in the NAAP implementation

Other examples of system-dependent functionality that is often needed in
protocol implementations are memory operations, getting the current time of
day for timestamps, and the scheduling of timeouts. In the NAAP
implementation, the time outs are implemented as an event queue in the
NAAP Core. The event queue is a list of event descriptors, sorted in
increasing order of when the event is to occur. There is a NAAP Core
routine that the adaptation module can call to leam the timeout to the first
event in the queue. It is the responsibility of the adaptation module to call the
NAAP Core routine which processes the expired events after this timeout.

The NAAP Core adaptation interface is also to control the protocol. For
example, all the commands the user can give, such as "connect", "cancel
connect", "disconnect", are invoked by calling a NAAP Core routine. The
NAAP Core gives indications of various events by calling an adaptation
routine. There are indications for successful connection, unsuccessful
connection, expired connection and a notification for all state transitions in
the protocol so that progress bars can be updated and so on.

Test Bedfor Plain C/C++ Protocol Implementations 297

3. TEST BED IMPLEMENTATION

The implemented NAAP test bed is a special adaptation module that
contains additional testing functionality. In other words, the test bed hooks
up between the NAAP Core module and the actual adaptation module. The
adaptation routine calls are routed through the test bed module, which can
then generate various error conditions.

For example, to test the protocol implementation when a packet is
dropped, the test bed implementation of am_sendto () returns a successful
value without actually sen ding the packet to the network, as illustrated in
Figure. To duplicate packets, the test bed implementation of
am_sendto () calls the underlying actual adaptation module routine twice.

INAAP Core:/ ITest Bedj

am _ sendto return

Figure 4. Testing of dropped sends

The testing of delayed sends is shown in Figure 5. For simplicity, the test
bed and the actual adaptation module are shown as a single entity in the
figures or this section. To delay a packet, the test bed am_sendto ()
routine schedules a timer to send the packet later. The test bed can only refer
to NAAP Core's data buffer and other parameters given to the
am _ sendto () routine, such as the destination IP address and port, while in
the context of am_sendto (). Therefore, the test bed needs to copy the
data buffer and other parameters to a send descriptor it has allocated itself.
While the timeout is pending, the adaptation module processes all events as
usual. When the timeout elapses, it calls the underlying operating system
routine to send the packet using the information in the send descriptor. After
sending the packet, the test bed frees the send descriptor. Our
implementation of the test bed delays packets using the same event queue
that is used for NAAP timeouts.

The test bed am_sendto () routine can also truncate or otherwise
modify the packet. Introducing random errors in the packet is trivial, but the

298 Henry Haverinen and Lassi Lehtinen

NAAP test bed is also able to parse NAAP packets and take actions that
depend on the contents of the NAAP message. For example, the test bed is
able to modify a given field, or insert a given extension to the packet.

INAAP core:1 NAAP
Test Bed and
Adaptation Modul :

Allocate a send descriptor.
Copy the parameters of am _ sendto
to the send descriptor.
Schedule a timeout.

arn_sendtoreturn

Timeout elapses.
Send the data using
the send descriptor.

sendtoO

sendto return

Figure 5. Testing delayed sends

Because we were testing both the NAAP client and the NAAP server
entities, it was sufficient for us to implement testing functionality to sends
only and not hook up to receives. Testing the sends in the client and in the
server covers the NAAP packets both ways. However, if it was necessary,
similar operations could be implemented when receiving packets too. In the
NAAP implementation, the adaptation module is responsible for detecting
when data is available to be read from sockets. Hence it is easy to layer test
functionality for received data too. For a simple example, to drop a received
packet, the adaptation module can simply fail to call the
nc_handle_socket () routine, which is used to indicate the NAAP Core
of received data, and ignore the received data.

Modifying received packets can be implemented by reading the received
data to a buffer allocated by the test bed, as shown in Figure 6. When the

Test Bed/or Plain C/C++ Protocol Implementations 299

operating system indicates that data has been received, the test bed allocates
a receive descriptor. The test bed then reads the received data to a buffer that
is included in the receive descriptor and saves all the related information of
the received packet, such as the source IP address, to the receive descriptor.
Before indicating the packet to NAAP Core with nc_handle_socket (),
the test bed modifies the received data. When the NAAP Core calls
am _ recvfrom () to read the received data, the test bed does not pass the
buffer to the underlying operating system, as the actual adaptation module
does, but the test bed copies the contents of the modified buffer from the
receive descriptor to NAAP Core's buffer, and also supplies the related
information it has stored in the descriptor.

NAAP
!NAAP Core:!

Test Bed System:
Adaptation Modul :

lndicate received dat

Allocate a receive descriptor.
Read the received data and
reJated parameters to the descriptor.

recvfromO

14-- recvfrom return
--------"'-'-

! Modil)lthe received data !

nc handle socket(

am recvfromO

Copy the modified butTer from the receive descriptor
to NAAP Core's butTer.
Give the reJated parameters from the descriptor.
Free the descriptor.

am_recvfrom

returns ---. -... -- -...
Figure 6. Modifying received packets in the test bed

Modifying data could also be implemented in the am recvfrom ()
function of the test bed by reading the data to NAAP Core's buffer and then
modifying it. However, using a receive descriptor is a more general way of
implementing test functionality for receives as it also enables the testing of
delayed and duplicated receives.

300 Henry Haverinen and Lassi Lehtinen

Duplicated receives can be implemented with a similar mechanism. The
test bed needs to copy the received data in a buffer it has alloeated, beeause
the underlying recvfrom () routine would only give the data onee. After
reading the data to a buffer, the test bed ean indieate the data to the NAAP
Core twiee, and eopy it to the NAAP Core's buffer from its own buffer.

NAAP operatin1 INAAP Core:1 Test Bed System:
Adaptation Modul! :

Indicate received dat

l Alloeate a reeeive deseriptor. J
Read the received packet.

recvfromO

__ recvfrom

Schedule a timeout.

Timeout has elapsed

nc handle socket(

am recvfromO

Copy the reeeived dat. ti'om !he
reeeive deseriptor to NAAP Core's buffer.
Give the rel.ted parameters from the deseriptor.
Free the deseriptor.

-- am recvfrom return --- ---

returns __

-- -... --
Figure 7. Testing delayed receives

The testing of delayed reeeives is illustrated in Figure7. To delay a
received packet, the test bed schedules a timeout and indicates the packet to
the NAAP Core only after the timeout has elapsed. The test bed
implementation for delayed paekets is also implemented by eopying the
received data and the related parameters to a reeeive deseriptor when the
operating system indieates that data has been reeeived. If the test bed didn't
copy the data but left the data in the operating system buffers, the paekets
would still be received in the correet order, which is not the desired

Test Bedfor Plain C/C++ Protocol Implementations 301

operation when testing delayed packets. After copying the received packet to
a receive descriptor, the test bed then schedules a timeout after which NAAP
Core is indicated. While the timeout is pending, the adaptation module
processes all events as usual. Other packets can be received without delaying
them. When the timeout eventually elapses, the test bed indicates the NAAP
Core, and the received data from the receive descriptor is copied to NAAP
Core's buffer.

Our test bed implementation includes a configuration file with which
different test cases can be specified. There are different conditions when to
employ any of the above mentioned error cases. For example, the
configuration file can include an entry that specifies the probability of
dropping a certain NAAP packet.

The NAAP test bed makes use of the notifications given by the NAAP
Core. By hooking up to these notifications, the test bed is able to monitor the
state of the protocol. This is exploited for example by employing test case
after a certain state transition has occurred. The testing of the "cancel
connect" feature is a good example of this. Because the user can click the
Cancel button in any phase of the connection establishment, it is hard to test
this feature manually. We had a test case for cancelling the connection in
each intermediate state of the connection establishment, based on
notifications from the NAAP Core. The notifications also enable the test bed
to automatically tell if a test case has passed or failed. This makes it possible
to prepare a set of test cases, which can be automatically performed when
the protocol implementation has been changed.

4. NAAP TESTING IN PRACTISE

In total, the NAAP testing plan defines 88 test cases that make use of the
test bed. Six cases were related to the basic use scenarios of the protocol. In
15 cases, random errors were introduced in different types of packets. There
were 15 cases of truncating packets, 11 cases for dropping packets and 15
cases for duplicated packets. Certain fields of the packets were modified in
19 cases. In addition, there were 7 cases to test the cancel connection feature,
already discussed in the previous section.

As usual in software development, many bugs and anomalies in the
NAAP implementation were found and fixed during the implementation in
informal "tryouts" performed by the programmer. The actual testing begun
only after the programmer had tried out the new build by running the most
typical use cases and fixed any problems encountered. These bugs were not
counted, but they numbered in hundreds. In the actual testing that was
performed using the test bed, circa 50 bugs were found and fixed.

302 Henry Haverinen and Lassi Lehtinen

In six bugs, the protocol implementation did not check for the validity of
a field in a protocol message as required in the protocol specification. The
implementation accepted a message, which had been modified by the test
bed to be invalid and thereby should have been silently ignored. There were
two bugs, which caused the implementation to crash when the test bed set a
protocol field to an invalid value.

In NAAP, some ofthe messages are required to include the Authenticator
extension, which provides for message integrity protection against
tampering. The specification lists two ca ses when exactly one Authenticator
extension must be present. Three different bugs were found by removing the
mandatory Authenticator extension or inserting an extra Authenticator
extension in the test bed. The protocol implementation accepted the
messages with invalid or missing Authenticator extensions.

One category of the bugs was related to message retransmissions. When a
packet was lost, there were cases when the sender did retransmit the packet
as specified, but the recipient did not accept the retransmissions. In some of
the cases, a lost packet caused the protocol to enter a wrong state or to
misschedule retransmission timers.

About half of the bugs were individual cases, which cannot be
categorized with other bugs. For example, there were only individual errors
caused by delayed or duplicated packets.

5. GENERALITY OF THE TEST BED

To prove that the concept of the test bed implementation can be
generalized to other protocol implementations, we tested an earlier Mobile
IP implementation, described in [6] with aversion of the test bed. Thanks to
the modularity of the Mobile IP implementation, it was easy to hook up the
test bed to the software. Because we had used the same software interface
for packet operations as in the NAAP implementation, we were able to plug
in the test bed without changing the platform-independent part of the Mobile
IP implementation.

We could not re-use the portions of the test bed that tested NAAP­
specific functionality or hooked up to NAAP specific notifications.
Obviously, writing tests that are aware ofMobile IP features requires Mobile
IP specific work.

The test bed could be used to test other modular protocol
implementations with small modifications. In most operating systems, the
socket interfaces are descendants of the Berkeley Software Distribution
(BSD) socket interface and hence the routines for sending and receiving data
are very similar. If the original designer of the software has used wrapper

Test Bedfor Plain C/C++ Protocollmplementations 303

functions around the socket operations, it should be easy to hook up the
protocol test bed.

Some protocol implementations do not separate the platform-specific
parts in a different place but call socket operations directly. If the socket
calls are all over the code, then preprocessor directives can be used to hook
up a test bed. For example, there can be a preprocessor definition that
replaces calls to the socket function sendto () with calls to
testbed_sendto (). Some protocol implementations that have multiple
threads or processes use blocking receives and call the recv () or
recvfrom () routine without waiting for any separate indications first.
Simple preprocessor definitions are sufficient to implement test functionality
for receives in these cases.

Testing non-blocking receives requires more work. It is hard to come up
with a general purpose preprocessor directive to take care ofthe select ()
system routine that is used for waiting for events to occur in sockets or file
descriptors. Fortunately, there usually is only one or two places in the source
code where select () is used, so it should be quite easy to hook up a test
bed by modifying these parts. If we want to test delayed, duplicated or
dropped receives, then the test bed may need to use aseparate thread which
waits in select (), and wakes up the protocol implementation thread when
it wishes to indicate an event to the protocol.

Alternatively to protocol test beds that are linked with the protocol
implementation, test functionality can also be implemented lower in the
protocol software stack. For example on Windows, we could implement test
functionality in an intermediate network driver, which resides between the
TCP/IP stack and network interface card drivers. This test bed would be able
to test any protocol implementation, even a binary executable that cannot be
modified. However, when the test bed is linked with the protocol
implementation, it is more convenient to debug the software when an error is
found. It would also be harder to automatically detect passed and failed test
cases in a driver-level protocol test bed. In order to test high-level issues, it
is better to hook to higher level in the protocol stack.

6. CONCLUSIONS

The protocol test bed design described in this paper has been successfully
used in the testing of a NAAP implementation and a Mobile IP
implementation. Several errors that would have been hard to find in black
box testing were fixed and the test bed proved to be easy to use and flexible.

Our experience is that modular software design facilitates not only
implementation and porting but also testing. It is advantageous to implement

304 Henry Haverinen and Lassi Lehtinen

packet sends and receives, as weIl as protocol control and notifications so
that test functionality can easily be hooked up.

REFERENCES

[1] "Specification and Description Language (SDL)", ITU-T Recommendation
Z.100, November 1999

[2] J. Harju, A. Karila, J. Kuittinen, J. Malka: "CVOPS, a tool for the
implementation and testing of computer communications software", Technical
Research Centre ofFinland, Telecommunications Laboratory, 1986

[3] N. Hutchinson, L. Peterson, "The x-Kernel: An Architecture for Implementing
Network Protocols", IEEE Transactions on Software Engineering, Vol. 17, No.1,
January 1991

[4] H. Haverinen, "NAAP: A User-to-Network authentication Protocol " ,
Proceedings of Smartnet 2002 Conference, April 2002

[5] P.C. Poole, W.M. Waite, "Portability and Adaptability", Advanced Course on
Software Engineering, Lecture notes in Economics and Mathematical Systems
81, Springer 1973

[6] H. Haverinen, A. Kuikka, t. Määttänen, "A Portable Mobile IP
Implementation", Proceedings of the IEEE Local Computer Networks 2000
Conference, November 2000

	Test Bed for Plain C/C++ Protocol Implementations
	1. INTRODUCTION
	2. NAAP IMPLEMENTATION
	3. TEST BED IMPLEMENTATION
	4. NAAP TESTING IN PRACTISE
	5. GENERALITY OF THE TEST BED
	6. CONCLUSIONS
	REFERENCES

