
A Service Deployment Architecture for Heterogenous
Active Networks Nodes

Matthias Bossardtl >, Lukas Rufl), Bernhard Plattnerll, and Rolf Stadler2l

J)Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland
{bossardt, ruf,plattner }@tik.ee.ethz.ch

2)Center for Telecommunications Research, Columbia University, New York, USA,
stadler@ctr.columbia.edu

Abstract In order to realise service deployment on high-performance active nodes, the
problem of installing and configuring software components in complex,
heterogeneous node environments must be addressed. The paper presents our
approach to this problem, called Chameleon. The service specification is kept
independent of any particular node architecture. During the service
deployment phase, the service specification is resolved recursively on each
node offering the service and is driven by node-specific parameters. The result
of this resolution is a tree of service components, which can differ among
different types ofnodes. Our solution allows a service to take full advantage of
specific node features, such as those related to performance or security. The
design is illustrated using a video scaling service.

Keywords: Active networks, service deployment

1. INTRODUCTION

Service deployment on active network nodes includes installing and
configuring software components that perform processing in the data path.
Service deployment is difficult on high-performance nodes due to their
complex architectures. They are often based on mUltiprocessors, run service

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35584-9 19

O. Martikainen et al. (eds.), Smart Networks
© IFIP International Federation for Information Processing 2002

http://dx.doi.org/10.1007/978-0-387-35584-9_19

38 Matthias Bossardt et al.

components as kernel modules [1] and provide multiple concurrent
execution environments.

Many types of execution environments have been developed each of
which is usually optimised for a certain type of tasks. Active nodes typically
provide more than one to support the whole spectrum of services. Also,
different types of active nodes usually support different sets of execution
environments. All this motivates us to develop a service deployment scheme
that can cope with heterogeneous active nodes, i.e., with active nodes
running sets of execution environments that can vary from node to node. Our
goal is to develop ascherne, where the service specification is node­
independent, but service deployment and installation recognise the diversity
of execution environments, thereby allowing a service to exploit the
particular functionality and performance features of active network nodes.

Our approach to service deployment on heterogeneous active network
nodes, called Chameleon, has two important aspects. First, the service model
we propose is based on components with two types of interfaces - a data
flow interface for programming packet flows and a control interface for
controlling and managing the service components. A service is structured as
an arbitrary tree of such components. Second, the service specification is
independent of any particular node architecture. During the service
deployment phase, the service specification is resolved on each node
offering the service. The resolution and service creation process depends on
the locally available set of execution environments. This way, the service
can take advantage of the specific node features.

This paper is organised as follows. Section 2 outlines the service model.
It is illustrated using the example of a video scaling service. Section 3
presents our approach to local service resolution and creation. The
previously presented video scaling service is used to illustrate the
deployment mechanism. Section 4 summarises related work. In section 5, we
draw our conclusions and discuss future work.

2. SERVICE MODEL FOR ACTIVE NETWORK
NODES

With Chameleon, we propose a service model that alleviates the
development of services, and at the same time takes advantage of the
flexibility and versatility offered by active networks. Services are modelled
such as to support a flexible deployment on heterogeneous nodes, which is
the main contribution of Chameleon. Typically, a service can be seen as a
distributed application in the network. An active node provides the platform
on which part ofthe service is run. In this paper, we focus on the node level.

A Service Deployment Architecture for Heterogenous ... 39

The network level aspects exceed the scope of this paper. This section
introduces the service model. We motivate our approach by presenting the
requirements.

2.1 Requirements

Service models have been developed for various network and system
architectures. Most models target the telecom environment [13], some of
them end systems [2]. Similar to the work described in this paper, [7,9,12]
feature models that focus on the node level. To a certain extent, they all
allow for a recursive composition of services. However, to the best of our
knowledge, they do not completely support our requirements as summarised
below. For a more detailed discussion of the requirements, the reader is
referred to [3].

2.1.1 Separating the Data Flow Interface from the Control Interface

The task of a router in traditional networks is to forward packets. An
incoming packet traverses several processing stages before it leaves the
router. An active node is the equivalent of a router in active networks. Packet
forwarding remains the main task of an active node. However, the distinctive
feature of an active node is that packet processing in the node is freely
programmable. An active node allows programming both the interconnection
and configuration of processing components, as well as the actual processing
in the components. Because of the flow-based nature of packet processing in
active nodes, we introduce an explicit data flow interface. Several benefits
originate from a service model that supports such an interface. First, an
explicit data flow interface supports representation of an active service as a
directed graph, where the vertices correspond to packet processing
components and where the edges represent packet flows. Data flow diagrams
are an intuitive way to model a network service. Second, a data flow
interface, which is separated from a control interface, facilitates the mapping
of the service specification into an efficient implementation by mapping the
data flow onto high performance communication facilities ofthe active node.
An example for such a feature is described in [14], which proposes a zero­
copy facility for packet processing.

The control interface allows controlling and managing a service
component. It must provide a generic way to exchange control and
monitoring information among processing components. The implementation
of this interface depends on the specific execution environment and is also
addressed by standardisation efforts [12].

40 Matthias Bossardt et al.

2.1.2 Support of Different Active Node Environments

An active node may provide more than one execution environment. This
is motivated by the following facts. First, each execution environment is
usually optimised for a certain type of tasks. Some of them are rich in
functionality, others are more restricted, but offer better security or better
performance for certain tasks. Second, certain processing components are
implemented for one specific execution environment. Finally, it is not
realistic to assume that all active nodes provide the same set of execution
environments [6], we require a service model to enable service specification
that is independent of the node environment.

2.1.3 Support for Services Spanning Several Execution
Environments

An optimum mapping of a service specification onto the node
environment may result in an implementation that spans several execution
environments. A packet classifier, for example, which processes packet at
link speed, would be mapped to reconfigurable hardware execution
environment [8], whereas a component that performs a routing algorithm,
e.g. RIP, is more likely to be implemented in a CORBA execution
environment. As a consequence, the service model must include abstractions
for communication facilities between the service components. These
communication facilities are execution environment specific. Moreover, the
node may provide facilities that allow for communication between
components in different execution environments.

2.2 Node Independent Service Model

This paper advocates a service model that is specialised for active
networking. In order to fulfil the requirements from the preceding section,
we need abstractions to model a service in anode independent way. We base
the model on two basic abstractions, namely composable containers and
connectors.

A Service Deployment Architecture for Heterogenous ... 41

Connector

Figure J. UML representation of the Chameleon service model

2.2.1 Composable Containers

We apply the composition design pattern [11], which allows a service to
be structured in a hierarchical and recursive way. The UML diagram in
Figure 1 shows that a service is composed of containers. We notice further
that a container is a generalisation of a service, as weIl as of an
implementation. A container defines the interfaces, which are common to
both service and implementations. As a consequence, services and
implementations can be handled the same way. A new service can be
specified by composing existing services and implementations. An
implementation, however, is not composed. It represents the primitive object
of the composition.

As a result of using the composition design pattern, a service
instance can be represented as a tree of dependencies, which can
be resolved recursively, The leaves of the tree are implementation
objects, whereas the nodes are services.

An implementation represents both code modules that must be or are
already installed in a specific execution environment, and services that are
installed when the node is bootstrapped.

Since a container, is a generalisation of both a service and an
implementation, it is up to the local mapping process at the active nodes to
determine whether a specific container representing an implementation or a
service. The resulting service tree may therefore be different for each node
environment. We exploit this property when mapping a service description
onto different node environments (see section 3).

2.2.2 Connectors

Figure 1 shows thatfunnels and tubes are a specialisation of a connector.
Both are an abstraction for communication facilities between containers.
Tubes bind two data flow interfaces, whereas funnels allow communication
between control interfaces.

42 Matthias Bossardt et al.

A tube transports packets and is unidirectional. Both end points of a tube
have the same capabilities. One end point sends packets, whereas the other
receives them.

A funnel, in contrast, binds two control interfaces of, possibly, different
type. As a consequence a funnel is a more complex abstraction. Attributes of
an implementation's control interfaces specify the implemented API. Based
on this information the active node may provide adapters to enable
communication between different types of control interfaces. It is assumed
that control APIs specified by different standardisation efforts may coexist in
this way. We do n6t assurne, however, that for each possible pair of control
API standards an adapter can be provided.

In general, implementations of tubes and funnels are execution
environment specific. The node, however, provides adapters and
communication facilities that allow for an implementation of tub es
and funnels across execution environment boundaries.

2.3 Modelling a Video Scaling Service

The goal of this section is to illustrate the applicability of our service
model. We model a video scaling service as described in [4]. The service is
based on a hierarchical encoding scheme, named WaveVideo [5]. The
service measures the output queue length (congestion) of the WaveVideo
stream. Based on this measurement, it selectively drops packets of the stream
in order to adapt to the available bandwidth and to achieve a graceful
degradation ofthe video quality.

a) WaveVideo Scaling
Specitication 1

2) WaveVideo Scaling
Specification 2

Symbols

dataflow
interface

_ control

Interface
....... tube

tunnel o container

Figure 2. Visual representation oftwo specifications ofthe same service

Figure 2 shows a visual representation of two possible WaveVideo
Scaling service specifications that may be registered in appropriate registries
within the network. Specification b) contains more details than a), but both
describe the same behaviour. Being more generic, specification a) allows for

A Service Deployment Architecture for Heterogenous ... 43

more freedom during the mapping process on the node. We come back to
this example in section 3.

3. SERVICE DEPLOYMENT ON ACTIVE
NETWORK NODES

Service deployment in a network takes place on two levels: 1) on the
network level, where network nodes are identified that will run the service,
and 2) on the node level, where software is deployed within the node
environment. In this paper, we investigate specifically service deployment
on the node level. Service deployment on the network level is left as future
work.

In traditional networks, a service is specified and deployed by a
centralised entity, e.g. the network manager. In active networks, however,
users, if permitted, or services themselves can create service specifications
and request the deployment of new services. We will refer to the entity that
requests a service as service requester.

A service request includes a specification that contains references to sub­
services and a map of their interconnection, as shown in Figure 2. In oUf
implementation, we use an XML document and a corresponding XML
schema to represent such a service specification.

We consider a scenario where the service request is sent to a particular
network node. This request contains a specification of the service to be
installed locally. Such service specifications can be transported to a network
node using a file transfer protocol, mobile agents, or encapsulating the
specification in active packets.

The remainder of this section describes our approach to a local service
creation architecture, and the mechanism that maps a service specification to
the local node environment.

3.1 The Local Service Creation Engine

On receiving a service request, the local service creation engine (see
Figure 3) maps the request onto the local node environment. In the
following, we describe the components of the local service creation engine
in detail.

The specification processor is the heart of the local service creation
engine. It controls the mapping process. The input to the specification
processor is the service specification. When the mapping process terminates,
an implementation map is generated. The implementation map is referring to

44 Matthias Bossardt et al.

implementation objects (see Figure 1) that must be installed on the node and
shows their interconnection.

The specification parser receives a service specification from the
specijication processor. The service specification is read and checked on
syntactical correctness. Its output is a one level tree representation of the
service specification.

The local service registry is used to lookup service specifications. The
specification processor passes (sub-)service name and, optionally, service
attributes to the local service registry. The local service registry matches the
request with registered services or consults an external service registry. It
subsequently returns a list of matching (sub-)service specifications to the
specification processor. The local service registry contains also entries for
services that are preinstaUed in the execution environments when
bootstrapping the active node.

The mapping policy contains rules that influence the decision process of
the specijication processor when selecting a service specification from the
list generated by the local service registry. E.g. a policy might indicate that
implementations for execution environment 1 are always preferred to those
for execution environment 2.

The node information base contains information about the configuration
of the active network node. The information inc1udes the types of available
execution environments on the active node. Furthermore, the node
information base contains information about the types of funnels and tubes
available. The node information base is part of the local management
information base (MIB).

The deployment engine receives an implementation map from the
specification processor and generates a specific implementation map for
each execution environment. The execution environment specific
implementation maps contain information about the code modules to be
installed and configured, as well as their interconnection. If required, tube
and funnel adapters, which allow for communication across execution
environment boundaries, are inserted in these maps.

The code fetcher receives a list of code modules that are required to be
installed on the node. The list is compiled by the deployment engine after the
service mapping process. The code fetcher contacts the appropriate code
repositories to download the code modules.

The adapter repository contains funnel and tube adapters, which may be
requested by the deployment engine.

A Service Deployment Architecture for Heterogenous ...

Specificatlon

Service Reglstry -----------

Code Reposltory
.... -----------

Active Node

Management Execution Environment

Local Service Creation Engine

Mapplng
Policy

Figure 3. Active node with local service creation engine

Executlon
Environment 1

Executlon
Env"onment 2

Executlon
Environments N

3.2 Mapping tbe Service Specification onto tbe Node
Environment

45

The mapping of the service specification onto the node environment
involves two phases. In the first phase, a service tree is recursively built, the
leaves of wh ich contain implementation objects. An implementation map
containing these implementation objects and the description of their
interconnection is passed to the deployment engine. In the second phase, the
deployment engine builds a specific implementation map for each execution
environment, triggers the fetching of the required code and the installation in
the execution environments. In the following sections, we describe the
mapping process in more detail.

3.2.1 Building the Service Tree

The process that builds the service tree is controlled by the specijication
processor.

Step 1. The specijication processor receives a service specification from
the service requester.

Step 2. The specijication processor calls the specijication parser, which
transforms the service specification into a tree representation. The leaves of
the tree are the sub-services the service is composed of. The tree is retumed
to the specification processor.

Step 3. The specification processor uses the local service registry to
lookup specifications matching the (sub-)services referred by the leaves of
the tree. As a result a list of service specifications for each leaf node is

46 Matthias Bossardt et al.

passed to the specijication processor. If a service specification points to an
implementation, information about the location(s) where the code module
can be retrieved from or a reference to a preinstalled service is returned. In
the second case, in which a service specification points to (sub-)services,
(sub-)service names and, optionally, attributes are returned.

Step 4. For each leaf of the service tree, the specijication processor
decides, which (sub-)service or implementation to insert in the tree. The
decision process is based on information from the mapping policy and the
node information base. If a leaf is mapped to an implementation, it must not
be considered anymore in the remaining steps ofbuilding the service tree.

Step 5. If all leaves are mapped to implementations, the tree building
process terminates. Otherwise steps 2--4 are repeated for the remaining
leaves, which point to (sub-)services, in order to recursively build the service
tree.

Step 6. The specijication processor generates an implementation map
and passes it to the deployment engine.

3.2.2 Installing the Mapped Service

The deployment engine controls the process of installing the mapped
service.

Step 1. The deployment engine receives the implementation map from
the specijication processor. Based on this information, it constructs
execution environment specific implementation maps, inserting references to
tube and funnel adapters where required.

Step 2. The deployment engine contacts the code Jeteher with a list of
code modules and requests their download. It further retrieves the required
tube and funnel adapters from the adapter repository and configures them.

Step 3. The deployment engine passes the specific installation maps and
references to the code modules and adapters to the execution environments,
where they are installed by execution environment specific mechanisms.

3.3 Mapping a Video Scaling Service

Applying the service specifications from Figure 2, we i1lustrate the
mapping process as described above. An example in which the service is
mapped onto two different node architectures can be found in [3].

A Service Deployment Architecture Jor Heterogenous ... 47

I Wavev.loo I I 1
Pockel autUe I

I Pr "" I I __ --" __ .J

b) c)

Figure 4. Four steps ofresolving a WaveVideo Scaling service specification on anode

The active node gets arequest to deploy a service according to the
service specification from Figure 2a). Figure 4 illustrates this subsequent
mapping process. The service specification is composed of two sub-services,
as can be seen in Figure 4.1. The container discovery is used to lookup
specifications of these sub-services. Three matching specifications of
WVPacketProcessor as weil as three specifications of queue are
retrieved (cf. Figure 4.2). One WVPacketProcessor specification (grey
box) points to two sub-services, whereas the remaining two (white box es)
point directly to implementations for specific execution environments. One
queue instance is a preinstalled (sub-)service available on the node
(hatched box), the other two are pointing to implementations as weIl. We
notice in figure Figure 4.3 the specijication processor decided - after
consultation of the node information base and the mapping policy - to use
queue _ 3 and continues the recursive resolving process for the composed
WVPacketProcessor_l. The resulting implementation consists in three
implementation entities (cf. Figure 4.4). One is provided by the node
(Queue 3), the other two instances are code modules
(WVClassifierDropper I, WVClassifierController 2) and - -
must be down loaded by the code Jetcher. The deployment engine requests
the appropriate execution environments to install the code and binds the
interfaces according to the implementation maps. The binding of the
interfaces might require the insertion of adapters - abstracted by tubes and
funnels - in order to cross execution environment boundaries.

4. RELATED WORK

Click Rauter [7] proposes a software architecture for configurable
routers. Click Router can interpret a configuration file, and create and
configure services. Services are composed of C++ elements that ron in a
kernel execution environment. Click Router assumes a direct mapping of the

48 Matthias Bossardt et al.

element names listed in the configuration file to the ones instantiated on the
node. All required elements are available from anode local code repository.
Click Router does not support multiple, concurrent execution environments.

NetScript [9] uses a recursive mechanism for the composition of services
from components. However, it does not deal with the service deployment
process and does not support multiple, concurrent execution environments.

The IEEE P 15 20 standards initiative [12] aims at a standardised API to
the control interface of network elements. In low level of the architecture, it
uses a similar service composition mechanism. P1520, however, does not
specify service deployment mechanisms.

TINA-C [13] specifies a network architecture for the telecommunication
environment. Network services run on a Distributed Processing Environment
(DPE). TINA-C computational objects provide an operational interface and a
stream interface that allows separating the data flow from the control flow.

5. DISCUSSION AND FUTURE WORK

In this paper, we described a service model that facilitates service
deployment on multi-execution environment nodes. The service
specification is locally mapped to the node environment in order to exploit
the specific features of the different execution environments. Moreover the
service specification supports heterogeneous networks, because it is node
independent. As a consequence, the same service specification can be sent to
different types of active nodes.

The local service creation engine, which maps the service specification to
the node environment, uses locally available information from the node
information base and local policies for the mapping in order to take
advantage of specialised execution environments provided by anode. The
presented algorithm is greedy in the sense that on each level of building the
service tree, adecision is made on which sub-service to use. Therefore, the
algorithm may not find a globally optimum mapping. A simple extension,
based on backtracking, would allow performing an exhaustive search of
possible service mappings. We expect the mapping space to be relatively
smalI. Therefore, we consider an exhaustive search to be a valid approach.

Future work will investigate the service deployment on a network level
and its integration with the work proposed in this paper. Moreover, we will
evaluate whether our assumption about the mapping space is valid. Also, we
will extend and generalize the XML schema that we use in our prototype
implementation for the specification of services. Furthermore, we plan to
evaluate Chameleon within the testbed of the IST-FA IN project (5th EC

A Service Deployment Architecture for Heterogenous ... 49

Framework Program) [10], which aims at developing an architecture for
future high performance active networks.

ACKNOWLEDGEMENTS

We gratefully acknowledge the feedback we received on an earlier
version of this paper and during discussions with the F AIN project members.
This work is funded by ETH Zürich and Swiss BBW under grant number
99.0533. It is part of ETH's contribution to the IST Project FAIN (5th EC
Framework Program).

REFERENCES

[1] Decasper, D., Dittia, Z., Parulkar, G., Plattner, B. Router Plugins - A Software
Architecture for Next Generation Routers. IEEE/ ACM Transactions on
Networking, February 2000.

[2] Stiller, B., Cl ass, c., Waldvogel, M., Caronni, G., Bauer, D. A Flexible
Middleware for Multimedia Communication: Design, Implementation and
Experience, IEEE Journal on Selected Areas in Communication, vol. 17 no. 9,
September 1999.

[3] Bossardt, M., Stadler, R. Service Deployment on High Performance Active
Network Nodes. TIK Technical Report 122, ETH Zürich, Switzerland, 2001.

[4] Keller, R., Choi, S., Decasper, D., Dasen, M., Fankhauser, G. and Plattner, B.
An Active Router Architecture for Multicast Video Distribution. Infocom 2000,
Tel Aviv, Israel, 2000.

[5] Fankhauser, G., Dasen, M., Weiler, N., Plattner, B., Stiller, B. WaveVideo - An
Integrated Approach to Adaptive Wireless Video. ACM Monet, Vol. 4 No. 4,
1999.

[6] Haas, R., Droz, P., Stiller, B. Distributed Service Deployment over
Programmable Networks. DSOM 2001, Nancy, France, 2001.

[7] Kohler, E., Morris, R., Chen, B., Jannotti, J. and Kaashoek, M.F. The Click
Modular Router. ACM Transactions on Computer Systems 18(3), August 2000,
pages 263-297.

[8] Lockwood, J.W., Naufel, N., Turner, J.S., and Taylor, D.E. Reprogrammable
Network Packet Processing on the Field Programmable Port Extender (FPX).
ACM International Symposium on Field Programmable Gate Arrays
(FPGA'2001), Monterey, USA, February 2001.

50 Matthias Bossardt et al.

[9] Da Silva, S., Florissi, D., and Yemini, Y., Composing Active Services in
NetScript, position paper, DARPA Active Networks Workshop, Tucson, AZ,
March 9-10, 1998.

[10] Galis, A., Plattner, B., Moeller, E., Laarhuis, J., Denazis, S., Guo, H., Klein, c.,
Serrat, J., Karetsos, G., Todd, C. A Flexible IP Active Networks Architecture.
International Working Conference on Active Networks (IWAN 2000), Tokyo,
Japan, October 2000.

[I I] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns. Addison­
Wesley, 1995.

[12] Vincente, J., Denazis, S., Biswas, J. L-interface Building Block API. IP Working
Group IEEE P1520, www.ieee-pin.org, March 2001.

[13]TINA-C. www.tinac.com.

[14] Druschel, P., Peterson, L.L., Fbufs: A High-Bandwidth Cross-Domain Transfer
Facility, ACM Symposium on Operating Systems Principles, Dec. 1993.

	A Service Deployment Architecture for HeterogenousActive Networks Nodes
	1. INTRODUCTION
	2. SERVICE MODEL FOR ACTIVE NETWORKNODES
	2.1 Requirements
	2.2 Node Independent Service Model
	2.3 Modelling a Video Scaling Service

	3. SERVICE DEPLOYMENT ON ACTIVENETWORK NODES
	3.1 The Local Service Creation Engine
	3.2 Mapping tbe Service Specification onto tbe NodeEnvironment
	3.3 Mapping a Video Scaling Service

	4. RELATED WORK
	5. DISCUSSION AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

