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Abstract In order to realise service deployment on high-performance active nodes, the 
problem of installing and configuring software components in complex, 
heterogeneous node environments must be addressed. The paper presents our 
approach to this problem, called Chameleon. The service specification is kept 
independent of any particular node architecture. During the service 
deployment phase, the service specification is resolved recursively on each 
node offering the service and is driven by node-specific parameters. The result 
of this resolution is a tree of service components, which can differ among 
different types ofnodes. Our solution allows a service to take full advantage of 
specific node features, such as those related to performance or security. The 
design is illustrated using a video scaling service. 

Keywords: Active networks, service deployment 

1. INTRODUCTION 

Service deployment on active network nodes includes installing and 
configuring software components that perform processing in the data path. 
Service deployment is difficult on high-performance nodes due to their 
complex architectures. They are often based on mUltiprocessors, run service 
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components as kernel modules [1] and provide multiple concurrent 
execution environments. 

Many types of execution environments have been developed each of 
which is usually optimised for a certain type of tasks. Active nodes typically 
provide more than one to support the whole spectrum of services. Also, 
different types of active nodes usually support different sets of execution 
environments. All this motivates us to develop a service deployment scheme 
that can cope with heterogeneous active nodes, i.e., with active nodes 
running sets of execution environments that can vary from node to node. Our 
goal is to develop ascherne, where the service specification is node­
independent, but service deployment and installation recognise the diversity 
of execution environments, thereby allowing a service to exploit the 
particular functionality and performance features of active network nodes. 

Our approach to service deployment on heterogeneous active network 
nodes, called Chameleon, has two important aspects. First, the service model 
we propose is based on components with two types of interfaces - a data 
flow interface for programming packet flows and a control interface for 
controlling and managing the service components. A service is structured as 
an arbitrary tree of such components. Second, the service specification is 
independent of any particular node architecture. During the service 
deployment phase, the service specification is resolved on each node 
offering the service. The resolution and service creation process depends on 
the locally available set of execution environments. This way, the service 
can take advantage of the specific node features. 

This paper is organised as follows. Section 2 outlines the service model. 
It is illustrated using the example of a video scaling service. Section 3 
presents our approach to local service resolution and creation. The 
previously presented video scaling service is used to illustrate the 
deployment mechanism. Section 4 summarises related work. In section 5, we 
draw our conclusions and discuss future work. 

2. SERVICE MODEL FOR ACTIVE NETWORK 
NODES 

With Chameleon, we propose a service model that alleviates the 
development of services, and at the same time takes advantage of the 
flexibility and versatility offered by active networks. Services are modelled 
such as to support a flexible deployment on heterogeneous nodes, which is 
the main contribution of Chameleon. Typically, a service can be seen as a 
distributed application in the network. An active node provides the platform 
on which part ofthe service is run. In this paper, we focus on the node level. 
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The network level aspects exceed the scope of this paper. This section 
introduces the service model. We motivate our approach by presenting the 
requirements. 

2.1 Requirements 

Service models have been developed for various network and system 
architectures. Most models target the telecom environment [13], some of 
them end systems [2]. Similar to the work described in this paper, [7,9,12] 
feature models that focus on the node level. To a certain extent, they all 
allow for a recursive composition of services. However, to the best of our 
knowledge, they do not completely support our requirements as summarised 
below. For a more detailed discussion of the requirements, the reader is 
referred to [3]. 

2.1.1 Separating the Data Flow Interface from the Control Interface 

The task of a router in traditional networks is to forward packets. An 
incoming packet traverses several processing stages before it leaves the 
router. An active node is the equivalent of a router in active networks. Packet 
forwarding remains the main task of an active node. However, the distinctive 
feature of an active node is that packet processing in the node is freely 
programmable. An active node allows programming both the interconnection 
and configuration of processing components, as well as the actual processing 
in the components. Because of the flow-based nature of packet processing in 
active nodes, we introduce an explicit data flow interface. Several benefits 
originate from a service model that supports such an interface. First, an 
explicit data flow interface supports representation of an active service as a 
directed graph, where the vertices correspond to packet processing 
components and where the edges represent packet flows. Data flow diagrams 
are an intuitive way to model a network service. Second, a data flow 
interface, which is separated from a control interface, facilitates the mapping 
of the service specification into an efficient implementation by mapping the 
data flow onto high performance communication facilities ofthe active node. 
An example for such a feature is described in [14], which proposes a zero­
copy facility for packet processing. 

The control interface allows controlling and managing a service 
component. It must provide a generic way to exchange control and 
monitoring information among processing components. The implementation 
of this interface depends on the specific execution environment and is also 
addressed by standardisation efforts [12]. 
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2.1.2 Support of Different Active Node Environments 

An active node may provide more than one execution environment. This 
is motivated by the following facts. First, each execution environment is 
usually optimised for a certain type of tasks. Some of them are rich in 
functionality, others are more restricted, but offer better security or better 
performance for certain tasks. Second, certain processing components are 
implemented for one specific execution environment. Finally, it is not 
realistic to assume that all active nodes provide the same set of execution 
environments [6], we require a service model to enable service specification 
that is independent of the node environment. 

2.1.3 Support for Services Spanning Several Execution 
Environments 

An optimum mapping of a service specification onto the node 
environment may result in an implementation that spans several execution 
environments. A packet classifier, for example, which processes packet at 
link speed, would be mapped to reconfigurable hardware execution 
environment [8], whereas a component that performs a routing algorithm, 
e.g. RIP, is more likely to be implemented in a CORBA execution 
environment. As a consequence, the service model must include abstractions 
for communication facilities between the service components. These 
communication facilities are execution environment specific. Moreover, the 
node may provide facilities that allow for communication between 
components in different execution environments. 

2.2 Node Independent Service Model 

This paper advocates a service model that is specialised for active 
networking. In order to fulfil the requirements from the preceding section, 
we need abstractions to model a service in anode independent way. We base 
the model on two basic abstractions, namely composable containers and 
connectors. 
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Connector 

Figure J. UML representation of the Chameleon service model 

2.2.1 Composable Containers 

We apply the composition design pattern [11], which allows a service to 
be structured in a hierarchical and recursive way. The UML diagram in 
Figure 1 shows that a service is composed of containers. We notice further 
that a container is a generalisation of a service, as weIl as of an 
implementation. A container defines the interfaces, which are common to 
both service and implementations. As a consequence, services and 
implementations can be handled the same way. A new service can be 
specified by composing existing services and implementations. An 
implementation, however, is not composed. It represents the primitive object 
of the composition. 

As a result of using the composition design pattern, a service 
instance can be represented as a tree of dependencies, which can 
be resolved recursively, The leaves of the tree are implementation 
objects, whereas the nodes are services. 

An implementation represents both code modules that must be or are 
already installed in a specific execution environment, and services that are 
installed when the node is bootstrapped. 

Since a container, is a generalisation of both a service and an 
implementation, it is up to the local mapping process at the active nodes to 
determine whether a specific container representing an implementation or a 
service. The resulting service tree may therefore be different for each node 
environment. We exploit this property when mapping a service description 
onto different node environments (see section 3). 

2.2.2 Connectors 

Figure 1 shows thatfunnels and tubes are a specialisation of a connector. 
Both are an abstraction for communication facilities between containers. 
Tubes bind two data flow interfaces, whereas funnels allow communication 
between control interfaces. 
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A tube transports packets and is unidirectional. Both end points of a tube 
have the same capabilities. One end point sends packets, whereas the other 
receives them. 

A funnel, in contrast, binds two control interfaces of, possibly, different 
type. As a consequence a funnel is a more complex abstraction. Attributes of 
an implementation's control interfaces specify the implemented API. Based 
on this information the active node may provide adapters to enable 
communication between different types of control interfaces. It is assumed 
that control APIs specified by different standardisation efforts may coexist in 
this way. We do n6t assurne, however, that for each possible pair of control 
API standards an adapter can be provided. 

In general, implementations of tubes and funnels are execution 
environment specific. The node, however, provides adapters and 
communication facilities that allow for an implementation of tub es 
and funnels across execution environment boundaries. 

2.3 Modelling a Video Scaling Service 

The goal of this section is to illustrate the applicability of our service 
model. We model a video scaling service as described in [4]. The service is 
based on a hierarchical encoding scheme, named WaveVideo [5]. The 
service measures the output queue length (congestion) of the WaveVideo 
stream. Based on this measurement, it selectively drops packets of the stream 
in order to adapt to the available bandwidth and to achieve a graceful 
degradation ofthe video quality. 

a) WaveVideo Scaling 
Specitication 1 

2) WaveVideo Scaling 
Specification 2 

Symbols 

dataflow 
interface 

_ control 

Interface 
....... tube 

tunnel o container 

Figure 2. Visual representation oftwo specifications ofthe same service 

Figure 2 shows a visual representation of two possible WaveVideo 
Scaling service specifications that may be registered in appropriate registries 
within the network. Specification b) contains more details than a), but both 
describe the same behaviour. Being more generic, specification a) allows for 
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more freedom during the mapping process on the node. We come back to 
this example in section 3. 

3. SERVICE DEPLOYMENT ON ACTIVE 
NETWORK NODES 

Service deployment in a network takes place on two levels: 1) on the 
network level, where network nodes are identified that will run the service, 
and 2) on the node level, where software is deployed within the node 
environment. In this paper, we investigate specifically service deployment 
on the node level. Service deployment on the network level is left as future 
work. 

In traditional networks, a service is specified and deployed by a 
centralised entity, e.g. the network manager. In active networks, however, 
users, if permitted, or services themselves can create service specifications 
and request the deployment of new services. We will refer to the entity that 
requests a service as service requester. 

A service request includes a specification that contains references to sub­
services and a map of their interconnection, as shown in Figure 2. In oUf 
implementation, we use an XML document and a corresponding XML 
schema to represent such a service specification. 

We consider a scenario where the service request is sent to a particular 
network node. This request contains a specification of the service to be 
installed locally. Such service specifications can be transported to a network 
node using a file transfer protocol, mobile agents, or encapsulating the 
specification in active packets. 

The remainder of this section describes our approach to a local service 
creation architecture, and the mechanism that maps a service specification to 
the local node environment. 

3.1 The Local Service Creation Engine 

On receiving a service request, the local service creation engine (see 
Figure 3) maps the request onto the local node environment. In the 
following, we describe the components of the local service creation engine 
in detail. 

The specification processor is the heart of the local service creation 
engine. It controls the mapping process. The input to the specification 
processor is the service specification. When the mapping process terminates, 
an implementation map is generated. The implementation map is referring to 



44 Matthias Bossardt et al. 

implementation objects (see Figure 1) that must be installed on the node and 
shows their interconnection. 

The specification parser receives a service specification from the 
specijication processor. The service specification is read and checked on 
syntactical correctness. Its output is a one level tree representation of the 
service specification. 

The local service registry is used to lookup service specifications. The 
specification processor passes (sub-)service name and, optionally, service 
attributes to the local service registry. The local service registry matches the 
request with registered services or consults an external service registry. It 
subsequently returns a list of matching (sub-)service specifications to the 
specification processor. The local service registry contains also entries for 
services that are preinstaUed in the execution environments when 
bootstrapping the active node. 

The mapping policy contains rules that influence the decision process of 
the specijication processor when selecting a service specification from the 
list generated by the local service registry. E.g. a policy might indicate that 
implementations for execution environment 1 are always preferred to those 
for execution environment 2. 

The node information base contains information about the configuration 
of the active network node. The information inc1udes the types of available 
execution environments on the active node. Furthermore, the node 
information base contains information about the types of funnels and tubes 
available. The node information base is part of the local management 
information base (MIB). 

The deployment engine receives an implementation map from the 
specification processor and generates a specific implementation map for 
each execution environment. The execution environment specific 
implementation maps contain information about the code modules to be 
installed and configured, as well as their interconnection. If required, tube 
and funnel adapters, which allow for communication across execution 
environment boundaries, are inserted in these maps. 

The code fetcher receives a list of code modules that are required to be 
installed on the node. The list is compiled by the deployment engine after the 
service mapping process. The code fetcher contacts the appropriate code 
repositories to download the code modules. 

The adapter repository contains funnel and tube adapters, which may be 
requested by the deployment engine. 
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The mapping of the service specification onto the node environment 
involves two phases. In the first phase, a service tree is recursively built, the 
leaves of wh ich contain implementation objects. An implementation map 
containing these implementation objects and the description of their 
interconnection is passed to the deployment engine. In the second phase, the 
deployment engine builds a specific implementation map for each execution 
environment, triggers the fetching of the required code and the installation in 
the execution environments. In the following sections, we describe the 
mapping process in more detail. 

3.2.1 Building the Service Tree 

The process that builds the service tree is controlled by the specijication 
processor. 

Step 1. The specijication processor receives a service specification from 
the service requester. 

Step 2. The specijication processor calls the specijication parser, which 
transforms the service specification into a tree representation. The leaves of 
the tree are the sub-services the service is composed of. The tree is retumed 
to the specification processor. 

Step 3. The specification processor uses the local service registry to 
lookup specifications matching the (sub-)services referred by the leaves of 
the tree. As a result a list of service specifications for each leaf node is 
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passed to the specijication processor. If a service specification points to an 
implementation, information about the location(s) where the code module 
can be retrieved from or a reference to a preinstalled service is returned. In 
the second case, in which a service specification points to (sub-)services, 
(sub-)service names and, optionally, attributes are returned. 

Step 4. For each leaf of the service tree, the specijication processor 
decides, which (sub-)service or implementation to insert in the tree. The 
decision process is based on information from the mapping policy and the 
node information base. If a leaf is mapped to an implementation, it must not 
be considered anymore in the remaining steps ofbuilding the service tree. 

Step 5. If all leaves are mapped to implementations, the tree building 
process terminates. Otherwise steps 2--4 are repeated for the remaining 
leaves, which point to (sub-)services, in order to recursively build the service 
tree. 

Step 6. The specijication processor generates an implementation map 
and passes it to the deployment engine. 

3.2.2 Installing the Mapped Service 

The deployment engine controls the process of installing the mapped 
service. 

Step 1. The deployment engine receives the implementation map from 
the specijication processor. Based on this information, it constructs 
execution environment specific implementation maps, inserting references to 
tube and funnel adapters where required. 

Step 2. The deployment engine contacts the code Jeteher with a list of 
code modules and requests their download. It further retrieves the required 
tube and funnel adapters from the adapter repository and configures them. 

Step 3. The deployment engine passes the specific installation maps and 
references to the code modules and adapters to the execution environments, 
where they are installed by execution environment specific mechanisms. 

3.3 Mapping a Video Scaling Service 

Applying the service specifications from Figure 2, we i1lustrate the 
mapping process as described above. An example in which the service is 
mapped onto two different node architectures can be found in [3]. 
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Figure 4. Four steps ofresolving a WaveVideo Scaling service specification on anode 

The active node gets arequest to deploy a service according to the 
service specification from Figure 2a). Figure 4 illustrates this subsequent 
mapping process. The service specification is composed of two sub-services, 
as can be seen in Figure 4.1. The container discovery is used to lookup 
specifications of these sub-services. Three matching specifications of 
WVPacketProcessor as weil as three specifications of queue are 
retrieved (cf. Figure 4.2). One WVPacketProcessor specification (grey 
box) points to two sub-services, whereas the remaining two (white box es) 
point directly to implementations for specific execution environments. One 
queue instance is a preinstalled (sub-)service available on the node 
(hatched box), the other two are pointing to implementations as weIl. We 
notice in figure Figure 4.3 the specijication processor decided - after 
consultation of the node information base and the mapping policy - to use 
queue _ 3 and continues the recursive resolving process for the composed 
WVPacketProcessor_l. The resulting implementation consists in three 
implementation entities (cf. Figure 4.4). One is provided by the node 
(Queue 3), the other two instances are code modules 
(WVClassifierDropper I, WVClassifierController 2) and - -
must be down loaded by the code Jetcher. The deployment engine requests 
the appropriate execution environments to install the code and binds the 
interfaces according to the implementation maps. The binding of the 
interfaces might require the insertion of adapters - abstracted by tubes and 
funnels - in order to cross execution environment boundaries. 

4. RELATED WORK 

Click Rauter [7] proposes a software architecture for configurable 
routers. Click Router can interpret a configuration file, and create and 
configure services. Services are composed of C++ elements that ron in a 
kernel execution environment. Click Router assumes a direct mapping of the 
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element names listed in the configuration file to the ones instantiated on the 
node. All required elements are available from anode local code repository. 
Click Router does not support multiple, concurrent execution environments. 

NetScript [9] uses a recursive mechanism for the composition of services 
from components. However, it does not deal with the service deployment 
process and does not support multiple, concurrent execution environments. 

The IEEE P 15 20 standards initiative [12] aims at a standardised API to 
the control interface of network elements. In low level of the architecture, it 
uses a similar service composition mechanism. P1520, however, does not 
specify service deployment mechanisms. 

TINA-C [13] specifies a network architecture for the telecommunication 
environment. Network services run on a Distributed Processing Environment 
(DPE). TINA-C computational objects provide an operational interface and a 
stream interface that allows separating the data flow from the control flow. 

5. DISCUSSION AND FUTURE WORK 

In this paper, we described a service model that facilitates service 
deployment on multi-execution environment nodes. The service 
specification is locally mapped to the node environment in order to exploit 
the specific features of the different execution environments. Moreover the 
service specification supports heterogeneous networks, because it is node 
independent. As a consequence, the same service specification can be sent to 
different types of active nodes. 

The local service creation engine, which maps the service specification to 
the node environment, uses locally available information from the node 
information base and local policies for the mapping in order to take 
advantage of specialised execution environments provided by anode. The 
presented algorithm is greedy in the sense that on each level of building the 
service tree, adecision is made on which sub-service to use. Therefore, the 
algorithm may not find a globally optimum mapping. A simple extension, 
based on backtracking, would allow performing an exhaustive search of 
possible service mappings. We expect the mapping space to be relatively 
smalI. Therefore, we consider an exhaustive search to be a valid approach. 

Future work will investigate the service deployment on a network level 
and its integration with the work proposed in this paper. Moreover, we will 
evaluate whether our assumption about the mapping space is valid. Also, we 
will extend and generalize the XML schema that we use in our prototype 
implementation for the specification of services. Furthermore, we plan to 
evaluate Chameleon within the testbed of the IST-FA IN project (5th EC 
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Framework Program) [10], which aims at developing an architecture for 
future high performance active networks. 
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