
A New Organisation al Framework for Network
Modelling Using a Multi-Agent System

Mare Lernereier and Dominique GaYti
J Laboratoire de Modelisation et de Surete des Systemes (LM2S)
University ofTechnology - Troyes (UTT) - France, 12 rue Marie Curie, BP 2060, Troyes Cedex
Email: {marc.lemercier.dominique.gaiti }@uttjr
2L1P6
University ofParis 6,8 rue du Capitaine Scott, 75015 Paris - France
Email: dominique.gaiti@lip6jr

Abstract In this paper, we present a platfonn called MadKit that allows the generic
development of multi-agent system based on the organisational concept. Three
main objects are defined: agents, groups and roles. We propose to illustrate
this concept of organisation in a telecommunication environment. Our main
objective is to show the possible use ofthe MadKit platfonn in the context of
network modelling. In a first approach, we propose a model and implement the
superposition of ATM traffics with the help ofthe MadKit synchronous
engine. In a second and third approach, we have modelled the active network
architecture (ANTS) and a LEO telecommunication satellite network. We
propose the modelling of our three examples by organisational structures.
These solutions fill the gap ofthe actual modelling processes when the
network becomes complex (different Quality of Service, resources
management, ...) and dynamic.

Keywords: Network modelling, multi-agent platfonn, ATM, Active Network,
Constellation of satellites.

1. INTRODUCTION

The inerease of throughput proposed by eurrent telecommunieation
systems makes network evaluations difficult to realise. At the same time,
users ask for areal Quality of Service (QoS) and for more and more services.

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35584-9 19

O. Martikainen et al. (eds.), Smart Networks
© IFIP International Federation for Information Processing 2002

http://dx.doi.org/10.1007/978-0-387-35584-9_19

114 Mare Lemercier and Dominique Garti

More traffic, a better QoS and a large service offer are not design to work in
a coordinated manner in the actual network. New concepts such as the active
network, able to modify the equipment behaviours, brings a new dimension
in the dynamic ofthe network and a response to our problem. But nowadays,
no simulator is able to handle the changes of network behaviours in face of a
breakdown, a routing modification or an intelligent flow control able to
adapt itself to the network state. It is obvious that we have to analyse
systems in a dynamic manner and no more in a static manner. All these
evolutions are difficult to handle. Many simulation environments allow the
modelling of telecommunication systems [OPNET 2001], [HyPerf2001],
[Modline 2001], [NS2 2001]. But these techniques have limits when the
environment becomes dynamic.

One of our project named MACSI [RNRT 2001] has for purpose to study
and to propose new methods for modelling and simulating
telecommunication networks. These methods will take into account the
dynamic aspect and the evolution of networks as weil as the notion of
behaviour. A second objective will be to give an evaluation of the quality of
results in this dynamic context. Our project has to propose a new
methodology of network simulations taking into account the environment by
using a multi-agent approach. This solution considers that users' traffics and
the behaviour of the network result from interactions between the different
elements (actors) in a telecommunication system. We choose to design a
model ofthe system by different actors (agents ofmodelling) and to simulate
this system. Each actor is autonomous and is defined by its knowledge and
its interactions.

In this paper, we focus on the organisational approach to model a
telecommunication model. Behaviour modelling constitutes another
approach and is not the purpose of this proposal. The remainder of this paper
is organised as follows. Section 2 presents a multi-agent platform called
MadKit. This platform is useful to describe our system in an organisational
manner. We show different concepts used by MadKit and a way to simulate
complex systems. Some applications in a network environment are proposed
in section 3. Three examples are proposed and described: a simulation ofthe
A TM traffic, a model of the ANTS active network and an organisation of a
constellation of satellites. Section 4 concludes this paper.

2. THE MADKIT PLATFORM

Several multi-agent platforms have been proposed allowing the
development of complex system with the help of agents. The main
insufficiency of these approaches is the lack of an organisational structure

A New Organisational Frameworkfor Network ... 115

for the agents. Some researchers [Ferber 2000] have proposed a multi-agent
platform named MadKit based on three concepts: agent, group and role. The
generic development of a multi-agent system and the agents' organisation
constitute the central proposal of this platform [Madkit 2000]. Two structure
levels are proposed: the group and the role. An agent belongs to one or
several groups, and inside a group an agent can play one or several roles. A
role can be seen as a particular function of an agent.

From the agents' co operation point of view, these organisation concepts
allow to structure dialogues between agents. An agent can communicate
directly with an other agent identified by its address or can broadcast the
same message to each agent with a given role in a group.

2.1 Architecture of the MadKit platform

The platform has been built with respect of the conceptual model based
on notions of agents, groups and roles. It is based on a Java little kernel
responsible of the management of agents with the help of three components:
a "group and role manager", a "synchronous engine" and a "Ioeal
messaging". To lighten the kerneI, a certain number of its services has been
agentificated (i.e. transformed into MadKit agents), such as the
"GraphAgent" or the "Agentlister" ofthe madkit distribution [Madkit 2000].
The independent graphie interface is based on the Java Beans specification.
Thus, each agent is responsible for its graphie interface. It is possible to use
several functional modes for the platform such as simple consoles, Java
applets, or the MadKit default environment: the G-box [Gutknecht 2000]. It
allows to launch the execution of agents and to visualise their behaviours.

2.1.1 Creation of agents

The MadKit platform proposes useful services for the creation of generic
agents using the Java class Agent of the MadKit kerne!. These agents
constitute the solution for the development of a multi-complex agent system.
The agent initialisation in term of groups/roles is described in the method
aetivateO automatically launched by the MadKit kerne!. The manager of the
system has many primitives grouped in the Java API ofthe platform that will
be able to be called from the method aetivateO. Thus, an agent can create
and integrate groups and roles, has the capacity to launch and afterwards to
kill others agents. This method aetivateO can be seen as the constructor of
the agent. Then the agent activity is described by its method liveO.

In its kernei, the MadKit platform integrates several message formats
allowing dialogues between agents. The approach followed by MadKit is
both textual messages or document, classically used in an object context

116 Mare Lemercier and Dominique Garti

(StringMessage dass or XMLMessage dass) and more structured messages
from the artificial intelligence area (ActMessage dass, ACLMessage dass
and KQMLMessage c1ass).

A method allows all agents to send a message, direcdy to another agent
whose address is known with the primitive sendMessageO, or to broadcast
this message to all agents with a given role in a group using the method
broadcastMessageO. Concerning the reception ofmessages, each agent has a
mailbox where received messages are memorised. Two primitives of low
level allow the access to messages. The non-Iocking primitive
isMessageBoxEmptyO looks into the mailbox and the locking primitive
nextMessageO extracts and returns the first message from the mailbox.

We used the development kit ofthe MadKit platform to illustrate its main
concepts: the notion of organisation brought by the membership to groups
and roles, the exchange of messages between agents.

2.1.2 Remarks and statement

The elements used by MadKit for the transfer of information between
agents imply that multi-agent systems constructed from this platform are
characterised by a total distribution of knowledge, partial results and
methods used to get a result. In this case, agents have a view more or less
precise of the other agents of the system. They have therefore to be able to
get and to represent intentions and commitments of the other agents. The
main difficulty of this approach is generally the representation of each
agent's knowledge as weIl as the update ofthis knowledge [Pujolle 2000].

Agents extending the MadKit Agent dass are executed inside a Java
thread. Although this approach constitutes a less expensive solution than to
process dassical systems, the execution in parallel of several hundreds of
agents is not foreseeable. This solution is useful only for small applications
of multi-agent systems. In a complex system simulation context, it is
necessary to have another kind of agent, doser to the notion of a Java object,
which do not need the use of a thread. The following paragraph presents
solutions proposed by the MadKit platform in the case of a complex system
in general or a multi-agent simulation.

2.2 A MadKit proposal for complex simulations

A new architecture called "The Synehronous Engine" is proposed in the
platform. It is based on five elements:
1. The ReferenceableAgent. In the framework ofthe synchronous engine,

an agent can be planned or monitored. It is necessary to have a reference
allowing a direct access to the agent what was not possible for security

A New Organisational Frameworkfor Network .. . 117

reasons with the first release of MadKit. Therefore, the designer has to
specify these intentions by using the ReferenceableAgent class;

2. The Scheduler agent. The Scheduler agent is a standard MadKit agent
that has to manage all Activator Agents for the execution of synchronized
agents;

3. The Activator class. The Activator tool defines a planning policy. It
works with the Scheduler agent to obtain the list of Referenceable agents.
An activator belongs to a group and has a role. Its method updateO
allows it to discover dynamically the agent implementation from a given
group and role. The Scheduler agent will invoke its method executeO to
launch the execution of the simulation;

4. The Wateher agent. The Wateher agent manages a list ofprobes. This is
not a threaded agent as the Scheduler agent, but it has therefore to be
executed in association with a scheduler;

5. The Probe dass. The Probe dass allows defining a code for the
exploration of a ReferenceableAgent.
Figure 1 presents elements of this synchronous engine such as it is

explained in the MadKit documentation [Gutknecht 2000] .

.... ,. -. __ L..-__ -'

.

Scheduler

W .. tcbcr

Figure 1. MadKit synchronous engine

3. APPLICATIONS TO NETWORK

In the context of our MACSI project [MACSI 2001], we wish to
conceive a simulator able to take into account both the complexity of current
high throughput networks as weil as an active network in which the
behaviour of equipment can be modified by the traffic encountered. The

118 Mare Lemercier and Dominique Garti

main objective of this study is to validate if possible the use of the MadKit
platform for complex network simulations.

This paragraph presents a model and an implementation of A TM traf fies
with the help of light agents (RefereneeableAgent) of the MadKit
synehronous engine. We then model the aetive network ANTS and a
eonstellation of satellites.

3.1 Example 1 : ATM traffic

To illustrate the possible use of the MadKit synehronous engine in a
network eontext, we have chosen to simulate a superposition of A TM
traffies. In an A TM network, time ean be split in time-slots equal to the time
of a cell emission. The chosen traffie model is a Bemoulli source with
parameter P (P E [0, 1]). Thus, to eaeh time-slot, a souree sends an ATM
eell with a probability P. MadKit Refereneeable agents represent these
sourees.

3.1.1 Step 1: creation of a Bernoulli class

Figure 2 presents the eode of an agent implementing the Java
RefereneeableAgent interface that represents a BemouIli(p) source. The
variables (emission and cells) are defined as attributes ofthe class to be then
observed with the help ofprobes (see step 4).

p uhJi: dass BemouDi. extendB Ab.trat: tAgent in9lmnents Refereneeab JeAgent (
public double parameter =
public int emission, cells

puhli: BernouDi.(douh1ep) { parameter =
p uhli: vom a.c ärate 0 {

joinGl'OUP ("A
req1lestRole ("A TM". "Bernoulli");

}
p uhli: vom waJk() {

}

double clraw = Math.random()
if(clraw= parameter) {emission= I;} else {emission= O;}
cells = c ells + e

public voidsetParameter (double p) { parameter = p; }
}

Figure 2. Bemoulli agent

A New Organisational Framework for Network. .. 119

The method activateO insures the recording of the agent in the ATM
group with the Bernoulli role. The walkO method represents really the
traffic: to each call of this method, we undertake a random draw that is then
compared to the value of the parameter p. The attributes emission and cells
are updated correspondingly.

3.1.2 Step 2: The activator

Figure 3 shows the implementation ofthe activator agent. The role ofthis
agent is to execute a slot-time of simulation by invoking the methods walkO
of all Referenceable agents already defined. The platform API memorises to
this end the set of agents in a table. The setParameterO method allows to
change the parameter value of Bernoulli sources during the simulation.

p lilili: du. A 1M _ BemouUt Aenvator eX'teJuls AeÖlator {
public A TM:_ Bemoullt Activator (5 tring group, 5 tring roJe) {
super (group, role);

}
plilili: vom em:ute 0 {

}

ror (int num" 0; num <: agents.length; num++)
((Bemoul1i) agents Inum)).wa1kQ;

public void setParam.e ter (double p) {

)}

ror (int num" 0; num <: agents.length; num++)
((Bemoulli) agents[num]).setParam.eter (p);

Figure 3. Activator code

3.1.3 Step 3: The Scheduler

The Scheduler agent possesses an essential function in the synchronous
engine. The code (figure 4) of the method activateO presents its main
responsibilities: record an agent in the group "ATM' with the role
"scheduler", creation of all Bernoulli agents using the lauchAgentO
primitive, then creation of an observer (see step 4). The method liveO
presents the scenario of simulation. The method executeO of the sources
Activator and the Observer Activator are launched in a loop until the end of
the simulation.

120 Mare Lemercier and Dominique Gafti

publi; dass MyS:hedu1erAgent extends &:heduler {
int sourcesB = 10, eIelay= 100;
double bparameter = 0.1;
boolean end = false;
A TM _ Bernoulli _ Activator a1 ;
MyWatcher mObs;

P ubli; void a.c tarare 0 {
folUldGroup ("A TM");
requestRole ("ATM", "scheduler";
for (int indice = 0; indice <: sourcesB; indice++) {

JaunthAgent(newBernoulli (bparameter), "B", fahle);
}

mo,s = new MyWatcherO;
JaunthAgent (mObs, "my _wateher", true);

}
public void S etPararnB (double p) {
al setParameter (p);

}
p ubli; void lire 0 {

If true =GUI

al = new ATM_Bernoulli_Activator ("A TM", ''Bernoulli'');
S ingleMethodAetivator a2 = ne w S ingleMethodAetivator (

"wateherBernoulli", "wateher");
addActivator (al);
addActivator (a2);
updateO;
while (!end) {

pause (eIela)!); al.executeO; a2.executeO;
}

mo,s .sta t();
} }

Figure 4. The scheduler agent

3.1.4 Step 4: the wateher

This agent has to observe the Referenceable agents with the help of
probes witch accumulate statistical data on some Referenceable agent
attributes. The code of this agent (figure 5) allows us to see that two
numerical probes observe emission and cells attributes of all Bemoulli
sources.

A New Organisational Frameworkfor Network ...

public c:1u. MyWaither extends Waither {
N ume ricProbe pi, p2;
int sIotATM== 0;
int Fb 11 == new int [20];

public MyWatcherO {

}

pi == new Num.eric:Prohe ("emission", "ATM', "Bemoulli"); addProbe(pl);
p2 == new NumeruProhe ("cells", "Bemoulli");addProbe(p2);

p ublic void ac: tirate 0 {
joinGroup ("A TM"); requestRoJe ("A TM", ''wateher''); up:!ateO;

}
p ublic void waither Bernou1H 0 {

int nbe == (int) pl.getSum();
sIotATM++;
if(nbe <: 20) { Fb[nbe] == }:b[nbe] + I; }
println ("sIot[" + sIotATM + '1 :Ar=" + nbe + " total==" + p2.getSurr());

}

public void siatO {
for (int indice == 0; indice <: 20; indice++)
println ("P(AF" + indice + ")==" + (float) «float) }:b[indice] I sIotATfvtJ);

}}

Figure 5. The wateher Agent and the probes

3.1.5 Remarks and statement

121

This task describes the process of the MadKit synchronous engine in a
network context. It is possible to complete this simulation by the definition
of others A TM traffic models activated by new Activator agents. In order to
complete a multi-agent simulation, the A TM switches would have to be
represented by MadKit standard agents able to exchange management
information on their states and their behaviours.

The main element to retain is the fact that Referenceable agents are
successively activated by an Activator agent. Thus, to each simulation step,
each agent executes its task defined in the method walkO. The real-time of
the simulation step corresponds therefore to the sum of the execution time of
all the methods walkO. By defect, there is no constraint oftime for an agent.
The agent has therefore to take a quick decision on the partial realisation of
its activity using this method.

It is important to notice that the behaviour of the agent (or its activity) is
represented by its walkO method that is then invoked to each simulation time
unit. The activity of the agent has therefore to be repetitive or to be split into
N sub-tasks achievable successively to each call by supposing that the agent
knows its execution context.

122 Mare Lemercier and Dominique Gai"ti

In practice, in a context of simulation, Refereneeable agents are
messages, capsules in an active network context or cars in a car-traffic
simulation. The benefit of the MadKit platform in this approach is the notion
of probes able to get quantitative data on Referenceable agents in a very fast
way.

3.2 Example 2 : ANTS Active Network

The ANTS active network architecture is a proposal of the MIT where
capsules (packets containing data and code) are sent by users' applications
and executed in the active nodes of the network. In practice, an active
network is a network constituted with traditional IP routers and active nodes
having an execution environment. For security reasons, the designers of
ANTS have limited the possibilities offered to user's traffics. The manager of
the active network develops and installs a certain number of generic routines
identified by references. The ANTS capsule is in fact a packet containing
data and references to routines of the active network. These capsules are
grouped in protocols that are units of management for the system
[Wetherall1998].

Capsules of an active traffic are automatically executed on all active
nodes located between the transmitter and the receiver. A mechanism based
on mobile code insures the migration of routines in case of necessity. More
precisely, a capsule containing the address of the receiver is encapsulated in
an IP packet whose address of destination corresponds to the address of the
next active node to cross.

An active node proposes some forwarding functions to find the road to
the next active node. The development of a service by a user necessitates the
definition of the different capsules and routines. Active nodes propose a set
of primitives usable by all capsules using a Java API. An example of service
can be information caching, a forwarding policy, etc. Other function of a
node is to manage resources consumed by a capsule. Each capsule comprises
a field "resourees remaining" in relation to the resource level ofthe capsule.
Active nodes decrease the number of resources consumed by each capsule.
A capsule having no more resources is destroyed.

3.2.1 A MadKit model for an ANTS network

We present in this sub-section a MadKit model for an ANTS network.
The ANTS network is a classical IP network with standard or active routeurs
and a set of telecommunication links. On the network circulate both IP
packets and capsules. We propose therefore to represent each node of the
ANTS network by a MadKit standard agent. For passive nodes, a classic

A New Organisational Frameworkfor Network. .. 123

MadKit agent is used belonging to the PassiveN ode group and having the
manager role. Similarly, for each active node, we create a c1assical agent
belonging to the ActiveNode group and having a manager role.

IP packets and capsules are numerous in the system, and we choose
therefore to represent them by MadKit Referenceable agents. An IP packet is
a light agent belonging to the group UserMessage and playing two roles:
passivePacket and trafficJD. The first role is to distinguish a passive packet
from an active capsule and the second role is to identify the traffic to which
belongs this data-message. The trafficJD identifier can be built from the
knowledge of IP address of the transmitter and the receiver. A capsule is
therefore a light agent of the group UserMessage and has the roles of
activePacket and traffic JD.

In an ANTS network, each active node can receive many packets and
capsules from an active traffic. We know that the capsules' context of
execution is independent between traffics. We have chosen to create another
MadKit agent for each active traffic crossing an active node.

The role of this new agent (figure 6) is to manage a11 packets and
capsules of its associate active traffic, and to be in fact the delegate of this
traffic beside the manager agent of the active node. This delegate is able to
characterise and define the behaviour of the active traffic with the help of
probes, and to negotiate network's resources beside the agent manager. This
delegate is therefore a standard MadKit agent of the activeNode group with
ANJD (active node 10) and trafficJD roles. The identifier ANJD
designates an active node. Thus, an active node is represented by an agent
manager and possesses one agent per active traffic crossing it. This model
leans on structures of society that we present in figure 7.

.......... 8. l.
vnup Cl passiveNode
Role .w m an .'15'

Sludard Al""t
Group = "ftlvOlNode
Rolo. = manDaer, AN_ID

•• StaJldard Ai"''''
voup a. actl\ftJ.Node

.. ;.;). RQI ..

........................ :::
Rof ceable A t
.,.oup - UJ.MHsalfl
Role. s p urivePuket, trafic_ID

Rof ""cNbl. AI""t
p-oup = u ... ·M ... &le

Rol .. = aCDvePacket, trafic_ID

Figure 6. An ANTS active node MadKit model

124 Mare Lemercier and Dominique Gairi

Figure 7. Multi-agent organisational structures

Five entities can be found:
1. IP packets and capsules from an active traffic. Packets and capsules of a

same active traffk belong to the same UserMessage group and possess in
common the trajJie JD role. There are Referenceable agents on which a
MadKit Observer agent can put some probes;

2. Active traffk. In each active node crossed by an active traffic, an agent
{group: aetiveNode; roles: ANJD and trajJieJD } is created by the
manager agent ofthe node. Although different manager agents on
different active nodes create agents for a same communication, they take
part of multi-agent organisational structures. This proposal allows the
possibility of routine exchange proposed in the ANTS architecture.
Agents can also represent a same active traffk to exchange messages of
management. There are therefore as many structures of delegates as open
active traffics in the network;

3. Active node (AN_ID). The manager agent and all active traffk delegates
belong to the group aetiveNode and have an AN JD role. This solution
allows organising data traffics both between the manager and delegates,
and between delegates. This last possibility is interesting because in the
ANTS architecture no interaction between the capsules is anticipated;

4. Passive node. Passive nodes belong to the passiveN ode group and have a
manager roIe;

5. Active nodes. Similarly, a set of active nodes belongs to the aetiveNode
group and has a manager role.

A New Organisational Frameworkfor Network. .. 125

3.2.2 Organisational model for an active node

This model of an ANTS network leans on organisational concepts of the
MadKit platform. We have associated to each element of the ANTS
architecture, an agent or a group of agents with respect to the main
constraints of the ANTS network. We can see that the use of the MadKit
development kit allows constructing a simulation of this active network. For
that, we need to describe the network topology, and some scenarios of
simulation on this network. These descriptions can be written in a XML
document to insure an inter-operability between several multi-agent systems
(MadKit, DIMA, etc.).

All along this paper we focus on the organisational approach. Another
approach concerns the behaviour-based model of an active node. This
approach is currently under study in the University of Technology of Troyes
and in the University of Paris 6 [Merghem 2001]. Apart of activities of an
ANTS node can be represented by a reactive approach. Indeed, the manager
agent has to arbitrate traffics' requests from all active traffic delegates.
However, it seems interesting that this manager be able to represent the
behaviour of its node and to construct a view of the behaviour of the other
active nodes of the network. In order to do that, the MadKit platform
proposes the use of a cognitive agent (JessAgent). This improvement is for
the moment under integration to the platform. An expert system engine is
integrated to a traditional agent. The behaviour of an agent can thus be
described by a set of rules.

3.3 Example 3 : Constellation of satellites

The satellite network model is inspired by the one proposed by the
French national centre for the space research (Centre National de Recherche
Spatiale (CNES» for our project 'Constellation of Satellites for Multimedia
applications'. The 72 LEO satellites are equally distributed among 9 orbits of
radius 1603 km and 50 degree equatorial inclination, and have a minimum
elevation of 17.5 degrees. Each satellite is equipped with up and down link
transceivers of 155.5 Mbit/s bandwidth, and 4 bidirectional intersatellite
links (ISL) also of 155.5 Mbits/s [Sigel 2000].

Thus each satellite has a permanent connection with the previous and the
next satellite on the same orbital plan, and two other satellite links to its left
and its right. These two last links are not permanent. Several roles are
necessary to model the organisation of agents. We have chosen the following
notation:
a) 0_ id: orbital plan number id (id in [1,9])
b) S_ xz: satellite in the orbital plan x (x in [1,9]) and rank z (z in [1,8])

126 Mare Lemercier and Dominique Gai'ti

c) N _ s: neighbourhood of the satellite S
Figure 8 presents five other MadKit agents that we propose to describe

the neighbourhood of a satellite. The definition of satellite neighbourhoods
produces a great number of roles. We are going to begin with a description
of agents located on one satellite (in our example the satellite number 44).
The first agent is a creator agent (C) that is the superintendent of the role
N_ 44 (neighbourhood of the satellite 44). This agent is a MadKit agent that
belongs to the satellite 44 (groupl, role S_ 44) and does not participate to the
communications between satellites (group 1, role OUT). It is the creator of
the neighbourhood 44 (group2, role C and N_ 44). The second agent is an
agent P (PREVIOUS), located on the satellite 44 (group 1, role S _ 44) but
belonging to the neighbourhood ofthe satellite 43 (group2, role P and N_ 43)
that is the previous satenite on the same orbital plan. This agent is the
delegate of the neighbourhood N_ 43 centred on the satellite 43. So, a
satenite has one delegate for each four neighbours. The third agent is an
agent N (NEXT). It is the delegate of the neighbourhood of the satellite
following on the same orbital plan (N _ 45). And, the last two agents are
delegates of the two closer satellites on others orbital plans.

Aa_
FOUP 1 • nlltWle:, roIe. - 8 _01., IN
.,...1OP 2 · .'OI.IIuIlo - R, N_37

--

Figure 8. MadKit agents for neighbourhood definitions

C : CUA'rOR.
p I PIUtVIOUI

NI.'IXt'
L r UFT
R : RIOIlT

This set includes the satellites 44, 37, 43, 45, 52. These agents belong to
a first group satellite allowing apreeise identification of these agents
(membership to a given satenite), and belong also to a seeond group routing
that iden ti fies the function of this agent in the definition of a neighbourhood.

This model defines several MadKit organisational structures and allows
the information exchange between agents of even groups with the same role.
We notice that this representation is extremely rieh and allows thus to define
several groups of distribution

A New Organisational Frameworkfor Network ... 127

4. CONCLUSIONS

In this paper, we proposed the use of the MadKit multi-agent platform in
our telecommunication system context. We have presented our main
objectives namely the organisational modelling of complex network
configurations. This approach allows the conception of several societies of
agents in order to organise exchanges of messages without any disruption for
all the agents in the simulation.

Other studies have to be performed on the area of the network device
modelling. Indeed, the MadKit platform proposes only the language Java for
the development of agents and does not propose libraries for network
equipments. We work eurrently to the construction of this generic library
usable with MadKit and also with others multi-agent systems. As presented
here, the problem of the network behaviour has not been described. Indeed,
we work now on the definition of a set of behaviours (careful, careless, etc.)
allowing the description of the intern funetioning of a network router
[Merghem 2001]. Then, a high-level manager agent knowing these
behaviours will be able to alter the poliey of a router aeeording to eriteria of
traffie QoS. The final goal of our study is to provide an agent-based network
simulation teehniques useful when the network beeomes dynamie.

REFERENCES

[15] [Ferber 2000] "Multi agent systems for telecommunications: from objects to
societies of agents", Jacques Ferber, networking 2000, Paris.

[16] [Gutknecht 2000] "MadKit Development Guide", Olivier Gutknecht, MadKit
documentation, version 2.0. http://www.madkit.org

[17] [HyPer 2001] http://www.hyperformix.comlproducts/products.htm

[18] [MAC SI 2001] http://www-Im2s.utt.fr/macsi/

[19] [Madkit 2000] "Madkit official web site", http://www.madkit.org

[20] http://community.madkit.org/

[21][Merghem 2001] Leila Merghem and Dominique Gai"ti, "Active Network
Modelling and Simulation: a Behavioural Approach", Smartnet 2002, Finland.

[22] [Modline 2001] http://www.simulog.fr/

[23] [NS2 2001] http://www.isi.edulnsnamlns/

[24] [OPNET 2001] http://www.opnet.comlproducts/modeler/home.html

[25] [Pujolle 2000] Guy Pujolle "Les reseaux", 3eme edition, book in french. Eyrolles
2000.

128 Mare Lemercier and Dominique Gai"ti

[26][RNRT 2001] Official Web Site of RNRT projects
http://www.recherche.gouv.fr/technologie/reseaux/mrt.htm

[27] [Sigel 2000] Eric Sigel, Bruce Denby, Sylvie Le Hegarat-Mascle, "Application
of ant colony optimization to adaptive routing in a LEO telecommunications
satellite network", IEEE Transactions on Networking, July, 2000

[28][Wetherall 1998] David J. Wetherall, John Guttag, and David L. Tennenhouse
"ANTS: A Toolkit for Building and Dynamically Deploying Network
Protocols", IEEE OPENARCH'98, San Francisco, CA, April 1998.

	A New Organisation al Framework for NetworkModelling Using a Multi-Agent System
	1. INTRODUCTION
	2. THE MADKIT PLATFORM
	2.1 Architecture of the MadKit platform
	2.2 A MadKit proposal for complex simulations

	3. APPLICATIONS TO NETWORK
	3.1 Example 1 : ATM traffic
	3.2 Example 2 : ANTS Active Network
	3.3 Example 3 : Constellation of satellites

	4. CONCLUSIONS
	REFERENCES

