
The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002
J. Bosch et al. (eds.), Software Architecture

10.1007/978-0-387-35607-5_15

http://dx.doi.org/10.1007/978-0-387-35607-5_15

160 Claudio Riva

development, maintenance, support and marketing costs by reusing some of
the system parts across several products. In [19], we have proposed a method
to describe the architecture of a large product family and to manage its
evolution. The method is based on two separate concepts: the reference
architecture and the configuration architecture. The reference architecture
describes the architectural style that is valid for all the products of the
family. The style includes the requirements, rules and patterns that are
significant at the architectural level. The architects can derive the software
architecture for the single products from the reference family architecture.
The configuration architecture describes the organisation of the product
family features. Features can be common for the whole family or specific for
the single products. The configuration architecture specify the rules how to
map the product family features into the various products, thus, allowing to
model commonality and variability.

According to this method, the evolution of the product family is driven
by the evolution of the reference and configuration architectures. The
reference architecture slowly evolves by capturing and incorporating new
architectural significant requirements of the new products. New products are
added to the family by extending the configuration architecture with new
features and new composition rules.

In practise, this approach is carried out by a combination of forward and
reverse engineering. Forward engineering activities are necessary to develop
the new features of the products starting from their requirements. Reverse
engineering activities recover the concrete implementation of the products,
monitor the organisation and implementation of the features and verify the
conformance to the architectural rules. Architecture reconstruction plays a
key role in the product family evolution. A clear comprehension of the
product architectures allows us to continuously evolve the family by
aggregating the common features in the family architecture and monitoring
the implementation of the products.

This article describes the reverse engineering [3] method that we use to
comprehend the actual implementation of the products. Our focus is mainly
on the architectural significant aspects of the products. In the literature, this
flavour of reverse engineering has been called reverse architecting [16] or
architecture reconstruction [14].

The main driver of our work is to enable the software architects to
analyse the structural dependencies that exist in large software systems, as
presented in our previous work [26]. Those dependencies are often unclear,
hidden in the details of the implementation or just not shown at the right
level of abstraction. Hence, the typical quest for "the big picture" of the
system that leads to a clear understanding of the interactions among the
major components. One aspect that is often difficult to grasp with a bottom-

Architecture Reconstruction in Practice 161

up approach (like reverse engineering) is the set of design decisions that
have been made to implement the features of the system. Our approach aims
at recovering them.

2. RELATED WORK

In our previous work, we have related our work with other research in the
field of architecture reconstruction [27] and dynamic analysis [28]. In this
section, we report the major shortcomings that we have detected.

Kazman et al. propose an iterative reconstruction process [8] where the
historical design decisions are unveiled by empirically
formulating/validating architectural hypothesis. The approach is supported
by the Dali workbench [15)[14]. Dati allows the user to create a source code
model in a SQL database. The user can then base the abstraction process
(mainly a grouping activity) on a set of queries executed in the database. In
our experience, the select/group paradigm is not expressive enough to model
the architectural abstractions. In our approach, we have chosen Prolog for
the abstraction phase in order to have a more expressive mechanism than
SQL. They also point out the importance of modelling not only system
information but also a description of the underlying semantics [8]. In our
method, the first phase aims at clarifying the semantics of the concepts
involved in the reconstruction.

Krikhaar et al. [16] adopt the paradigm extract/abstract/present for
architecture reconstruction and base all the reconstruction operations on the
Partition Relation Algebra [7]. In our approach, we generalise the method to
any architectural style by introducing an additional activity that takes care of
focusing the reconstruction on the most important architectural aspects for
the architects.

Finnigan et al. [6] propose the Software Bookshelf that is a collection of
tools for generating software architectures from program sources and
presenting them in a Java-based web user interface. The goal is to keep the
architectural documentation up to date. The tool has been used to extract the
software architecture of Linux operating system [2]. One key feature is the
web interface that allows the architects to publish the architectural diagrams
on the intranet. In our environment, we have included the web application
Venice that allows us to publish the diagrams on the web in UML format.

Murphy et al. [20] propose a reconstruction technique based on the
reflexion models. The user starts with a structural high-level view model that
is iteratively refined to rapidly gain knowledge about the source code. The
technique is based on the definition of a set of mappings between the source
code and the high-level concepts. Our technique generalises this idea

162 Claudio Riva

enabling the user to define any kind of mappings or transformation of the
source code model.

Most of the approaches adopt the extract/abstract/present paradigm and
rely on different formalism for conducting the abstraction operations (SQL,
Partition Relation Algebra [7], Tarski algebra [9] or simple maps [20]). In our
approach, we exploit Prolog as a mechanism for conducting a series of
abstraction operations.

The dynamic analysis aims at describing the run time behaviour of a
software system. Its contribution should be considered during an architecture
reconstruction process. Some attempts have been done to merge the dynamic
and static information in a single view: SysHi [29], IsVIS [12], Dali [13] and
Richner et al. [23].

3. ARCHITECTURE RECONSTRUCTION

The description of the software architecture should communicate the
essential decisions that have been taken in the design of the software system.
The essential decisions of a design are the ones that are expensive to change
and, therefore, the most critical for the development and maintenance of a
system. A. Ran [21] defines four categories of design decisions: concepts
(the way we think of a system, its architectural style), architecturally
significant requirements (the major concerns that have to be addressed by a
proper software architecture), structure (the components and their
relationships at the right level of abstraction) and texture (design decisions at
the implementation level that are architecturally relevant, such as design
patterns and policies). A software architecture is defined as "a set of
concepts and design decisions about structure and texture of software that
must be made prior to concurrent engineering to enable effective satisfaction
of architecturally significant, explicit functional and quality requirements,
and implicit requirements of the problem and the solution domains" [21].
Multiple views (such as the "4+ 1 model" proposed by Kruchten [17] and the
architectural views proposed by Hofemeister [11]) are a practical way to
effectively communicate the different aspects of the software architecture.

Architecture reconstruction (or reverse architecting) concerns with the
task of recovering the past design decisions that the developers made during
the development of the system. It is a reverse engineering activity that has to
infer the architectural rationale from the available artefacts created by the
original developers (who might have left or not documented the
architecture). The natural evolution of a software system also introduces new
aspects that a reconstruction process can unveil (in this case we can talk of a
information discovery process).

Architecture Reconstruction in Practice 163

Architecture reconstruction is not only a pure data gathering process but
requires also a certain amount of reasoning for the selection and analysis of
the extracted artefacts. We stress the point that only the correct choice of the
architectural concepts (selected according to the system) can deliver a
meaningful high level model to the architects. The architectural concepts are
first class entities in the reconstruction process from the very early stages.

The output of the reconstruction has to present the different aspects of the
model with multiple architectural views. In practice, we aim at delivering the
following architectural views:

- Conceptual view: describing the key architectural concepts that are
instantiated in the other views.

- Component view: describing the major components, their interfaces and
their logical relationships.

- Development view: describing the organisation of the source code files
and their relationships (for example, include dependencies).

- Task view: describing the task allocation of the architectural entities and
showing the inter task communications.

- Feature view: describing the run-time implementation of a feature at a
high level of abstraction.

The views are based on static aspects (captured without running the
system) and dynamic aspects (concerning with the run-time behaviour).
They are both necessary for the architectural description and they have to be
adequately reverse engineering from the implementation.

We can summarise our iterative and incremental process in four steps:

1. Recovery of architectural concepts

The goal of this phase is to recover and clarify the architecturally
significant concepts that build the system: the building blocks of the system
and the communication infrastructure that enables the components to interact
at runtime. These concepts represent the way developers think of a system
and they become the terminology of the reconstruction process. The
architectural concepts vary from one system to another: in a distributed
software system the architectural concepts may be applications, servers,
software busses while in an operating system they may be tasks, processes,
queues, shared memories, etc. Textures should also be considered at this
stage because they hide interaction patterns that are architecturally
significant for the reconstruction (like the design patterns).

The outcome of this phase is the conceptual view that describes all the
important types of architectural concepts and their relations, and the
description of the mappings between the high level concepts and the
implementation.

The main source of information is the documentation of the system or
informal discussions with the experts. We often find useful to ask the

164 Claudio Riva

developers to describe the implementation of the key features of the system.
During this explanation, the architectural concepts become evident.

2. Model capture

We build a model of the system whose entities are instances of the
concepts identified in the previous phase. A correct choice of the concepts
ensures that the model is built at the right level of abstraction. Being mainly
a data-gathering phase (instead of a reasoning phase), this task can be easily
automated with tools for analysing the system artefacts. Source code is
usually the most dependable source of information for the static analysis. We
rely on ad hoc analysers (for example written in Perl) based on pattern
matching or on commercial programming environments with APIs to the
symbol tables (such as SourceNavigator [22]). The documentation, the
software diagrams (for example, stored in CASE tools) and the experts can
contribute to the creation of the model. For the dynamic analysis, we
instrument the system and trace relevant information by simulating particular
use cases (for example, using the ThirdEye environment [18]).

3. Abstraction

The model of the previous phase is at a very low level of abstraction. The
goal of this phase is to enrich the model with domain specific knowledge
that will lead to a high level view of the system (for example, to create the
structural description). Known abstractions can be easily added to the model.
Unknown abstractions have to be identified by the architects, categorised,
named and then stored in the model. The reasoning is carried out manually
by the architects and produces to a set of abstraction rules that enrich the
model. We point out that the abstraction process is not just an activity of
grouping but it is a reasoning process where we infer more abstracted
relationships. We specify the abstraction rules with a logical language like
Prolog.

4. Presentation

An effective visualisation is essential to communicate the architectural
information to the development teams. The architects need to select a
particular architectural view and a particular visualisation format:
hierarchical graphs, web documents (with hyperlinks), UML [1] logical
diagrams and message sequence charts. We use Rigi to visualise
hierarchical oriented graphs. It enables the architects to navigate the model,
analyse the dependencies and identify new possible groupings to add into the
model. In our previous work [25], we have exploited Rigi for this kind of
tasks. UML diagrams are a familiar way to convey architectural information
to the designers. The tool Venice [31] gives us the support for visualising
logical views using a subset of the UML notation (components, packages,

Architecture Reconstruction in Practice 165

interfaces, inheritance and dependencies) that we have proposed in [27].
Figure 3 shows an example of visualisation in Venice.

We have integrated a message sequence chart visualiser with Rigi to
combine the static and dynamic analysis [28].

This process has to be reiterated several times to produce a quality model
for the architects. The initial abstraction rules are based on the conceptual
view that the developers have of the system and may be different from the
real one. New architectural concepts become significant while the
reconstruction is progressing and have to be introduced in the model. The
data-gathering phase can also be refined by increasing the quality of the
extracted information with more powerful analysers (often the extraction is a
trade-off between the speed/size and the quality of the analysis).

4. THE LEVELS OF ABSTRACTION

The artefacts of a software system (such as code, design documents, user
interface specifications, feature lists) have different levels of abstraction.
Reverse engineering is a process spanning from the low levels to the higher
ones. We can identify six levels of abstractions (grouped in two categories)
that define a scope for the artefacts of the reconstruction process
requirements, domain model, features, architecture, design and source code
as shown in Figure 1.

We distinguish between the problem domain (focused on the user's
perspective) and the solution domain. The problem domain specifies what
the system is supposed to do. The solution domain specifies how the system
achieves what i . ed s prOIDlS

Problem
Domain

Solution
Domain

Requirements
Domain model
Features
Architecture
Design
Source Code

Figure I. The levels of abstractions of the software artefacts.

The functional requirements are mapped to features that the system has
to support. A feature is a "coherent and identifiable bundle of system
functionality" [30]. The features are the highest elements of abstraction we
can decompose a system in the solution domain. The elements of the lower
levels are responsible for implementing those features. In particular, at the
architectural level we are interested in modelling the structure of the

166 Claudio Riva

architecture description (see Section 3), in order to show what components
are involved and how they interact. At the design level, we model the
internal implementation of the architectural elements. Each component is
clearly specified at the design level with a particular fonnalism (such as the
object-oriented paradigm). The lowest level of abstraction is the source code
level. The abstract syntax trees (AST) model the infonnation at this level for
reverse engineering purposes.

The features represent the contact point between the problem and the
solution domain [30]. At this level, marketing people and developers can
speak a common language and they can understand each other. Features are
used to advertise the system and have to be implemented by the developers.
Although a feature might not have a one to one mapping with the
architectural concepts, we believe that a complete reverse engineering
process should aim at the identification of the system features and their
interactions. Turner et al. call this process "feature oriented reverse
engineering" [30].

5. AN EXAMPLE

We demonstrate the reconstruction method with an example that is the
simplification of a real case. The real case is taken from a family of products
for telecommunications where time to market usually forces the developers
to quickly instantiate new products from the family disregarding their
documentation. The proposed architecture reconstruction method can help
the developers analyse the architecture of the products [25].

5.1 Architectural concepts.

The system is component based. Components (implemented by a set of C
functions) represent computational units or resource controllers and offer
well-defined services through their interfaces. The communication among
the components is achieved with the exchange of asynchronous messages on
a software bus. There are two OS primitives for registering on the bus and
sending messages:
- register(ID) - primitive to register a component "ID" on the bus.
- send(d, m) - primitive for sending the message "m" to the component "d".

When the components are initialised, they register themselves on the bus
with a unique identifier that is assigned at compile time. The
identifier is used by the "send" and "receive" primitives.

One key issue of the architects is to manage the organisation of the
components so that they can collaborate to implement the system features.

Architecture Reconstruction in Practice 167

Each message exchange between two components creates a dependency that
has to be taken into account by the architect. In a system with hundreds of
components the dependency graph becomes rather complicated. For this
task, the architects need (l) the component view that shows the logical
organisation of the components in packages and their dependences, (2) the
execution view that shows how the components interact and (3) the
development view that shows how implementation of the components.

contain
t

I Directory

invocation ..

Y Function r-defineFunc File

Figure 2. The architectural concepts and their relationships.
The diagram in Figure 2 shows the major concepts that we think are

architecturally relevant to the architects. We distinguish between the
concepts that are visible in the implementation (like Directory, File,
Function and their relationships) and concepts that can be inferred from the
previous ones (like Component, message and contain). The latter ones are
located in the grey area of the diagram.

5.2 Extraction of Static Information

We extract a source code model with an ad hoc analyser and present the
output as a set of Prolog facts.

Below is a sample of the information extracted by the code analyser.
containDir(, / gui' : / gui/V oiceCaU').
containFile('/gui/V oiceCall' " /gui/V oiceCalVmainApp.c').
defineFunc(' /gui/V oiceCalVmainApp.c' ,'init').
defineFunc('/gui/V oiceCalVmainApp.c' ,'makeCal1').
invocation('init' ,'register' ,['VOICE_CALL']).
invocation(,makeCal1' : send' ,['CALL_CTRL', 'SETUP']).

invocation('makeCaU' : send' ,['CALL_ CTRL', 'CALL']).
invocation('makeCal1' : send' ,['NET_CTRL', 'ALERT']).

For instance, the first line define a containment relationship (containDir)
between the directories '/gui' and '/guiNoiceCall'. The facts about the
function calls (invocation relationship) contain also the details about the
parameters of the call.

168 Claudio Riva

5.3 Abstraction

The extracted source code model is at a very low level of abstraction and
represents we use it to infer more abstracted information about high-level
concepts (the ones in the grey area of Figure 2). The abstraction process can
be divided in three steps: model refinement, injection of composition rules
and view selection.

Model Refinement
The first step is to refine the model by inferring the new relationships that

are not present yet (the ones in the grey area of Figure 2). The Prolog
language allows us to formally specify the new relationships. Below there
are two Prolog preposition that define the message and register relationship.
(1) message(Src, Dest) :- invocation(Src, 'send', List), ntho(O, List, Dest).
(2) register(Dir, 10) :- containFile(Dir,File), defineFunc(File, Func),

invocation(Func, 'register', List), nthO(O, List, 10).

The proposition (1) defines a message relationship between the Function
that sends a message and the component's identifier of the message by
selecting all the "send" function calls.

The proposition (2) defines a register relationship between the Directory
that registers a component to the bus and the component's identifier. This
relationship is auxiliary for the following abstractions.

Injection of Composition Rules
This step concerns with adding the part-of relationships to the model to

create a hierarchical structure in the model. The composition rules specify
how the source code elements are grouped to form subsystems or more
abstracted entities. The clustering activity is usually driven by the
documentation for known groupings or by the system experts for unknown
ones. Below there is an example in Prolog where we define four new
components.

contain('VoiceCall', '!guiIVoiceCall').

contain(,DataCall', '/guiIDataCall').
contain('CallController',' !ctrIlCallCtrl').
contain(,Network' ,'!ctrllNwtCtrl').

The previous components are then grouped in component sets according
to their functionality.

contain('CallServices' ,'VoiceCall').
contain('CalIServices' ,'DataCall').
contain(,GUI' ,'CallServices').
contain('Resources','CallController').

contain('Resources' ,'Network').

Architecture Reconstruction in Practice 169

View selection
The architects need to select a particular architectural view over the

model that we have created so far. To define a view, we have (1) to select its
representation format and (2) to define the set of relationships that have to be
projected in it. We can represent the development view with a typed directed
graph. We define a new relationship edge with three parameters: the source
node, the destination node and the type of the edge. Then, we select the
contain and containFile relationships from the model. Below there is the
Prolog code.

edge(X, Y, 'contain') :- contain(X, Y).
edge(X, Y, 'containFile') :- containFile(X, Y).

To create the component view we need to compute the high level
dependencies among the components. We represent the logical view with
typed oriented hierarchical graphs. This is achieved by (1) defining a
grouping relationships that describes the hierarchy, (2) define the set of
relationships of the graph, (3) compute the transitive closure and (4) create
the graph.

Below there is the Prolog code that defines the grouping relationship and
the relation relationship.

grouping(X,Y):- contain(X,Y).
grouping(X,Y) :- containFile(X,File), defineFunc(File,Y).
grouping(X,Y):- register(X,Y).
relation(X,Y) :- message(X,Y).

We can calculate the transitive closure with an auxiliary function trans
define by the following Prolog code:

trans{Rel, X, Y):- P= .. [Rel,X,Y), call(P).
trans{Rel, X, Y) :- P= .. [Rel,X,Link), cal1{P), trans(Rel,Link, Y).

We can then create the graph by defining a hierarchy relationship that is
basically the grouping relationships. The edges of the graph are obtained by
the union of the edges of the relation relationship and the ones obtained by
the transitive closure. Below there is the Prolog code.

hierachy{X,Y):- grouping(X,Y).
edge(X,Y):- tran(grouping,X,Tl), tran(grouping,Y,T2), relation(Tl. T2).

edge(X.Y) :- relation(X,Y).

5.4 Visualisation.

Figure 3 shows the component view using Venice. The packages have
been created according to the hierarchy relationship. The edges show the
high level dependencies that exist among the packages. The user can select
at which level of detail for the visualisation of the edges.

170

Call Services I
OataCall ! VolceCall !
IguVOat.C ...

II
IguWOlceCloUl

IIc-.TA_CJU!
8 . , ,

Resour<:<ts I , . , .
caliConlroller,r I

Il/evUC.IICv'J .\ . Ictl"VNoNtCtTI

II t···
Figure 3. The component view (Venice).

I " i
I I

/:.
Ll '. -

Claudio Riva

[-] Computational

Components
I --1
! __ . .-1
J _"'i _ _
I ..

: L_J/' U i, · ¥ oIrfti6 . .:. '

Resource
Controller

Figure 4. Dependency analysis with Rigi.

Figure 4 shows the visualisation of a typed oriented graph using Rigi.
The graph shows the dependency between a set of components and a
particular resource controller. This view has been generated by navigating
the model using Rigi as we have presented in our previous work [27].

5.5 Extract dynamic information.

Figure 5, The combined static and dynamic visualisation for the feature view.

Dynamic analysis is necessary for analysing the behaviour of the system
and for creating the feature view. The extraction of dynamic information is
conducted by (1) instrumenting the source code, (2) executing a set of
scenarios and (3) collecting the traces. The architectural concepts of phase I
drive us in the choice of the correct instrumentation. We choose to trace the
calls to the "send" and "register" primitives that are architecturally
significant for our analysis. We have used the ThirdEye environment for
instrumenting the code. We usually select them according to the system's
features that we want to analyses. The traces are then converted to Prolog
facts and then visualised with a Message Sequence Chart visualiser
integrated with Rigi as presented in [28].

Architecture Reconstruction in Practice 171

6. EXPERIENCES WITH THE APPROACH

We have applied the architecture reconstruction method on several
embedded software systems developed by Nokia. The systems are developed
in C or C++ and contain about hundreds thousands lines of code. We report
here the major impressions that we have collected:

The first phase of the approach allows us to set the focus the architecture
reconstruction activity. The selection of architecturally significant concepts
ensures that we will produce useful information for the architects with the
right level of abstraction. In this way, we can recover the essential design
decisions of the system. Being the process iterative and incremental, we can
start with a simple set of concepts and then enrich it when we increase our
understanding of the system.

The analysis of the source code does not seem to be a big issue anymore.
Nowadays, we can find powerful analysers that extract quality information
with simple APIs for accessing their symbol tables. The only hassle is to
program the tools to extract the information we need. In the case these
analysers do not deliver the information we need, Perl (or just the grep
utility) are still the best choice.

The abstraction phase allows us to inject domain knowledge about the
system and to increase the level of abstraction of the model. This
information usually comes from existing design documents and experts
(architecture recovery) or we have to create it from scratch (architecture
reconstruction). Prolog gives us the capability of formally specifying the
abstraction rules and to reuse them, with little changes, for different products
of the family. Prolog also offers the possibility of calculating architectural
metrics and identify patterns in the model (two aspects that have to be
exploited in the future work).

Visualisation plays an important role for understanding the architectural
model during the whole process. We visualise the model as a hierarchical
typed graph with Rigi and Venice. This allows us to intuitively navigate the
model and manipulate the architectural information. Architects find very
useful to navigate the software models using the graph paradigm. This
feature is often missing from the traditional CASE tools.

The reverse engineered architectural models show the actual
implementation of the system. The architects found this information very
valuable and they appreciate that fact that is presented using multiple
architectural views. These views can be used during the architectural reviews
and during the software architecture assessments of a system.

172 Claudio Riva

7. CONCLUSIONS

The presented approach for architecture reconstruction allows us to
extract valuable information for the architects who are mainly interested in
the high level architecturally significant concepts of a software system. The
method stresses the point of selecting the correct concepts that will drive the
reconstruction process. Abstraction plays a key role in the whole process and
it is addressed in all the phases of the method. The supporting environment
also gives us the correct set of tools to achieve the task.

Multiple views, like for the phase of architecture modelling, are the means
to convey the architectural information among the development teams. In
this article, we have just mentioned the feature view that we have not
extensively exploited yet. The feature view enables us to describe the
implementation of the system features in a very compact and expressive
form. Our future work will concentrate on elaborating this concept.

ACKNOWLEDGEMENTS
This work is supported by the CAFE Project (from Concept to

Application in system-Family Engineering), EUREKA 202311TEA -
ip00004, http://www.extra.research.philips.com/euprojects/cafe/.

REFERENCES
1. Booch G., Rumbaugh 1. and Jacobson I., The Unified Modelling Language User Guide,

Addison-Wesley, 1999.
2. Bowman T., Holt R C., and Brewster N. V., Linux as a Case Study: Its Extracted

Software Architecture, Proc. of the International Conference on Software Engineering
(ICSE '99), Los Angeles, May 16-22,1999.

3. Chikofsky E. J. and Cross J. H. II., Reverse Engineering and Design Recover: A
Taxanomy.IEEE Software, Jan. 1990.

4. Dagstuh1 Middle Model (DMM), proposal, http://www.site.uottawa.cal-smarchenldmm
5. Demeyer S., Tichelaar S. and Steyaert P., FAMIX 2.0 - The FAMOOS Information

Exchange Model, technical rePort, University of Berne, July, 1999,
http://www.iam.unibe.ch/-famoosIFAMIX

6. Finnigan PJ., Holt RC., Kalas I., Kerr S., Kontogiannis K., Miiller H.A., Mylopoulos J.,
Perelgut S.G., Stanley M., Wong K., The software bookshelf, mM Systems Journal,
36(4), October 1997, pp.564-593.

7. Freijs L.M.G., Krikhaar R.L. and van Omrnering RC., A relational approach to Software
Architecture Analysis, Software Practice & Experience, 28(3), April 1994, pp. 371-400.

8. Guo G. Y., Atlee J. M. and Kazman R., A Software Architecture Reconstruction Method,
TC2 First Working IFIP Conference on Software Architecture (WICSA 1), 22-24 Feb,
1999, San Antonio, Texas, in Software Architecture by P. Donohoe, Kluwer Academic
Publisher, pp. 15-33.

9. Holt R C., Structural Manipulations of Software Architecture using Tarski Relational
Algebra, Proceedings of Working Conference on Reverse Engineering WCRE '98,
Honolulu, Oct 1998.

11. Hofmeister C., Nord R.L. and Soni D., Describing Software Architecture with UML,
Proc. of the]" Working lFIP Conference on Software Architecture, Kluwer Academic
Publishers, 1999.

Architecture Reconstruction in Practice 173

12. Jerding D., Rugaber S., Using visualization for Architectural Localization and Extraction,
Proceedings of the Working Conference on Reverse Engineering, (WCRE97), pp. 56-65,
October 1997, Amsterdam, Netherlands.

13. Kazman R., S. J., View Extraction and View Fusion in Architectural
Understanding, Proceedings of the fifth International Conference on Software Reuse
(ICSR5), pp.290-299, IEEE Computer Society Press, Victoria, B.C, Canada, June 1998.

14. Kazman R., O'Brien L. and Verhoef C., Architecture Reconstruction Guidelines, Carnegie
Mellon University, Software Engineering Institute report number CMu/SEI-2oo1-TR-
026.

15. Kazman R., Tool Support for Architecture Analysis and Design, Joint Proceedings of the
SIGSOFT '96 Workshops (ISA W-2), ACM, 1996, pp. 94-97.

16. Krikhaar R., Postma A., Sellink A., Stroucken M., Verhoef C., A Two-phase Process for
Software Architecture Improvement, Proceedings of the International Conference on
Software Maintenance, OCSM '99), IEEE Computer Society Press, 1999, pp. 371-380.

17. Kruchten P.D., The 4+1 View Model of architecture, IEEE Software, 12(6):42-50, 1995.
18. Lencevicius R., Ran A., Yairi R., ThirdEye - Specification-Based Analysis of Software

Execution Traces, Proceedings of the 22nd International Conference on Software
Engineering (ICSE 2000), Limerick, Ireland, 4-11 June, 2000, page 172.

19. Maccari A. and Riva C., Architectural evolution of legacy product families, Fourth
International Workshop on Product Family Engineering PFE-4 Bilbao, Spain, October 3-
5,2001.

20. Murphy G. C. and Notkin D., Recngineering with Relfextion Models: A Case Study,
IEEE Software, 1997.

21. Ran A., "ARES Conceptual Framework for Software Architecture" in M. Jazayeri, A.
Ran. F. van der Linden (eds.), Software Architecture for Product Families Principles and
Practice, Addison Wesley, 2000.

22. RedHat Source Navigator, http://sources.redhatcorn!sourcenav/
23. Richner T., Ducasse S., Recovering high-level views of object-oriented applications from

static and dynamic information. Proceedings of the IEEE International Conference on
Software Maintenance (ICSM '99), Oxford, 1999, Page(s): 13 -22

24. Rigi: a visual tool for understanding legacy systems, University of Victoria,
http://www.rigi.csc.uvic.ca/

25. Riva C., Reverse Architecting: an Industrial Experience Report, Proceedings. of the 7th
Working Conference on Reverse Engineering (WCRE2ooo), Brisbane, Australia, 23-25
November, 2000.

26. Riva C., Reverse Architecting: Suggestions for an Exchange Format, Workshop on
Standard Exchange Format (WoSEF), International Conference on Software Engineering
(ICSE 2000), June 6, Limerick, Ireland, 2000.

27. Riva C., Xu J. and Maccari A., Architecting and Reverse Architecting in UML, Workshop
on Describing Software Architecture with UML, International Conference on Software
Engineering 2001 (ICSE), Toronto, May 2001.

28. Riva C. and Vidal Rodriguez J., Combining Static and Dynamic Views
for Architecture Reconstruction, Proceedings of the Sixth European Conference on
Software Maintenance and Reengineering (CSMR 2002). IEEE Computer Society Press,
11-13 March 2002 in Budapest, Hungary.

29. Systli T., Static and Dynamic Reverse Engineering Techniques for Java Software
Systems, Ph.D Thesis, University of Tampere, Dept. of Computer and Information
Sciences, Report A-2ooo-4, 2000.

30. Turner C. R., Fuggetta A.. Lavazza L., Wolf A. L., A conceptual basis for feature
engineering. The Journal of Systems and Software, 49, Elsevier. 1999.

31. Venice, http://www.cs.Helsinki.FJIgrouplvenice/

	Architecture Reconstruction in Practice
	1. INTRODUCTION
	2. RELATED WORK
	3. ARCHITECTURE RECONSTRUCTION
	4. THE LEVELS OF ABSTRACTION
	5. AN EXAMPLE
	5.1 Architectural concepts.
	5.2 Extraction of Static Information
	5.3 Abstraction
	5.4 Visualisation.
	5.5 Extract dynamic information.

	6. EXPERIENCES WITH THE APPROACH
	7. CONCLUSIONS
	REFERENCES

