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One important feature of an architecture description language (ADL) 
[MTOO] is to specify non-functional properties such as timing, security, and 
performance. Timing issues are extremely important in safety and mission 
critical systems. To specify timing related properties, a formal method 
explicitly dealing with time is often used, for example time Petri nets and 
real-time temporal logic. Previously, we used time Petri nets [BD91] and 
real-time computational tree logic [EMS92] in SAM to specify a control and 
command system [WHD99]. To improve the understandability and maintain 
the flexibility of SAM framework, we want to use non-timed versions of 
formal methods as the foundation of SAM. Researchers in both Petri net 
community [GMM91] and the temporal logic community [AL94] have 
shown how to deal with timing issues without explicitly introducing timing 
features into a formal method. 

In this paper, we show how to use SAM to model and analyze the 
software architecture of a popular alternating bit protocol (ABP) with 
behavioral and non-functional properties. To compare with other existing 
formalization of ABP and to show the salient features of SAM, we provide 
two specifications of ABP - one without a timer and one with a timer. 
Furthermore we explore two different translation approaches using the 
model checking language SMV, and compare their effectiveness. We 
provide some general rules, including rules to deal with timing issues, to 
translate PrT nets into SMV specifications so that automatic verification of 
systems properties through model checking can be done. This work has 
improved our previous results in several ways: (I) it provides an approach to 
model timing-related behavior using PrT net and to specify timing properties 
using frrst order temporal logic of a software architecture using SAM, (2) it 
shows a technique to analyze a first order temporal logic specification under 
a PrT model using symbolic model checking. 

2. AN OVERVIEW OF SAM 

SAM is a general formal framework for specifying and analyzing 
software architectures [WHD99], and has been developed in the past five 
years at the Florida International University. The development philosophy of 
SAM is to introduce a simple, flexible, and formal software architecture 
specification and analysis model without the need to invent another ADL. In 
SAM, a software architecture is defined by a hierarchical set of 
compositions, in which each composition consists of a set of components, a 
set of connectors, and a set of constraints to be satisfied by the interacting 
components. SAM uses as its foundation a dual formalism combining a Petri 
net model and a temporal logic. Petri nets are used to defme the behavior 
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models of components and connectors while temporal logic is used to 
specify properties of components and connectors. The correctness of a 
software architecture specification is assured when all the system properties 
hold in the behavior models. SAM does not fix a particular Petri net model 
and a temporal logic as its underlying formal foundation. Different Petri net 
models and temporal logics could be chosen based on a particular 
application. For example, real-time Petri net and real-time computational 
tree logic were used to study software architectures of real-time systems 
[WHD99], predicate transition nets and first order linear time temporal logic 
were used to specify and verify software architectures explicitly dealing with 
data abstraction [HDOO). In this paper, we use the combination of PrT nets 
and first order linear time temporal. For more detailed information of SAM, 
please refer to [WHD99, HDOO). The detailed introduction to PrT nets and 
temporal logic can be found in [HD02]. 

3. MODELING OF ALTERNATING BIT PROTOCOL 

In this section, we first take a look at the alternating bit protocol, and then 
choose two versions of ABPs as our examples to explain the modeling in 
SAM. The conventions for modeling and property specification conform to 
those in [HD02). 

3.1 Introduction to ABP 

Alternating bit protocol is a simple yet effective protocol for reliable 
transmission over lossy channels that may lose or corrupt, but not duplicate, 
messages. The protocol consists of a sender, a receiver, and two channels, 
and main goal of ABP is to ensure that the receiver will eventually deliver an 
accepted message in the sender. There are several variant ABPs, among 
which the main differences focus on whether the channel can detect the lost 
or corrupted messages or not. If yes, a message is resent when a lost or 
corrupted message is detected. Otherwise, a timeout mechanism is 
introduced to send message periodically when no desired acknowledgement 
is received during a certain time. The protocol guarantees that (1) an 
accepted message will eventually be delivered, (2) the accepted messages are 
delivered in order, and (3) an accepted message is delivered only once. 

We choose two various versions of ABPs as our examples - ABP 
without timer and ABP with timer. The former assumes that the channels 
may lose or corrupt, but not duplicate, messages, and the lost or corrupted 
messages are detectable; the latter assumes that channels may lose, but not 
corrupt or duplicate, messages, and the lost messages is not detectable. Since 
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a corrupted message can be discarded simply and deemed as lost message, it 
is reasonable to assume the channel does not corrupt message. 

3.2 Model of ABP without A Timer 

It is straightforward to construct the architecture of this ABP from its 
requirements. As shown in Figure 1, there are two components, Sender and 
Receiver, and two connectors, DataChannel and AckChannel. ABP has two 
interface ports. One is the Accept port, which is the interface accepting 
messages from the environment; the other is the Deliver port, which is the 
interface delivering the accepted messages out to the environment. All other 
ports are internal to the ABP system. 

Figure 1. Architecture of ABP without a timer 

The architecture property specifications are derived directly from the 
requirements of the protocol. In fact, they are formal expressions of the 
protocol requirements in temporal logic. The property specifications include: 

P(1) Liveness property: accepted message will eventually delivered. 
o «Accept(x) -7 <>Deliver(x» 

P(2) Safety property: messages will be delivered in order. 
o «Accept(xl) J.I. (Accept(x2) 1\ -.Accept(xl» 
-7 <> bDeliver(x2) J.I. Deliver(xl») 

P(3) Safety property: Each messages is delivered only once. 
It is a bit complex to express this property since the properties in SAM 

are described by states rather than by actions. To guarantee this property, 
what we need is to ensure that the action sending a message by sender and 
the action delivering a message by receiver take place in turn. That is, one 
sending action results in exact one delivering action. Therefore it is 
straightforward to describe this property by actions as follows: 

(sendData(x) -7 0 (-,sendData(y) J.I. deliverData(z») 
1\ (deliverData(x) -7 0 (odeliverData(y) J.I. sendData(z») 

Where the first subformula means that, after the sender sent a message, it 
does not send another message until the receiver delivers a message; and the 
second subformula means that, after the receiver delivered a message, it does 
not deliver another message until the sender sends a message. 

State changes result from actions. For example, the sending action results 
in the changes of state from Accept(x) to -,Accept(x). Thus the action 
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sendData(x) can be described by state as Accept(x) " O-,Accept(x). 
Therefore, we can describe property P3 in SAM as follows: 

«Accept(x) /\ O-,Accept(x» 
0 b(Accept(y) /\ O-,Accept(y» ,,(-,Deliver(z) /\ 0 Deliver(z»» 

/\ «-,Deliver(x) /\ ODeliver(x» 
O(-,(--,(Deliver(y) /\ ODeliver(y» ,,(Accept(z) /\ O-,Accept(z»» 

Following the process of ABP and its requirements, we can develop the 
property specification and corresponding behavior model of each element in 
the architecture, as shown in figures 2-4 respectively. 

Figure 2. Behavior model of Sender 

The net inscription of Sender model is as follows: 
<p(Accept) = MESSAGE, where MESSAGE is the type of string. 
<p(Ackln) = BIT u {lost, corrupted}, where BIT = to, I}. 
<p(DataOut) = <p(DataBuj) = BITx MESSAGE 
R(sendData) = (ackeBIT /\ ack = d[l] /\ d'[I] = 1- ack /\ d'[2] = m) 
R(resendData) = (ack = lost v ack = corrupted) 

The initial marking of Accept is dependent on the environment, and the 
other initial markings of the other three Predicates are as follows: 

Mo(Ackln) = {I}, Mo(DataBuj) = {<I,""> }, Mo(DataOut) = {} 
And the corresponding property specification is: 

o «Ackln(x) /\ (x = lost v x = corrupt) /\ DataBuf(y» <>DataOut(y» 
o «AckIn(x) /\ Accept(m) /\ DataBuf(y) /\ x = y[l]) 

<> DataOut( <I-x, m> » 
The net inscription of Receiver model is as follows: 

<p(Deliver) = MESSAGE, <p(AckOut) = <p(AckBuj) =BIT 
<p(Dataln) = (BIT x MESSAGE) u {lost, corrupted} 
R(resendAck) = (d = lost v d = corrupted) 

R(deliverData) = (d eBITxMESSAGE /\ d[l] = l-b /\ b'= d[I] /\ m = d[2]) 
Mo(AckBuj) = {I}, Mo(Dataln) = Mo(AckOut) = Mo(Deliver) = {} 

The corresponding property specification is: 
o «Dataln(x) /\ (x = lost v x = corrupt) /\ AckBuf(y» <>AckOut(y» 
o «Dataln(x) /\ AckBuf(y) /\ x[l] = 1 - y) <>AckOut(x[l])) 
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Figure 3. Behavior model of Receiver 

&nder.Da/oOu/ 

Figure 4. Behavior model of the channel 

The behavior models for DataChannel and AckChannel have the same 
net structure, and can be deemed as two instances of the same net structure. 
For simplicity, we only describe the model for the DataChannel connector. 

The net inscription of the DataChannel model is as follows: 
R(lost) = (m' = lost) 
R(corrupt) = (m' = corrupted) 
R(transmitted) = true 

The corresponding property specification is: 
o ( Sender.DataOut(x) 

<>(Receiver.Dataln(y) 1\ (y = X V Y = lost v y = corrupted) 
The verification of architecture specification is to validate that the 

behavior models satisfy the property specifications of the system. We will 
describe the verification approach in section 4. 

3.3 Model of ABP with A Timer 

When timeout mechanism is introduced into the ABP, there exists a 
timing issue for the architecture model. In our approach, the basic idea to 
express the timing aspect of the data is to associate each token in the PrT net 
with a timestamp. The timestamp of a token indicates when this token is 
generated. The time constraint on the firing of a transition is described in the 
constraints of this transition. Consider the PrT net in Figure 5. When TI 
fires, a message in PI is transmitted to P2. If the TI must fire when it is 
enabled for a certain time, say 2 time units minimum and 4 time units 
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maximum, then the constraints on Tl can be expressed as R(T1)=(tl + 2 S t2 
S t1 + 4). That is, Tl may fire after it has been enabled for 2 time units and 
must fire if it has been enabled for 4 time units. 

TI 
PI 0 <tI.msg> .0 <t2.msg> .0 P2 

Figure 5. Time constraint on transition 

Figure 6. Architecture model of ABP with timer 

The architecture model, as shown in Figure 6, is similar to the one 
without timer, except for the additional timers. Instead of resending message 
when lost ACK is detected, the message is resent when there occurs a 
timeout signal in this model. The architecture property specifications are the 
same except for a few differences in the concrete temporal formulas because 
of the additional timestamp associated to each token. The specifications are 
as follows: 

P(1) 
P(2) 

P(3) 

o «Accept( <tl, x» <> Deliver( <t2, x») 
o «Accept( <tl, xl» A Accept( <12, x2» A t2 > tl) 

(-J)eliver«t4, x2» J.I. 3 t3.Deliver«t3, xl»» 
«Accept«tl. x» A OoAccept«tl, x») 0 (-,(Accept«t2. y» 

A O-,Accept«t2, Y») J.I. (-,[)eliver«t3, z» A 0 Deliver«t3. z»») 
A«-,[)eliver«t4. x» A ODeliver«t4, x») 0 (-,(-,[)eliver(t5, Y) 

A ODeliver«t5, Y») J.l.Accept«t6, z» A OoAccept«t6, z»») 
Due to the space limit, we only show the behavioural model of the 

Sender without the net inscription. When an accepted message is allowed to 
send in sender, it should be the earliest accepted one among all the accepted 
messages ready to send. The constraint on timestamp of token m' enforces 
that transition send Data will fire in a certain time unit when it is enabled. 



70 Tianjun Shi, Xudong He 

DataO.t 

m' 
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Figure 7. Model of the Sender 

The corresponding property specification is: 
o «TimeExpired(tJ) /\ DataBuj{<t2, <>DataOut«t3, x») 
0« Ackln«tl, b» /\ DataBuj{<t2, b, x» Mccept«t3, y») 

<>DataOut«t4, i-b, y») 
o «Ackln«tl, b» /\ DataBuj{<t2, I-b, x») <>-,Ackln{<tl, b» 

4. ANALYSIS OF ABP MODEL 

In this paper, we apply Symbolic Model Checking technique to analyze 
SAM specification by using SMV (Symbolic Model Verifier) tool. In the 
following sections, we first take a glance at the SMV tool, and then describe 
how to translate SAM specification into an SMV program, finally show the 
whole process by verify the two architecture models described above. 

4.1 Rules for Translating Architecture Specifications 

The SMV system is a tool for checking finite state systems against 
specifications in the temporal logic CTL. It uses the OBDD-based symbolic 
model checking algorithm to efficiently determine whether specifications 
expressed in CTL are satisfied. To verify a fmite system in SMV, it has to be 
described in SMV input language. Since it is intended to describe finite state 
systems, the only data types in the language are finite ones -Booleans, 
scalars and fixed arrays, The complete syntax of the SMV language is 
described in the SMV documentation [McM93]. 

An SMV program consists of a defmition of a finite state transition 
systems and a list of properties written in CTL formula. A transition system 
is defmed in terms of a state space, a set of transition relations, and initial 
states. A SAM architecture specification consists of behavior models defined 
by PrT nets, and properties specified in linear temporal logic. Therefore, to 
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translate a SAM specification into an SMV program, we should translate 
behavior models in PrT nets into the finite transition system in SMV, and 
properties in linear temporal logic to CfL. The general procedure and rules 
for translation are as follows: 

Step 1: Connecting the behavior models of individual elements 
It is straightforward to get the composition level behavior model from the 

individual behavior models and the architecture. 

Step 2: DerIDing state variables 
Declare a state SMV variable for each place in the composition behavior 

model. For each place p, the declare statement could be: 
p : 

where 1 is the number of all distinct value allowed in p. and bound is 
maximum tokens in p. 1 )Ibound indicates the minimum number of values 
the state variable p should hold. In fact, it is not necessary that the array 
begin at subscript O. Instead of using array as the type of state variable, we 
could also use a list of enclosed values so that the value is more meaningful. 

It should be noted that, the type of a place p can only have finite values 
and each p should be bounded. Otherwise the states for the behavior model 
will be infinite. As we have known, SMV is applicable only to finite 
transition system. It is impossible for us to translate a behavior model with 
infinite states into SMV. However, in most cases, some specific properties 
still hold after reducing a behavior model with infinite states to one with 
finite states. Therefore, to verify a specific property, we can reduce some 
infinite places to finite places as long as the reduction does not affect the 
verification of this property. For example, the type of place Accept in Figure 
2 is infinite, and the message can be any string. When we want to verify the 
accepted message will be eventually delivered, it does not matter what the 
message means. In this case, we can reduce the type of Accept to a finite 
type, even a type containing only one value. 

Step 3: Defining initial state 
Initialize each SMV state variable to the value, which is corresponding to 

the initial marking of the place in the behavior model, using the INIT 
statement. 

INIT = A (p = f{Mo{p))) 
peP 

Where f is the mapping from the initial marking of place p to the value of 
state variable p. 
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Step 4: DerIDing transition relations 
Firstly, for each transition in the behavior model, define the transition 

name as its enabling conditions in DEFINE statement. For a transition t, its 
corresponding defme statement is t:= /\ (P, > 0) /\ R(t) . 

p,eo, 

Secondly, for each SMV state variable p, declare a next statement as 
follows: 

next(p) := case 

esac,· 

ti: ./fM(p»; 
t,: 0; 
1: p; 

II for each t,tE 11 
II for each t,Ep· 

where f is the mapping from the marking of place p to the value of state 
variable p, after I, fireS. 

An alternate method to define the transition relations is to use TRANS 
instead of ASSIGN statement. Rather than describe transition relations from 
the perspective of places, we can also describe transition relations in terms of 
transitions. Similar to the method proposed by Wimmel in [Wim97], the 
TRANS statement consists of one subformula TRANS, for each transition t: 

TRANS I = t /\ ( /\ next(p) = f (M (p))) /\ ( /\ next(p) = 0) /\ ( /\ next(p) = p) 
pelO peOI-IO peP-(OIUlO) 

Where f is the mapping from the marking of predicate p to the value of state 
variable p, after t fires. 

In addition, to make in possible to verify a behavior model containing 
deadlocks, which means there is no enabled transition, a subformula has to 
be added to the transition relation that allows the system to stay in its current 
state if there is a deadlock [Wim97]. The symbol deadlock is defined as: 

deadlock := -, v t 
lET 

Thus, the TRANS statement is fmally defmed as follows: 
TRANS = v TRANS, v (deadlock/\ /\ next(p) = p) 

lET 

Step 5: Defining the specifications to be verified 
What we need to do here is to translate the properties to be verified in 

SAM to the SPEC part in SMV. Since specification properties in SAM are 
described in linear temporal logic, and specifications in SMV are described 
in CTL, it is also straightforward. 

Step 6: Defining fairness constraints if necessary 
When fairness assumptions should be made in the behavior model, add 

fairness constraints in the FAIRNESS part in SMV. For example, there 
should be a fairness constraint for the channel in ABP so that the ABP 
system can work successfully. 
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Step 7: Dealing with Timing constraint when necessary 
When timing constraint is applied in the behavior model in SAM, 

additional codes should be added to the SMV program. Generally, time 
grows without bound in behavior model, so the underlying state transition 
system has infinite states and SMV becomes inapplicable. In most cases, 
however, we don't care about absolute time but relative time. In the ABP 
model with timer, for example, all the time constraints are about the time 
difference between tokens. This will make it possible to deal with timing 
constraint in SMV. What we need to do is to keep track of time lapses with a 
state variable whose range is bounded. We call this state variable clock in 
our context. The clock does not increase unless there is no enabled 
transition. When the clock reaches its upper bound, its next time value will 
be the lower bound. The example for dealing with timing constraint is shown 
in section 4.3. 

4.2 Analysis of ABP without A Timer 

Following the general steps and rules described in previous section, it is 
quite easy to translate the architecture specification to SMV program. Our 
goal is to verify that the compositional architecture specification satisfies the 
three properties, PI, P2 and P3, described in section 3.2. To make the 
underlying transition system to be finite and simplify the analysis, we 
assume that, there are 8 distinct messages accepted initially. Namely, there 
are 8 distinct tokens in Place Accept. The ids for the messages range from I 
to 8. The messages will be sent by the Sender in the order from 8 to 1. No 
any other message is accepted. We verify that all the 8 messages and only 
the 8 messages are delivered, and the 8 messages are delivered in the order 
they are sent by the Sender. 

With the assumption above, we translate the architecture specification to 
the SMV program as follows. The figure for connected behavior model is 
omitted here. 

Since Icp(AckBuf)1 = 2 and it is I-bounded, we can defme the state 
variable AckBuf as: 

AckBuf: 0 .. 2; 
However, to make it more meaningful, we define it as follows instead. 

AckBuf to, bitO, bitl}; 
Where state 0 means there is no token in Place AckBuf. Similarly, we can 

defme AckOut and AckIn. 
AckOut: {O, bitO, bitl}; Ackln: {O, bitO, bitl, lost, corrupted}; 

We have noted from the assumption that ItA'AckBufll=8 and it is 8-
bounded, so it seems that we should defme Accept to range between 0 and 
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88• In fact, Accept can be presented by 8 values (in addition to 0) since 
messages are sent in order. So we define Accept as: 

Accept: 0 .. 8; 
Where state 0 means there is no token in Place Accept, i (i>O) means that 

there are i tokens in Accept and the id for each message is I to i respectively. 
Similarly, Deliver can be defined as: 

Deliver: 0 .. 8; 
To make it more convenient to extract message id and associated bit tag, 

we define the remaining two variables as follows: 
DataBuJ: 0 .. 17; I/O: empty. 1: undefined, 2-17: message_id *2 + bit 
DataOut: 0 .. 17; 
Dataln: 0 .. 19; 1118-lost, 19-corrupted 

After the state variables are defined, the initial state and transition 
relations are straightforward. After the state variables are defined, the initial 
state and transition relations are straightforward. In the SPEC part we use 
formula AF Deliver = 8 to verify property PI, and formula AG (deliver Data 
& !next(deliverData) --+ Dataln12 = Deliver + 1) to verify P2 and P3. 

H we run the SMV program now, the first formula is false. This is 
because we have not considered the fairness constraints. ABP works 
successfully only when the channels don't always lose or corrupt messages. 
Therefore we should add fairness constraints on the SMV program to make 
sure that a message will get through the channel when it is sent infinitely 
often. The fairness constraints to guarantee this are as follows: 

AF (Dataln >0 & Dataln <18) 
AF (AckIn = bitO I AckIn = bit!) 

After the fairness constraints are added, the specification is evaluated to 
be true. 

4.3 Analysis of ABP with Timer 

The analysis of ABP with timer is similar to the analysis without timer 
shown in the previous section, except for the timing constraints. Therefore, 
we focus mainly on the timing constraints in this section. Instead of 
verifying all the three properties shown in section 3.3, we just verify here 
that an accepted message will eventually delivered. We assume that no new 
message can be accepted until the sender receives proper ACK and ready to 
accept new message. 

To deal with the timing constraints, a clock is defined as follows: 
clock: 1 .. 20; 

The clock advances only when there is no mature transition and the 
Sender is not ready to accept new message. That is, the clock stops while the 
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Sender is waiting to accept new message. The initial value of clock is 1, and 
its transition relation is as follows: 

next(clock) := case 
noMatureTrans & !waitingforAccept & clock < 20: clock + 1; 
noMatureTrans & !waitingforAccept & clock = 20; 1; 
1: clcok; 

esac,' 
Where noMatureTrans and waitingforAccept are defined as: 

NoMarureTrans := ! (sendData I resendData I discardData I discardAck I 
dataTransit I AckTransit I deliverData I resendAck I 
R.beginTiming I R.clearTiming I R. TimeExpires I 
S.beginTiming I S.clearTiming I S.TimeExpires); 

waitingforAccept := AckIn > 0 & Accep t= 0 & DataBu/> 0 
& clock != AckIn/2 & clock != DataBu/12 
& (AckIn mod 2) = (DataBu/ mod 2) 

Again, fairness constraints need to be added to make the model work 
successfully. 

AF (DataIn > 0) 
AF (AckIn > 0) 

And the SPEC to verify is: 
AG (Accept 4 AF Deliver) 

4.4 Summary of Running Results 

Our SMV programs were executed on Sun-Blade-WOO running SunOS 
5.8, using the SMV Release 2.5.4. SMV reported the resources needed to 
analyze the properties. For the first SMV program, which was a quite simple 
one, 10,412 BDD nodes and about I.3M memories were allocated, and it 
was finished in 0.06 second. The size of the state space is about 2.3x107, and 
the reachable states are 129. For the second SMV program, about 1.8x106 

BDD nodes and 300M memory were allocated, and it was finished in 315 
seconds. The size of the state space is 7.8xlO24 and the number of reachable 
states is 2. Ix 104• 

It should be noted that when the properties are evaluated false, for 
example, when we remove the fairness constraints in the SMV program, it 
takes SMV a little more time to fmd a counterexample. 

5. RELATED WORK 

Several papers studied the analysis of alternating bit protocol. In [Suz90], 
an ABP without timer was analyzed using temporal Petri nets, which are 
low-level Petri nets with certain restriction on the firings of transitions 
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represented by temporal formulas. However, the analysis technique using co­
regular expressions may not always be possible or straightforward, and may 
require additional techniques when a given formula is complex. In addition, 
using low-level Petri nets makes it difficult in representing values of data 
items. An ABP with timer was represented in terms of labeled transition 
systems (LTS) in [GKM98), and its properties were analyzed by an 
exhaustive search of state space of the LTS model. But the paper did not 
model timeout mechanism and simply treated it as external event. 

In [Wim97], several methods to represent a low-level Petri net using 
SMV were proposed and compared, which were helpful for developing our 
approach to translate the architecture specifications into SMV programs. W. 
Chan et al. applied model checking to the analysis of software specification 
in [CAB98). The main difference between their work and ours was the 
language used for representing software architecture specifications. They 
used RSML, a state-machine language based on statecharts. 

6. CONCLUSION 

We have presented how to model timing issues in SAM and applied 
symbolic model checking technique to validate the architecture specification 
in SAM. General rules to translate architecture specification in SAM into the 
SMV language were identified and proved to be powerful. The satisfying 
results indicate symbolic model checking is an effective technique in the 
process of analyzing the architecture specifications in SAM. 

In this paper, we connected the behavior models of components and 
connectors into a single composition level behavior model, before applying 
model checking. This approach works in most situations due to the high­
level abstraction of a software architecture specification. However, the 
connected composition level behavior model can be quite large in some 
situations to prevent the effective use of symbolic model checking technique. 
Future work could focus on compositional model checking techniques. 
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