
The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002
J. Bosch et al. (eds.), Software Architecture

10.1007/978-0-387-35607-5_15

http://dx.doi.org/10.1007/978-0-387-35607-5_15

64 Tianjun Shi, Xudong He

One important feature of an architecture description language (ADL)
[MTOO] is to specify non-functional properties such as timing, security, and
performance. Timing issues are extremely important in safety and mission
critical systems. To specify timing related properties, a formal method
explicitly dealing with time is often used, for example time Petri nets and
real-time temporal logic. Previously, we used time Petri nets [BD91] and
real-time computational tree logic [EMS92] in SAM to specify a control and
command system [WHD99]. To improve the understandability and maintain
the flexibility of SAM framework, we want to use non-timed versions of
formal methods as the foundation of SAM. Researchers in both Petri net
community [GMM91] and the temporal logic community [AL94] have
shown how to deal with timing issues without explicitly introducing timing
features into a formal method.

In this paper, we show how to use SAM to model and analyze the
software architecture of a popular alternating bit protocol (ABP) with
behavioral and non-functional properties. To compare with other existing
formalization of ABP and to show the salient features of SAM, we provide
two specifications of ABP - one without a timer and one with a timer.
Furthermore we explore two different translation approaches using the
model checking language SMV, and compare their effectiveness. We
provide some general rules, including rules to deal with timing issues, to
translate PrT nets into SMV specifications so that automatic verification of
systems properties through model checking can be done. This work has
improved our previous results in several ways: (I) it provides an approach to
model timing-related behavior using PrT net and to specify timing properties
using frrst order temporal logic of a software architecture using SAM, (2) it
shows a technique to analyze a first order temporal logic specification under
a PrT model using symbolic model checking.

2. AN OVERVIEW OF SAM

SAM is a general formal framework for specifying and analyzing
software architectures [WHD99], and has been developed in the past five
years at the Florida International University. The development philosophy of
SAM is to introduce a simple, flexible, and formal software architecture
specification and analysis model without the need to invent another ADL. In
SAM, a software architecture is defined by a hierarchical set of
compositions, in which each composition consists of a set of components, a
set of connectors, and a set of constraints to be satisfied by the interacting
components. SAM uses as its foundation a dual formalism combining a Petri
net model and a temporal logic. Petri nets are used to defme the behavior

Modeling and Analyzing a Communication Protocol Using SAM 65

models of components and connectors while temporal logic is used to
specify properties of components and connectors. The correctness of a
software architecture specification is assured when all the system properties
hold in the behavior models. SAM does not fix a particular Petri net model
and a temporal logic as its underlying formal foundation. Different Petri net
models and temporal logics could be chosen based on a particular
application. For example, real-time Petri net and real-time computational
tree logic were used to study software architectures of real-time systems
[WHD99], predicate transition nets and first order linear time temporal logic
were used to specify and verify software architectures explicitly dealing with
data abstraction [HDOO). In this paper, we use the combination of PrT nets
and first order linear time temporal. For more detailed information of SAM,
please refer to [WHD99, HDOO). The detailed introduction to PrT nets and
temporal logic can be found in [HD02].

3. MODELING OF ALTERNATING BIT PROTOCOL

In this section, we first take a look at the alternating bit protocol, and then
choose two versions of ABPs as our examples to explain the modeling in
SAM. The conventions for modeling and property specification conform to
those in [HD02).

3.1 Introduction to ABP

Alternating bit protocol is a simple yet effective protocol for reliable
transmission over lossy channels that may lose or corrupt, but not duplicate,
messages. The protocol consists of a sender, a receiver, and two channels,
and main goal of ABP is to ensure that the receiver will eventually deliver an
accepted message in the sender. There are several variant ABPs, among
which the main differences focus on whether the channel can detect the lost
or corrupted messages or not. If yes, a message is resent when a lost or
corrupted message is detected. Otherwise, a timeout mechanism is
introduced to send message periodically when no desired acknowledgement
is received during a certain time. The protocol guarantees that (1) an
accepted message will eventually be delivered, (2) the accepted messages are
delivered in order, and (3) an accepted message is delivered only once.

We choose two various versions of ABPs as our examples - ABP
without timer and ABP with timer. The former assumes that the channels
may lose or corrupt, but not duplicate, messages, and the lost or corrupted
messages are detectable; the latter assumes that channels may lose, but not
corrupt or duplicate, messages, and the lost messages is not detectable. Since

66 Tianjun Shi, Xudong He

a corrupted message can be discarded simply and deemed as lost message, it
is reasonable to assume the channel does not corrupt message.

3.2 Model of ABP without A Timer

It is straightforward to construct the architecture of this ABP from its
requirements. As shown in Figure 1, there are two components, Sender and
Receiver, and two connectors, DataChannel and AckChannel. ABP has two
interface ports. One is the Accept port, which is the interface accepting
messages from the environment; the other is the Deliver port, which is the
interface delivering the accepted messages out to the environment. All other
ports are internal to the ABP system.

Figure 1. Architecture of ABP without a timer

The architecture property specifications are derived directly from the
requirements of the protocol. In fact, they are formal expressions of the
protocol requirements in temporal logic. The property specifications include:

P(1) Liveness property: accepted message will eventually delivered.
o «Accept(x) -7 <>Deliver(x»

P(2) Safety property: messages will be delivered in order.
o «Accept(xl) J.I. (Accept(x2) 1\ -.Accept(xl»
-7 <> bDeliver(x2) J.I. Deliver(xl»)

P(3) Safety property: Each messages is delivered only once.
It is a bit complex to express this property since the properties in SAM

are described by states rather than by actions. To guarantee this property,
what we need is to ensure that the action sending a message by sender and
the action delivering a message by receiver take place in turn. That is, one
sending action results in exact one delivering action. Therefore it is
straightforward to describe this property by actions as follows:

(sendData(x) -7 0 (-,sendData(y) J.I. deliverData(z»)
1\ (deliverData(x) -7 0 (odeliverData(y) J.I. sendData(z»)

Where the first subformula means that, after the sender sent a message, it
does not send another message until the receiver delivers a message; and the
second subformula means that, after the receiver delivered a message, it does
not deliver another message until the sender sends a message.

State changes result from actions. For example, the sending action results
in the changes of state from Accept(x) to -,Accept(x). Thus the action

Modeling and Analyzing a Communication Protocol Using SAM 67

sendData(x) can be described by state as Accept(x) " O-,Accept(x).
Therefore, we can describe property P3 in SAM as follows:

«Accept(x) /\ O-,Accept(x»
0 b(Accept(y) /\ O-,Accept(y» ,,(-,Deliver(z) /\ 0 Deliver(z»»

/\ «-,Deliver(x) /\ ODeliver(x»
O(-,(--,(Deliver(y) /\ ODeliver(y» ,,(Accept(z) /\ O-,Accept(z»»

Following the process of ABP and its requirements, we can develop the
property specification and corresponding behavior model of each element in
the architecture, as shown in figures 2-4 respectively.

Figure 2. Behavior model of Sender

The net inscription of Sender model is as follows:
<p(Accept) = MESSAGE, where MESSAGE is the type of string.
<p(Ackln) = BIT u {lost, corrupted}, where BIT = to, I}.
<p(DataOut) = <p(DataBuj) = BITx MESSAGE
R(sendData) = (ackeBIT /\ ack = d[l] /\ d'[I] = 1- ack /\ d'[2] = m)
R(resendData) = (ack = lost v ack = corrupted)

The initial marking of Accept is dependent on the environment, and the
other initial markings of the other three Predicates are as follows:

Mo(Ackln) = {I}, Mo(DataBuj) = {<I,""> }, Mo(DataOut) = {}
And the corresponding property specification is:

o «Ackln(x) /\ (x = lost v x = corrupt) /\ DataBuf(y» <>DataOut(y»
o «AckIn(x) /\ Accept(m) /\ DataBuf(y) /\ x = y[l])

<> DataOut(<I-x, m> »
The net inscription of Receiver model is as follows:

<p(Deliver) = MESSAGE, <p(AckOut) = <p(AckBuj) =BIT
<p(Dataln) = (BIT x MESSAGE) u {lost, corrupted}
R(resendAck) = (d = lost v d = corrupted)

R(deliverData) = (d eBITxMESSAGE /\ d[l] = l-b /\ b'= d[I] /\ m = d[2])
Mo(AckBuj) = {I}, Mo(Dataln) = Mo(AckOut) = Mo(Deliver) = {}

The corresponding property specification is:
o «Dataln(x) /\ (x = lost v x = corrupt) /\ AckBuf(y» <>AckOut(y»
o «Dataln(x) /\ AckBuf(y) /\ x[l] = 1 - y) <>AckOut(x[l]))

68 Tianjun Shi, Xudong He

d.lIverDa/a

Dalaln Deliver

restndAck AclOUl

Figure 3. Behavior model of Receiver

&nder.Da/oOu/

Figure 4. Behavior model of the channel

The behavior models for DataChannel and AckChannel have the same
net structure, and can be deemed as two instances of the same net structure.
For simplicity, we only describe the model for the DataChannel connector.

The net inscription of the DataChannel model is as follows:
R(lost) = (m' = lost)
R(corrupt) = (m' = corrupted)
R(transmitted) = true

The corresponding property specification is:
o (Sender.DataOut(x)

<>(Receiver.Dataln(y) 1\ (y = X V Y = lost v y = corrupted)
The verification of architecture specification is to validate that the

behavior models satisfy the property specifications of the system. We will
describe the verification approach in section 4.

3.3 Model of ABP with A Timer

When timeout mechanism is introduced into the ABP, there exists a
timing issue for the architecture model. In our approach, the basic idea to
express the timing aspect of the data is to associate each token in the PrT net
with a timestamp. The timestamp of a token indicates when this token is
generated. The time constraint on the firing of a transition is described in the
constraints of this transition. Consider the PrT net in Figure 5. When TI
fires, a message in PI is transmitted to P2. If the TI must fire when it is
enabled for a certain time, say 2 time units minimum and 4 time units

Modeling and Analyzing a Communication Protocol Using SAM 69

maximum, then the constraints on Tl can be expressed as R(T1)=(tl + 2 S t2
S t1 + 4). That is, Tl may fire after it has been enabled for 2 time units and
must fire if it has been enabled for 4 time units.

TI
PI 0 <tI.msg> .0 <t2.msg> .0 P2

Figure 5. Time constraint on transition

Figure 6. Architecture model of ABP with timer

The architecture model, as shown in Figure 6, is similar to the one
without timer, except for the additional timers. Instead of resending message
when lost ACK is detected, the message is resent when there occurs a
timeout signal in this model. The architecture property specifications are the
same except for a few differences in the concrete temporal formulas because
of the additional timestamp associated to each token. The specifications are
as follows:

P(1)
P(2)

P(3)

o «Accept(<tl, x» <> Deliver(<t2, x»)
o «Accept(<tl, xl» A Accept(<12, x2» A t2 > tl)

(-J)eliver«t4, x2» J.I. 3 t3.Deliver«t3, xl»»
«Accept«tl. x» A OoAccept«tl, x») 0 (-,(Accept«t2. y»

A O-,Accept«t2, Y») J.I. (-,[)eliver«t3, z» A 0 Deliver«t3. z»»)
A«-,[)eliver«t4. x» A ODeliver«t4, x») 0 (-,(-,[)eliver(t5, Y)

A ODeliver«t5, Y») J.l.Accept«t6, z» A OoAccept«t6, z»»)
Due to the space limit, we only show the behavioural model of the

Sender without the net inscription. When an accepted message is allowed to
send in sender, it should be the earliest accepted one among all the accepted
messages ready to send. The constraint on timestamp of token m' enforces
that transition send Data will fire in a certain time unit when it is enabled.

70 Tianjun Shi, Xudong He

DataO.t

m'

discardAd TllMrExpired

Figure 7. Model of the Sender

The corresponding property specification is:
o «TimeExpired(tJ) /\ DataBuj{<t2, <>DataOut«t3, x»)
0« Ackln«tl, b» /\ DataBuj{<t2, b, x» Mccept«t3, y»)

<>DataOut«t4, i-b, y»)
o «Ackln«tl, b» /\ DataBuj{<t2, I-b, x») <>-,Ackln{<tl, b»

4. ANALYSIS OF ABP MODEL

In this paper, we apply Symbolic Model Checking technique to analyze
SAM specification by using SMV (Symbolic Model Verifier) tool. In the
following sections, we first take a glance at the SMV tool, and then describe
how to translate SAM specification into an SMV program, finally show the
whole process by verify the two architecture models described above.

4.1 Rules for Translating Architecture Specifications

The SMV system is a tool for checking finite state systems against
specifications in the temporal logic CTL. It uses the OBDD-based symbolic
model checking algorithm to efficiently determine whether specifications
expressed in CTL are satisfied. To verify a fmite system in SMV, it has to be
described in SMV input language. Since it is intended to describe finite state
systems, the only data types in the language are finite ones -Booleans,
scalars and fixed arrays, The complete syntax of the SMV language is
described in the SMV documentation [McM93].

An SMV program consists of a defmition of a finite state transition
systems and a list of properties written in CTL formula. A transition system
is defmed in terms of a state space, a set of transition relations, and initial
states. A SAM architecture specification consists of behavior models defined
by PrT nets, and properties specified in linear temporal logic. Therefore, to

Modeling and Analyzing a Communication Protocol Using SAM 71

translate a SAM specification into an SMV program, we should translate
behavior models in PrT nets into the finite transition system in SMV, and
properties in linear temporal logic to CfL. The general procedure and rules
for translation are as follows:

Step 1: Connecting the behavior models of individual elements
It is straightforward to get the composition level behavior model from the

individual behavior models and the architecture.

Step 2: DerIDing state variables
Declare a state SMV variable for each place in the composition behavior

model. For each place p, the declare statement could be:
p :

where 1 is the number of all distinct value allowed in p. and bound is
maximum tokens in p. 1)Ibound indicates the minimum number of values
the state variable p should hold. In fact, it is not necessary that the array
begin at subscript O. Instead of using array as the type of state variable, we
could also use a list of enclosed values so that the value is more meaningful.

It should be noted that, the type of a place p can only have finite values
and each p should be bounded. Otherwise the states for the behavior model
will be infinite. As we have known, SMV is applicable only to finite
transition system. It is impossible for us to translate a behavior model with
infinite states into SMV. However, in most cases, some specific properties
still hold after reducing a behavior model with infinite states to one with
finite states. Therefore, to verify a specific property, we can reduce some
infinite places to finite places as long as the reduction does not affect the
verification of this property. For example, the type of place Accept in Figure
2 is infinite, and the message can be any string. When we want to verify the
accepted message will be eventually delivered, it does not matter what the
message means. In this case, we can reduce the type of Accept to a finite
type, even a type containing only one value.

Step 3: Defining initial state
Initialize each SMV state variable to the value, which is corresponding to

the initial marking of the place in the behavior model, using the INIT
statement.

INIT = A (p = f{Mo{p)))
peP

Where f is the mapping from the initial marking of place p to the value of
state variable p.

72 Tianjun Shi, Xudong He

Step 4: DerIDing transition relations
Firstly, for each transition in the behavior model, define the transition

name as its enabling conditions in DEFINE statement. For a transition t, its
corresponding defme statement is t:= /\ (P, > 0) /\ R(t) .

p,eo,

Secondly, for each SMV state variable p, declare a next statement as
follows:

next(p) := case

esac,·

ti: ./fM(p»;
t,: 0;
1: p;

II for each t,tE 11
II for each t,Ep·

where f is the mapping from the marking of place p to the value of state
variable p, after I, fireS.

An alternate method to define the transition relations is to use TRANS
instead of ASSIGN statement. Rather than describe transition relations from
the perspective of places, we can also describe transition relations in terms of
transitions. Similar to the method proposed by Wimmel in [Wim97], the
TRANS statement consists of one subformula TRANS, for each transition t:

TRANS I = t /\ (/\ next(p) = f (M (p))) /\ (/\ next(p) = 0) /\ (/\ next(p) = p)
pelO peOI-IO peP-(OIUlO)

Where f is the mapping from the marking of predicate p to the value of state
variable p, after t fires.

In addition, to make in possible to verify a behavior model containing
deadlocks, which means there is no enabled transition, a subformula has to
be added to the transition relation that allows the system to stay in its current
state if there is a deadlock [Wim97]. The symbol deadlock is defined as:

deadlock := -, v t
lET

Thus, the TRANS statement is fmally defmed as follows:
TRANS = v TRANS, v (deadlock/\ /\ next(p) = p)

lET

Step 5: Defining the specifications to be verified
What we need to do here is to translate the properties to be verified in

SAM to the SPEC part in SMV. Since specification properties in SAM are
described in linear temporal logic, and specifications in SMV are described
in CTL, it is also straightforward.

Step 6: Defining fairness constraints if necessary
When fairness assumptions should be made in the behavior model, add

fairness constraints in the FAIRNESS part in SMV. For example, there
should be a fairness constraint for the channel in ABP so that the ABP
system can work successfully.

Modeling and Analyzing a Communication Protocol Using SAM 73

Step 7: Dealing with Timing constraint when necessary
When timing constraint is applied in the behavior model in SAM,

additional codes should be added to the SMV program. Generally, time
grows without bound in behavior model, so the underlying state transition
system has infinite states and SMV becomes inapplicable. In most cases,
however, we don't care about absolute time but relative time. In the ABP
model with timer, for example, all the time constraints are about the time
difference between tokens. This will make it possible to deal with timing
constraint in SMV. What we need to do is to keep track of time lapses with a
state variable whose range is bounded. We call this state variable clock in
our context. The clock does not increase unless there is no enabled
transition. When the clock reaches its upper bound, its next time value will
be the lower bound. The example for dealing with timing constraint is shown
in section 4.3.

4.2 Analysis of ABP without A Timer

Following the general steps and rules described in previous section, it is
quite easy to translate the architecture specification to SMV program. Our
goal is to verify that the compositional architecture specification satisfies the
three properties, PI, P2 and P3, described in section 3.2. To make the
underlying transition system to be finite and simplify the analysis, we
assume that, there are 8 distinct messages accepted initially. Namely, there
are 8 distinct tokens in Place Accept. The ids for the messages range from I
to 8. The messages will be sent by the Sender in the order from 8 to 1. No
any other message is accepted. We verify that all the 8 messages and only
the 8 messages are delivered, and the 8 messages are delivered in the order
they are sent by the Sender.

With the assumption above, we translate the architecture specification to
the SMV program as follows. The figure for connected behavior model is
omitted here.

Since Icp(AckBuf)1 = 2 and it is I-bounded, we can defme the state
variable AckBuf as:

AckBuf: 0 .. 2;
However, to make it more meaningful, we define it as follows instead.

AckBuf to, bitO, bitl};
Where state 0 means there is no token in Place AckBuf. Similarly, we can

defme AckOut and AckIn.
AckOut: {O, bitO, bitl}; Ackln: {O, bitO, bitl, lost, corrupted};

We have noted from the assumption that ItA'AckBufll=8 and it is 8-
bounded, so it seems that we should defme Accept to range between 0 and

74 Tianjun Shi. Xudong He

88• In fact, Accept can be presented by 8 values (in addition to 0) since
messages are sent in order. So we define Accept as:

Accept: 0 .. 8;
Where state 0 means there is no token in Place Accept, i (i>O) means that

there are i tokens in Accept and the id for each message is I to i respectively.
Similarly, Deliver can be defined as:

Deliver: 0 .. 8;
To make it more convenient to extract message id and associated bit tag,

we define the remaining two variables as follows:
DataBuJ: 0 .. 17; I/O: empty. 1: undefined, 2-17: message_id *2 + bit
DataOut: 0 .. 17;
Dataln: 0 .. 19; 1118-lost, 19-corrupted

After the state variables are defined, the initial state and transition
relations are straightforward. After the state variables are defined, the initial
state and transition relations are straightforward. In the SPEC part we use
formula AF Deliver = 8 to verify property PI, and formula AG (deliver Data
& !next(deliverData) --+ Dataln12 = Deliver + 1) to verify P2 and P3.

H we run the SMV program now, the first formula is false. This is
because we have not considered the fairness constraints. ABP works
successfully only when the channels don't always lose or corrupt messages.
Therefore we should add fairness constraints on the SMV program to make
sure that a message will get through the channel when it is sent infinitely
often. The fairness constraints to guarantee this are as follows:

AF (Dataln >0 & Dataln <18)
AF (AckIn = bitO I AckIn = bit!)

After the fairness constraints are added, the specification is evaluated to
be true.

4.3 Analysis of ABP with Timer

The analysis of ABP with timer is similar to the analysis without timer
shown in the previous section, except for the timing constraints. Therefore,
we focus mainly on the timing constraints in this section. Instead of
verifying all the three properties shown in section 3.3, we just verify here
that an accepted message will eventually delivered. We assume that no new
message can be accepted until the sender receives proper ACK and ready to
accept new message.

To deal with the timing constraints, a clock is defined as follows:
clock: 1 .. 20;

The clock advances only when there is no mature transition and the
Sender is not ready to accept new message. That is, the clock stops while the

Modeling and Analyzing a Communication Protocol Using SAM 75

Sender is waiting to accept new message. The initial value of clock is 1, and
its transition relation is as follows:

next(clock) := case
noMatureTrans & !waitingforAccept & clock < 20: clock + 1;
noMatureTrans & !waitingforAccept & clock = 20; 1;
1: clcok;

esac,'
Where noMatureTrans and waitingforAccept are defined as:

NoMarureTrans := ! (sendData I resendData I discardData I discardAck I
dataTransit I AckTransit I deliverData I resendAck I
R.beginTiming I R.clearTiming I R. TimeExpires I
S.beginTiming I S.clearTiming I S.TimeExpires);

waitingforAccept := AckIn > 0 & Accep t= 0 & DataBu/> 0
& clock != AckIn/2 & clock != DataBu/12
& (AckIn mod 2) = (DataBu/ mod 2)

Again, fairness constraints need to be added to make the model work
successfully.

AF (DataIn > 0)
AF (AckIn > 0)

And the SPEC to verify is:
AG (Accept 4 AF Deliver)

4.4 Summary of Running Results

Our SMV programs were executed on Sun-Blade-WOO running SunOS
5.8, using the SMV Release 2.5.4. SMV reported the resources needed to
analyze the properties. For the first SMV program, which was a quite simple
one, 10,412 BDD nodes and about I.3M memories were allocated, and it
was finished in 0.06 second. The size of the state space is about 2.3x107, and
the reachable states are 129. For the second SMV program, about 1.8x106

BDD nodes and 300M memory were allocated, and it was finished in 315
seconds. The size of the state space is 7.8xlO24 and the number of reachable
states is 2. Ix 104•

It should be noted that when the properties are evaluated false, for
example, when we remove the fairness constraints in the SMV program, it
takes SMV a little more time to fmd a counterexample.

5. RELATED WORK

Several papers studied the analysis of alternating bit protocol. In [Suz90],
an ABP without timer was analyzed using temporal Petri nets, which are
low-level Petri nets with certain restriction on the firings of transitions

76 Tianjun Shi. Xudong He

represented by temporal formulas. However, the analysis technique using co­
regular expressions may not always be possible or straightforward, and may
require additional techniques when a given formula is complex. In addition,
using low-level Petri nets makes it difficult in representing values of data
items. An ABP with timer was represented in terms of labeled transition
systems (LTS) in [GKM98), and its properties were analyzed by an
exhaustive search of state space of the LTS model. But the paper did not
model timeout mechanism and simply treated it as external event.

In [Wim97], several methods to represent a low-level Petri net using
SMV were proposed and compared, which were helpful for developing our
approach to translate the architecture specifications into SMV programs. W.
Chan et al. applied model checking to the analysis of software specification
in [CAB98). The main difference between their work and ours was the
language used for representing software architecture specifications. They
used RSML, a state-machine language based on statecharts.

6. CONCLUSION

We have presented how to model timing issues in SAM and applied
symbolic model checking technique to validate the architecture specification
in SAM. General rules to translate architecture specification in SAM into the
SMV language were identified and proved to be powerful. The satisfying
results indicate symbolic model checking is an effective technique in the
process of analyzing the architecture specifications in SAM.

In this paper, we connected the behavior models of components and
connectors into a single composition level behavior model, before applying
model checking. This approach works in most situations due to the high­
level abstraction of a software architecture specification. However, the
connected composition level behavior model can be quite large in some
situations to prevent the effective use of symbolic model checking technique.
Future work could focus on compositional model checking techniques.

Acknowledgements

This work is support in part by the NSF under grant HDR-9707076 and
by the NASA under grant NAG 2-1440.

References

[AAG95] G. Abowd, R. Allen, and D. Garlan: "Formalizing style to understand descriptions
of software architecture", ACM Trans. on Software Engineering and Methodology, vo1.4,
1995,319-364.

Modeling and Analyzing a Communication Protocol Using SAM 77

[AG97] R. Allen, and D. Garlan: "A formal basis for architectural connection", ACM Trans.
on Software Engineering and Methodology, vo1.6, 1997,213-249.

[AL94] M. Abadi and L. Lamport: "An Old-Fashioned Recipe for Real Time", ACM
Transactions on Programming Languages and Systems, vo1.16, no.5, 1994, 1543-1571.

[B091] B. Berthomieu and M. Diaz: "Modeling and verification of time dependent systems
using time Petri nets", IEEE Trans. on Software Eng., vol. 17 , no.3, 1991.

[CAB98] W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, J. Reese,
"Model Checking Large Software Specification," IEEE Transactions on Software
Engineering, vol. 24, no. 7, July 1998,498-520,

[CW96] E. Clarke and J. Wing: "Formal methods: state of the art and future", ACM
Computing Surveys, vo1.28, 1996,626-643.

[EMS92] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasian: "Quantitative temporal
reasoning", Real-Time Systems, 4:331-352,1992.

[GKM98] D. Giannakopoulou, J. Kramer and J. Magee, "Behaviour Analysis based on
Software Architecture," International Workshop on the Role of Software Architecture in
Testing and Analysis, Sicily, Italy, 1998.

[GMM91] C. Ghezzi, D. Mandrioli, S. Morasca, and M. Pezze: "A unified high-level Petri net
formalism for time-critical systems",IEEE Trans. On Software Engineering, vol.17, no.2,
1991,160-172.

[HDOO] X. He and Y. Deng: "Specifying software architectural connectors in SAM", Inti.
Journal of Software Engineering and Knowledge Engineering, vol. 1 0, 2000, 411-432.

[HD02] X. He, Y. Deng, "A Framework for Developing and Analyzing Software Architecture
Specifications in SAM," The Computer Journal, vol.45, no. 1, 2002, 111-128.

[HL90] X. He and J.A.N. Lee: "Integrating predicate transition nets and first order temporal
logic in the specification of concurrent systems", Formal Aspects of Computing, vol.2,
1990,226-246.

[Hoa85] C. Hoare: Communicating Sequential Processes, Prentice-Hall International, 1985.
[IW95] P. Inverardi and A. Wolf: "Formal specification and analysis of software architectures

using the chemical abstract machine model", IEEE Transaction on Software Engineering,
vol.21, 1995,373-386.

[McM93] K. McMillan, Symbolic Model Checking, Kluwer Academic Publisher, 1993.
[MP92] Z. Manna and A. Pnueli: The Temporal Logic of Reactive and Concu"ent Systems -

Specification, Springer-Verlag, Berlin, 1992.
[MTOO] N. Medvidovic and R. Taylor: "A classification and comparison framework for

software architecture description languages",IEEE Transaction on Software Engineering,
vol. 26, 2000, 70-93.

[Spi92] J. Spivey: Z Reference Manual (2nd ed.), Cambridge University Press, U.K, 1992.
[Suz90] Ichiro Suzuki, "Formal Analysis of the Alternating Bit Protocol by Temporal Petri

Nets," IEEE Transactions on Software Engineering, vol. 16, no. II, 1990, 1273-1281.
[WHD99] J. Wang, X. He and Y. Deng: "Introducing software architecture specification and

analysis in SAM through an example", Information and Software Technology, vol. 41,
1999,451-467.

[Wim97] G. Wimmel, "A BBD-based Model Checker for the PEP toot" Major Individual
Project, Department of Computer Science, University of Newcastle, 1997.

	Modeling and Analyzing the Software Architecture of a Communication Protocol Using SAM
	1. INTRODUCTION
	2. AN OVERVIEW OF SAM
	3. MODELING OF ALTERNATING BIT PROTOCOL
	3.1 Introduction to ABP
	3.2 Model of ABP without A Timer
	3.3 Model of ABP with A Timer

	4. ANALYSIS OF ABP MODEL
	4.1 Rules for Translating Architecture Specifications
	4.2 Analysis of ABP without A Timer
	4.3 Analysis of ABP with Timer
	4.4 Summary of Running Results

	5. RELATED WORK
	6. CONCLUSION
	References

