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Abstract 
We study the problem of assigning transmission ranges to the nodes 

of a multi-hop packet radio network (also known as static ad hoc wireless 
network) so as to minimize the total power consumed under the con­
straint that enough power is provided to the nodes to ensure that the 
network is connected. Precisely, we require that the bidirectional links 
established by the transmission range of every node form a connected 
graph. We call this problem MIN-POWER SYMMETRIC CONNECTIVITY. 

Implicit in previous work on transmission range assignment under 
asymmetric connectivity requirements is the proof that MIN-POWER 
SYMMETRIC CONNECTIVITY is NP-hard and that a simple algorithm has 
approximation ratio of 2. In this paper we establish the similarity be­
tween MIN-POWER SYMMETRIC CONNECTIVITY and the classic STEINER 
TREE problem in graphs, give a polynomial-time approximation scheme 
with performance ratio approaching 1 +In 2 ~ 1.69, and present a more 
practical 15/8 approximation algorithm. We also show that the related 
MIN-POWER SYMMETRIC UNICAST problem can be solved efficiently by 
a shortest-path computation in an appropriately constructed graph. 

1. Introduction 
Ad hoc wireless networks have received significant attention in recent years 

due to their potential applications in battlefield, emergency disaster relief, and 
other application scenarios (see, e.g., [1, 4, 5, 7, 9, 11, 14, 17, 16]). Unlike wired 
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networks or cellular networks, no wired backbone infrastructure is installed in 
ad hoc wireless networks. A communication session is achieved either through 
single-hop transmission if the recipient is within the transmission range of the 
source node, or by relaying through intermediate nodes otherwise. We assume 
that omnidirectional antennas are used by all nodes to transmit and receive 
signals. Thus, a transmission made by a node can be received by all nodes 
within its transmission range. This feature is extremely useful for energy­
efficient multicast and broadcast communications. 

For the purpose of energy conservation, each node can (possibly dynami­
cally) adjust its transmitting power, based on the distance to the receiving 
node and the background noise. In the most common power-attenuation model 
[12], the signal power falls as /K where r is the distance from the transmitter 
antenna and "' is a real constant dependent on the wireless environment, typi­
cally between 2 and 4. Assume that all receivers have the same power threshold 
for signal detection, which is typically normalized to one. With this assump­
tion, the power required to support a link between two nodes separated by a 
distance r is rtt. A crucial issue is how to find a route with minimum total en­
ergy consumption for a given communication session. This problem is referred 
to as Minimum-Energy Routing in [14, 17]. Having every link established in 
both directions simplifies the one-hop transmission protocols by allowing ac­
knowledgement messages to be sent back for every packet (see, for example 
(15]). This motivates the study of the MIN-POWER SYMMETRIC CONNECTIV­
ITY problem, where a link is established only if both nodes have transmission 
range at least as big as the distance between them, and the goal is to ensure 
that the network is connected. 

Formally, given a set of points V (representing the nodes in the network} 
in E 2 (the two-dimensional Euclidean space) or in E 3 (the three-dimensional 
Euclidean space), a transmission range assignment (or range assignment, for 
short) is a function r : V -+ 14. A unidirectional link from node u to node v is 
established under the range assignment r if r(u) ~ lluvll, where lluvll denotes 
the Euclidean distance between u and v. A bidirectional link uv is established 
under the range assignment r if r(u) ~ lluvll and r(v) ~ lluvll. Let B(r) denote 
the set of all bidirectional links established between pairs of nodes in V under 
the transmission range r. In this paper we study the following problem: 

MIN-POWER SYMMETRIC CONNECTIVITY: Given a set of nodes V and K. ~ 1, 
find a transmission range assignment r : V -+ R+ minimizing Evevr(v)tt 
subject to the constraint that the graph (V,B(r)) is connected. 

Implicit in the work of Clementi, Penna, and Silvestri [5] is a proof that 
MIN-POWER SYMMETRIC CONNECTIVITY in E 2 is NP-Hard {radio "bridges" 
in canonical form gadgets, see Definition 3 on page 10 of [5], can be made to 
be bidirectional links). Therefore, we search for polynomial-time approxima­
tion algorithms for this problem. The performance ratio of an approximation 
algorithm A for a minimization problem is the supremum, over all possible in­
stances I, of the ratio between the cost of the output of A when running on I 
and the cost of an optimal solution for I {the smaller the performance ratio, 
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the better). We say that A is an a-approximation algorithm if its performance 
ratio is at most a. A fully polynomial a-approximation scheme is a family of 
algorithms Ae such that, for every c > 0, Ae (1) has performance ratio at most 
a+ c, and (2) runs in time polynomial in the size of the instance and 1/c. 

Kirousis, Kranakis, Krizanc, and Pelc [7] give a minimum spanning tree 
(MST) based 2-approximation algorithm for MIN-POWER SYMMETRIC CON­
NECTIVITY (their algorithm is actually designed for a related problem, which 
we discuss in Section 1.1). We improve the approximation ratio under 2 by ex­
ploiting similarities between MIN-POWER SYMMETRIC CONNECTIVITY and the 
classic STEINER TREE problem: given an edge-weighted graph G = (V, E, w) 
and a set T c; V of terminals, find a minimum weight Steiner tree forT, i.e., 
a minimum weight connected subgraph of G which contains T. Computing 
an MST in the complete graph on T with edge-weights equal to the minimum 
distance in G between corresponding terminals gives a 2-approximation algo­
rithm for STEINER TREE [3, 8]. Zelikovsky [18] gave the first algorithm with 
approximation ratio less than 2: he used 3-restricted Steiner trees and the con­
cept of gain to obtain an approximation ratio of 11/6. Promel and Steger [10] 
extend the results of Camerini, Galbiati, and Maffioli [2] and give a polynomial 
time 5/3-approximation scheme for STEINER TREE, by finding almost optimal 
3-restricted Steiner tree. Zelikovsky [19] gives a polynomial time (1 + ln 2)­
approximation scheme. 

In Section 3 we show that similar concepts can be used for approximating 
MIN-POWER SYMMETRIC CONNECTIVITY. In particular, we show that the 
algorithms of [10], [18], and [19] can be modified to give similar approximation 
ratios for MIN-POWER SYMMETRIC CONNECTIVITY. Our main results are 
a fully polynomial 1 + In 2 approximation scheme based on [19] and a more 
practical15/8 approximation algorithm based on [18]. 

Our algorithms have the same approximation guarantees when network nodes 
are located in E3 • In fact, since they work on a graph model of the network, 
our algorithms can be directly applied to more general problem formulations, 
e.g., observing given upper-bounds on the transmission range of each node 
and/or taking into account obstacles that completely block the communication 
between certain pair of nodes. 

In Section 4 we address the related MIN-POWER SYMMETRIC UNICAST prob­
lem, which, for given source and destination nodes, s, t E V, asks for a sequence 
v0 = s, v1, ••• , Vk = t of nodes and transmission ranges r( v;), i = 0, ... , k, under 
which all bidirectional links ViVi+J are established. We show that MIN-POWER 
SYMMETRIC UNICAST can be solved efficiently by a shortest-path computation 
in an appropriately constructed graph. 

1.1. Related Work 
Previous research on symmetric connectivity has addressed only the objec­

tive of minimizing the maximum node power [9, 11]. The objective of 
minimizing the total power EvEV r~<(v) has been addressed under the related 
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asymmetric connectivity model, in which unidirectional links give raise to a 
directed graph on V. Four problems have been studied under this model. 

First, the AsYMMETRIC UNICAST problem requires establishing a minimum 
power directed path from a source s to a destination t, and is easily solved in 
polynomial time by shortest-path algorithms. 

Second, the AsYMMETRIC BROADCAST problem [14, 17] requires establishing 
a minimum power arborescence rooted at a given vertex s. Clementi et al. [4] 
prove that ASYMMETRIC BROADCAST is NP-Hard when the nodes are in KJ. 
The best known approximation algorithm for ASYMMETRIC BROADCAST (16], 
based on computing a minimum spanning tree, has performance ratio of at 
most 12 when the nodes are in E 2• 

Third, in ASYMMETRIC MULTICAST, one is given a roots and a set of ter­
minals T, and the goal is to establish a minimum-power branching rooted at s 
which reaches all vertices ofT. As a generalization of ASYMMETRIC BROAD­
CAST, ASYMMETRIC MULTICAST is also NP-Hard, and based on the work of 
[16], it is immediate that a minimum Steiner tree would give an approximation 
ratio of 12p, where pis the approximation for Steiner tree in graphs (the best 
result known at this moment, given in [13], is p = 1 + ! In 3 + e:). 

Fourth, in the COMPLETE RANGE ASSIGNMENT problem the objective is 
establishing a strongly connected subgraph of V. Kirousis, Kranakis, Krizanc, 
and Pelc (7] prove that COMPLETE RANGE ASSIGNMENT in E3 is NP-Hard 
and, based on the minimum spanning tree, give a 2-approximation algorithm. 
As opposed to the ASYMMETRIC BROADCAST approximation of (16], the COM­
PLETE RANGE ASSIGNMENT approximation of (7] is valid in arbitrary graphs 
(that is, the distance between two points could be arbitrary, not necessarily Eu­
clidean). Clementi, Penna, and Silvestri [5] give an elaborate reduction proving 
that COMPLETE RANGE ASSIGNMENT in E2 is also NP-Hard. 

The power for the asymmetric CoMPLETE RANGE AssiGNMENT can be twice 
less than the power for MIN-POWER SYMMETRIC CONNECTIVITY as illustrated 
by the following example in which "' = 2. The terminal set (see Figure 1) 
consists of n groups of n + 1 points each, located on the sides of a regular 
2n-gon. Each group has 2 terminals in distance 1 of each other (represented 
as thick circles in Figure 1) and n - 1 equally spaced points (dashes in Figure 
1) on the line segment between them. It is easy to see that the minimum 
range assignment ensuring asymmetric connectivity assigns power of 1 to the 
one thick terminal in each group and power of e:2 = {1/n)2 to all other points 
in the group. The total power then equals n + 1. For symmetric connectivity 
it is necessary to assign power of 1 to all but two thick points, and of e:2 to the 
remaining points, which results in total power of 2n- 1 - 1/n + 2/n2 • 

2. Preliminaries 
We begin by formulating the graph-weighted extension of MIN-POWER SYM­

METRIC CoNNECTIVITY. For completeness, we then show that computing an 
MST gives a 2-approximation for this extension; this result is implicit in the 
work of Kirousis, Kranakis, Krizanc, and Pelc [7]. 
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Figure 1. Total power for the asymmetric COMPLETE RANGE ASSIGNMENT can be 
twice less than the total power for MIN-POWER SYMMETRIC CONNECTIVITY (11. = 2). 
(a) Minimum range assignment ensuring asymmetric connectivity has total power 
n + n2e:2 = n + n2~ = n + 1. (b) Minimum range assignment ensuring symmetric 
connectivity has the total power (2n- 2) + (n2 - n + 2)e:2 = 2n- 1- ~ + ~-

Let G = (V, E, c) be an edge-weighted graph. For a spanning tree T = (V, F) 
of G, let rr(v) = max,.lu.vEF c(uv). Define the power-cost ofT by 

p(T) = L rr(v) 
vEV 

Since any connected graph contains a tree, an equivalent formulation of MIN­
POWER SYMMETRIC CONNECTIVITY is to ask for a spanning tree with mini­
mum power-cost in the complete graph on V with edge costs given by c(uv) = 
lluvll". Thus, MIN-POWER SYMMETRIC CONNECTIVITY is a special case of the 
following problem: 

MINIMUM POWER-COST SPANNING TREE: Given a connected edge-weighted 
graph G = (V, E, c), find a spanning tree T of G with minimum power-cost. 

All our algorithms work for the this graph-weighted extension of MIN-POWER 
SYMMETRIC CONNECTIVITY. From now on, we only use this formulation. 

Theorem 1 Computing an MST with respect to c gives a 2-approximation for 
MIN-POWER SYMMETRIC CONNECTIVITY. 

Proof: Let c(T) = Eu.vEF c(uv). Claim 2 of Theorem 3.2 of [7] is equivalent 
to 

p(T) = L max c(uv) :5 L L c(uv) = 2c(T) (1) 
uiuvEF 

vEV veV uluvEF 

Let u be a vertex incident to an edge of maximum cost. If we root the tree 
T at u, and use v' to denote the parent of v in T, since rr(v) ~ c(vv') we 
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Figure 2. Tight example for the performance ratio of the MST algorithm (K = 2). 
(a) The MST-based range assignment needs total power 2n. (b) Optimum range 
assignment has total power n(l + c)2 + (n- l)c2 + 1 -+ n + 1. 

conclude that p(T) ~ c(T). Therefore, if MST is the minimum spanning tree 
with respect to c and OPT is the tree with minimum power-cost, we have 

p(MST) ~ 2c(MST) ~ 2c(OPT) ~ 2p(OPT) 

• 
The following example shows that the ratio of 2 given in Theorem 1 is tight. 

Consider 2n points located on a single line such that the distance between 
consecutive points alternates between 1 and e < 1 (see Figure 2) and let K- = 2. 
Then the minimum spanning tree MST connects consecutive neighbors and has 
power-cost p(MST) = 2n. On the other hand, the tree T with edges connecting 
each other node (see Figure 2(b)) has power-cost equal p(T) = n(1 +e)2 + (n-
1)e2 + 1. When n-+ oo and e-+ 0, we obtain that p(MST)/p(T)-+ 2. 

3. k-Restricted Approach to Symmetric 
Min-Power Connectivity 

We first give definitions of k-restricted decompositions and prove an upper 
bound on the power-cost of such decompositions. Then we will describe approx­
imation algorithms whose approximation ratios follow from the approximation 
ratios of Steiner tree algorithms in graphs. 

3.1. k-Restricted Decompositions 
A k-restricted decomposition Q of the tree T is a partition ofT into subtrees 

T1, T2, •.. , Tp each containing at most k vertices such that each edge of T 
belongs to exactly one subtree T;. The power-cost p(Q) of Q defined to be the 
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sum of power-costs of all its elements: 

p(Q) = L p(T;) 
T;EQ 

Theorem 2 For any weighted tree T and any k ~ 1, there is a 2k-restricted 
decomposition Q ofT such that p(Q) ::; (1 + 1/k)p(T). 

Proof: Without loss of generality we can assume that all edge costs are differ­
ent. Let the endpoints r and s of the heaviest edge h of T be the roots of T, 
which means that two subtrees ofT- {h} are rooted at rands, respectively. 
Then each vertex v ofT, except r and s, has a unique parent. We call the 
vertices adjacent to v, other than the parent of v (if defined), the children of v. 
For each vertex v of T, we sort the edges connecting v to its children in increas­
ing order of their cost. For the most costly such edge e, we define next( e) = f, 
where f is the edge connecting v to its parent (if v has a parent), or f = h if v 
does not have a parent. For some other edge e from v to one of its children, we 
define next( e) = e', where e' is the next edge (in the sorted order above) from 
v to one of its children. 

We now construct a rooted directed binary (with arcs going toward the root) 
tree B as follows. The vertices of B are the edges of T and the root of B is h, 
the heaviest edge ofT. The arcs of B consists of arcs ( e, next( e)) for each edge 
e ofT. It is immediate that every vertex e = uv of B has at most two incoming 
arcs. Indeed, if e = rs, then only the most costly edge ofT\ {e} incident tor 
and the most costly edge ofT\ { e} incident to s, have e as a parent. The other 
edges ofT e = uv have vas the parent of u (the other case being symmetric), 
and the arcs coming into e are only the most costly edge of T \ { e} incident 
to u and the edge in between v and another child of v which precedes e in the 
sorted order above. Note that each vertex of B has cost since it is an edge of 
T. 

Let Bi be the set of vertices of B in distance i from the root h. There is an 
integer 0 $ l < k such that Lj 1 j=.l (mod k) c(Bj) $ ic(B) = ic(T), and let 
B = Uj 1 j=.l (mod k)Bj. Removal of every edge outgoing from B decomposes 
B into subtrees Q; corresponding to subtrees T; ofT. The number of vertices 
in Qi is at most 2k - 1 since Q; is a binary tree of height at most k- 1. 
Therefore, each T; has at most 2k vertices. We denote by Q the 2k-restricted 
decomposition of T into T; 's. 

Let e; = (v;, u;) be the root of Q; (note that e; E B) and, if ei '# (r, s), 
rename v; and u; such that u; is the parent of v; in T. By the construction of 
B, we have that maxu 1 uu;EE(T;) c(uu;) = c(e;). Then we have: 

p(T;)::; c(e;) + L max c(v,u). 
vEV(T;)\{u;} (v,u)EE(T) 

For i '# j' the sets v m) \ { U;} and v (Tj) \ { Uj} are disjoint. We conclude that 
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p(Q) LP(Ti) 

< L max c(v,u) + Lc(e;) 
vEV(T) (v,u)EE(T) i 

:5 p(T) + c(B) 
1 

:5 p(T) + kc(T) 

1 < (1 + k)p(T). 

• 
A subtree of T with exactly three edges and two edges is called a fork. So 

a 3-restricted decomposition Q ofT consists of forks and individual edges. We 
have: 

Theorem 3 For any weighted tree T, there is a 3-restricted decomposition Q 
ofT such thatp(Q) :5 ~p(T). 

Proof: By induction on n, the number of vertices of the tree, with the base 
case obvious. Assume uv is the minimum cost edge in the tree (with c(uv) =e), 
and let T1 and T2 be the two trees obtained from T after removing the edge 
uv. Let d(xy) = c(xy)- c(uv), for any edge xy in T1 or in T2. 

By induction, there are 3-restricted decompositions Q1 of T1 and Q2 of T2 

such that p'(Q1 ) :5 ~p'(T1 ) and p'(Q2 ) :5 ~p'(T2 ). We also assume that Q1 and 
Q2 are "fork-maximal", in the sense that no two edges can be merged in fork 
(such a merging decreases the power-cost). We count the number offorks in Q1 

and in Q2 . Assume T; has n; vertices, and Q; has k; forks and s; single edges. 
Then ni = 2ki + Si + 1. As Q; is fork-maximal, we also have that s; :5 2ki + 1. 
Also, n = n1 + n2. Let Q be the partition ofT obtained from Q1, Q2, and uv. 
Then we have: 

while 
p(T) = p'(Ti) + p'(T2) +en. 

So it suffices to show that 3k1 + 2s1 + 3k2 + 2s2 + 2 :5 ~n, which follows 
immediately from the the equations on n, n;, and s; above. • 

3.2. Approximation Algorithms 
Based on the results of [2) or [10) and Theorem 3, it is immediate there exists 

an algorithm with the approximation ratio pa < ~ + f. 
Let Pk be the supremum, over all trees T, of the ratio of the power-cost of 

the minimum power-cost k-restricted decompositions to the power-cost ofT. 
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Greedy Algorithm 
Input: A complete graph G = (V, E, cost) with edge costs 
Output: A 3-restricted decomposition connecting all vertices in S 
T f- MST(G) 
Hf-G 
Repeat forever 

Find a triple K with the maximum g = gainr(K) 
If g :$ 0 then exit repeat 
H f- HUK 
V f- V/K 

Output H 

Figure 9. The Greedy Algorithm 
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Theorem 2 implies that Pk :$ 1 + [li k], Theorem 3 implies that p3 :$ 7/4, and 
(1) together with the example in Figure 2 imply that p2 = 2. In order to obtain 
better approximation ratios we can approximate the minimum power-cost k­
restricted decompositions. 

In Steiner trees, k-restricted decompositions correspond to k-restricted Steiner 
trees. Below we translate the Steiner tree terms into the language of decompo­
sitions. 

For a set of vertices V, denote by mst(V) the minimum cost of a spanning 
tree. For a tree H connecting some vertices from V, we denote V / H the set of 
vertices V after contracting of H, i.e., collapsing all vertices of H into a single 
vertex. Let gain of a subtree H, gain(H), be 

gain( H) = 2mst(V) - 2mst(V/ H) - p(H) 

It has been proved in [18] that the Greedy Algorithm (see Figure 3) has ap­
proximation ratio at most arithmetic mean of P2 and P3· Thus we have: 

Theorem 4 The Greedy Algorithm for MIN-POWER SYMMETRIC CoNNEC­
TIVITY {see Fig. 3} has approximation ratio of 15/8. 

It has been shown in [19] that the k-restricted Relative Greedy Algorithm 
(see Figure 4) has approximation ratio at most 1 +In 2 + f: if limk-+oo Pk = 1. 

Theorem 5 The k-restricted Relative Greedy Algorithm for MIN-POWER SYM­
METRIC CONNECTIVITY (see Fig. 4) has approximation ratio of 1 +in 2 + f:. 

4. Minimum Power Symmetric U nicast 
In this section we reformulate MIN-POWER SYMMETRIC UNICAST as a graph 

problem, and then reduce the latter problem to a single-source single-sink 
shortest-path computation in an appropriately constructed graph. 
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k-restricted Relative Greedy Algorithm (k-RGA) 
Input: A complete graph G = (V, E, cost) with edge costs and an integer 
k ~ lVI 
Output: A k-restricted decomposition connecting all vertices in S 
T +- MST(G) 
Ht-G 
Repeat forever 

F. d k t . t d t K 'th th . . - p(H) m a -res nc e ree Wl e mmtmum r- 2mst(V)-2mst(V/H) 
If r 2:: 1 then exit repeat 
Ht-HUK 
V +- V/K 

Output H 

Figure 4. The k-restricted Relative Greedy Algorithm (k-RGA). 

MIN-POWER SYMMETRIC PATH IN GRAPHS: Given a graph G = (V, E, c) with 
costs on edges a source s E V and a destination t E V, find an s - t path in G 
of the minimum power-cost. 

The following example in the Euclidean plane shows that a straightforward 
application of Dijkstra's algorithm does not work, i.e., a minimum cost s- t 
path does not always have minimum power-cost. Consider a network consisting 
of three nodes, 8 = {0,3), t = (4,0), and x = {0,0), and assume"'= 2. Then 
the two 8- t paths, namely, (8,t) and {s,v,t), have the same cost of 25 but 
different power-costs: the power-cost of (s, t) is 25+25=50 while the power-cost 
of (s,v, t) is 9+16+16=41. 

Our solution of MIN-POWER SYMMETRIC UNICAST first modifies the given 
graph G = (V, E, c) and then applies Dijkstra's algorithm to the resulted 
directed graph G'. We now describe the construction of the directed graph 
G' = (V',E',c'). 

For any u E V, we sort all adjacent vertices { v1 , ••• , vk} in ascending order 
of costs of edges connecting them to u, i.e., c{u, vi) ~ c(u, ViH)· The vertex v 
is replaced with a gadget (see Figure 5{a)) as follows: 

(i) each edge (u, vi) is subdivided by a vertex [u, Vi] 

(ii) for each u, we connect all vertices [u, vi]'s by two directed paths: 
P1 = (u, [u, v1], ... , [u, Vk-1], [u, Vk-1]) and 
P2 = ([u, Vk-1], [u, Vk-1], ... , [u, v1], u). 

(iii) the costs of the arcs on path P1 are c(u,vt), c(u,v2)- c(u,vt), ... , 
c(u, v~c) - c(u, v~c-d, respectively, and the cost of all arcs on the path 
P2 is zero. 

Finally, each edge (u, v) of G is replaced in G' with the two arcs ([u, v], [v, u]) 
and ([v, u], (v, u]), both of cost c(u, v). Figure 5(b) shows the graph G' for the 
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v 

• 
9 

[s,v] 

9 

[v,u1] [v,s] 

9 

v 

(a) (b) 

Figure 5. (a) A vertex v adjacent to k vertices U1, ... , Uk via edges of cost 
c1 , c2 , .•• , Ck and a gadget replacing v with a bidirectional path. The solid edges 
of the path (v, [v, u2]), ([v, u2]), [v, ua], ... , ([v, Uk-d, [v, uk] have cost c1, c2 - c1, ... , 
Ck- Ck-l, respectively. The dashed edges have zero cost. (b) The graph G' for the 
example below. Thick edges belong to the shortest path corresponding to the path 
(s, v, t) in G. 

three-node examples= (0,3), t = (4,0), and x = (0,0), with""= 2. It is easy 
to see that a shortest s-t path in G' corresponds to a minimum power-cost s-t 
path. 

Using the Fibonnaci heaps implementation of Dijkstra's algorithm [6] to 
compute the shortest s-t path in G', and observing that IV' I = O(IEI) and 
IE' I= O(IEI), we obtain the following 

Theorem 6 SYMMETRIC UNICAST is solvable in time O(IEilog jVI). 
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