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Abstract We derive new algorithms for solving strongly nonsingular Cauchy-like 
systems of linear equations Cx = ii in O(n log2 n} running time, where F 
is a field and ii E Fnxl is a vector, C E Fnxn is a strongly nonsingular 
Cauchy-like matrix. Morf, Bitmead and Anderson presented the effi­
cient algorithms to solve strongly nonsingular Toeplitz-like equations of 
linear systems by using the Recursive Triangular Factorization in 1980. 
Recently, Pan and Zheng extended the Recursive Triangular Factoriza­
tion to solve Cauchy-like systems with the complexity of 0( n log3 n) 
operations. This is the best known complexity bound by using the 
direct approach of Recursive Triangular Factorization in Cauchy-like 
cases. However, these algorithms are still slower than the well known 
algorithms with the asymptotic bound of O(nlog2 n) operations, which 
have been proposed by the means of reducing Cauchy-like matrices into 
Toeplitz-like matrices. In our present paper, we will modify the Re­
cursive Triangular Factorization so that the complexity bound of the 
direct recursive approach can be decreased to O(nlog2 n) operations. 
This matches the asymptotic bound without transforming to Toeplitz­
like matrices. Our improvement of the direct recursive approach is by 
a factor off log n due to changing the original vectors which expressed 
in the given Cauchy-like matrix into the special vectors, where the en­
tries are unit roots. The applications of structured matrices include 
Nevanlinna-Pick tangential interpolation problems. 
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1. Introduction 
Computations with displacement structured matrices such as Cauchy 

(or-like), Vandermonde (or-like) and Toeplitz (or-like) have a variety of 
applications to science and engineering, for example, conformal mapping, 
tangential Nevanlinna-Pick interpolation, solution of integral equations, 
rational interpolation, polynomial interpolation and evaluation (cf. [25], 
[24], [23], [4], [19], [22], [18], [14], [12], [16] and [15]). 

By exploiting the displacement structure, we can save running time 
an<! memory spaces dramatically in solving Cauchy-like systems of linear 
equations. Instead of working on the entries of a matrix itself, we use its 
generators in our computations. Many matrices can be re-constructed 
through their generators with the displacement operators [11], [1], [10] 
and [9]. The displacement representation provides many opportunities 
to accelerate our computations. 

Let F be a field and s denotes a vector. We also denote AMv(n) 
as the complexity of the product of a matrix M E Fnxn by a vector 
v E Fnxl. Moreover, Let us work over a field F which supports Fast 
Fourier 'fransforms of length n. 

To solve n x n strongly nonsingular Toeplitz-like equations of lin­
ear systems Tx = v, where T E Fnxn is a Toeplitz-like matrix, Morf, 
Bitmead and Anderson (see e.g. [13] and [2]) applied the Recursive 
'friangular Factorization to design fast algorithms with complexity of 
O(n log2 n) arithmetic operations (hereafter, we refer to arithmetic op­
erations as ao). These algorithms are faster than Gaussian Elimination 
algorithms, which run O(n3) times. 

The efficient techniques of the Recursive 'friangular Factorization have 
been extended recently ton x n Cauchy-like matrices by Pan and Zheng 
[20] with complexity of 

Ac-1 ii(n) = O(Acv(n) log n) = O(n log3 n), (1.1) 
like 

where Cii1e denotes as the inverse of a Cauchy-like matrix and Acv(n) = 
0( n log2 n) denotes as the complexity of multiplication of an n x n 
Cauchy matrix by a vector. O(n log3 n) is the best known bound by 
using direct recursive approach to solve Cauchy-like systems. However, 
these algorithms are still slower than the well known algorithms with 
the asymptotic bound of O(nlog2 n) operations, which have been pro­
posed by the means of reducing Cauchy-like matrices into Toeplitz-like 
matrices. Due to the difference structure between the Cauchy-like ma­
trix and Toeplitz-like matrix, transitions from Cauchy-like matrices into 
Toeplitz-like matrices will lose the Cauchy-like extension of the Recur­
sive 'friangular Factorization from the Toeplitz-like case. Moreover, the 
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transitions which used Vandermonde matrices may produce errors in nu­
merical computations because of the ill-condition of the Vandermonde 
matrices [5] (except the Fourier matrices). In our present paper, we will 
modify the Recursive Triangular Factorization so that the complexity 
bound of the direct recursive approach can be decreased to 0( n log2 n) 
operations. This matches the asymptotic bound without transforming 
to Toeplitz-like matrices. 

We propose the new Cauchy-like extension of the Recursive Triangu­
lar Factorization, which is inferior to the best known direct recursive 
approach. 

By observing from (1.1), the complexity of the Recursive Triangular 
Factorization depends on the complexity of the products of a Cauchy ma-

( ) n-1 
trix by a vector. Let e·~f· .. 0 be a Cauchy matrix. It is well known 

1 1 Z,J= 

that a Cauchy matrix times a vector can be computed in 0( n log2 n) 
ao (see [8]}. If the entries of the vectors e = eo,···, en-1 and f = 
Jo, .. ·,fn-1 are n-th roots of 1 and -1, it costs only O(nlogn) ao to 
compute their product. This property motivates us to change the origi­
nal vectors which expressed in generalized Cauchy-like matrices into the 
special vectors, where the entries the vectors are unit roots. 

Due to the new matrix preserves the same Cauchy-like structure, the 
computations of finding the inverse of the new matrix is faster than the 
computations of finding the inverse of the original given matrix by using 
the Recursive Triangular Factorization. This new process of modifying 
the Recursive Triangular Factorization can be used to solve strongly 
nonsingular Cauchy-like systems of linear equations in the complexity of 

Ac-:I ii(n) = O(Ac.v(n) log n) = O(n log2 n), (1.2) 
hke 

where Ac.v(n) = O(n logn) denotes the complexity of multiplication 
of ann x n special Cauchy matrix by a vector. (we refer a Cauchy ma-

( )
n-1 

trix e·~f· .. 0 as a special Cauchy matrix if the entries of the vectors 
I J Z,J= 

e, fare roots of unity). Our improvement for the direct recursive ap­
proach is by a factor off log n, versus running time of the best known 
algorithms for the direct recursive approach. In fact, Heinig [10] has pro­
posed to change the vectors into unit roots by applying Vandermonde 
linear solver. Computations with Vandermonde matrices will create the 
numerical instabilities due to the ill-conditions of Vandermonde matri­
ces (cf. [5]). Our algorithms avoid the computations of the solutions of 
Vandermonde linear systems. The complexity bound of our algorithms 
reaches to the asymptotic bound. 
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We organize our paper as follow. In section 2, we present our new 
representation of the inverse of Cauchy-like matrices. In section 3, we 
recall the basic algorithms of the Recursive Triangular Factorization. In 
our final section, we modify the Recursive Triangular Factorization to 
solve Cauchy-like linear systems of equations. Let us work over a field 
F which supports FFT and follow some lines of [20] and [21]. 

2. New Expression of the Inverse of a 
Cauchy-like matrix 

It is fast for us to work with the Cauchy-like matrices with special 
vectors because of lowering our computation complexity. We will show 
that the vectors in Cauchy-like matrices can be reduced to special vec­
tors. The new representation of Cauchy-like matrices will be given in 
this section. Let us review some well known definitions. 

2TIA nET · 
Definition 1 Let a = e- n , (3 = e n • The elements O:i = o:Z, 
(3j = (3i, for i, j = 0, ... , n - 1 are n-roots of 1 and -1 respectively. 

Definition 2 (cf.{17}) We denote wr as the transpose of a matrix or 
a vector W. The inverse of a matrix M is denoted as M-1• Let D(x) E 
Fnxn be a diagonal matrix with the diagonal entries x = xo, ... , Xn-1· 

Let c(i, v) = (t.~v· )~~ 10 E Fnxn denoted as a Cauchy matrix. 
1 J ,,J= 

Let us recall some well known results as follows: ( cf. [8]) 

Lemma 1 Let w, u and v be triple vectors, where the elements Ui E u 
and Wj E w , are not equal in a field F, for i,j = 0, 1, ... n- 1. Let 
C(ii., w) be an n x n Cauchy matrix. Then the computations of the 
product x = C(ii., w)v cost 

Acv(n) = O(nlog2 n) (2.1} 

ao. If the elements of the vectors u and w are roots of unity, then the 
complexity can be reduced to 

Ac.v(n) = O(nlogn) (2.2} 

ao. 

By following [6], and [9], we have the following definitions. 

Definition 3 A linear operator ~[E,F](-) : Fnxn --7 Fnxn is defined 
to map each matrix C E Fnxn to its displacement EC - CF, where 
E E Fnxn,F E Fnxn are given matrices. The operator ~[E,F](·) is 
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called the symmetric Sylvester operator. The rank of the image, r = 
rank(EC- CF) is called [E, F]-displacement rank of the matrix C for 
r << n. Let E = D(a) E Fnxn, F = D(b) E Fnxn and Gr,Hr E Fnxr 
be matrices. A matrix C E Fnxn is called a Cauchy-like matrix if it 
satisfies 

~[D(ii),D(b)](C) = D(a)C- CD(b) = GrH'f', {2.3) 

where the pair of the matrices Gr, Hr E Fnxr are called the ~[D(ii),D(b)]_ 
generators ofC with length r. We denote this matrix as CarHr(a,b) or 
clike· 

It is easy to realize the following well known relationships of the 
Cauchy and Cauchy-like matrices (cf. [~p. We obs~rve that ~[D(s),D(ii)] 
C(s, u) = D(s)C(s, u)-C(s, u)D(u) = llr, where IT= (1, ... , 1). Thus 
it follows. 

Lemma 2 let c(s, u) be ann x n Cauchy matrix with the vectors s and u 
having 2n distinct values in F, then it has the [D(s), D(u)]-displacement 
rank equal to 1. 

Let the Sylvester operator, ~[E,F](·) : Fnxn -t Fnxn, act on the 
linear space Fnxn with the empty kernel. The Cauchy-like matrices can 
be completely reconstructed as follows: 

Proposition 1 {[7}) Let CakHk(v,w) E Fnxn be a Cauchy-like matrix 
associated with the Sylvester operator ~[D(ii),D(w)](·) : Fnxn -t Fnxn and 
generators Gk = [§1, ... , gk], Hk = [h1, ... , hk] as defined in Definition 
3. Then the Cauchy-like matrix CakHk (v, w) can be expressed as 

{2.4) 

where C(v, w) is a Cauchy matrix and k << n. 

By Combining lemma 1 and proposition 1, we obtain the following 
results: 

Corollary 1 Let v E Fnxl be a vector and CarRr(d,p) E Fnxn be a 
Cauchy-like matrix. Then the product fl = CarHr ( d, p)v can be computed 
zn 

Aclikev(n) = O(rAcv(n)) = O(rn1og2 n) {2.5) 

ao. Furthermore, if the elements of the vectors d and p are roots of 
unity, then the complexity can be accelerated to 

Ac,ikev(n) = O(rAc.v(n)) = O(rnlogn) {2.6) 
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ao. 

Theorem 1 Let 6,[E,F)(·) : Fnxn ~ Fnxn be the Sylvester operator. Let 
Ca .. H .. (z,x), CabHb(x,fj) and CadHd(Y,w) denote the Cauchy-like rna­
trice~ acc?rding to Definition 3 with 6_[D(i),D(~)l(c:_a"H"(z,x)) = GaH'!, 
6,(D(x),D(y)J(CabHb(x,y)) = Gblt{' and 6,(D(y),D(w)J(CadHd(Y,w)) = 
Gdlf[ respectively, where the matrices Ga,Ha E Fnxa, Gb, Hb E Fnxb, 
Gd, Hd E Fnxd are generators repectively, for a, b, d < < n, and all val­
ues of Xi, Yi• Zk, Wm are all distinct in a field F. Then the product 
matrix 

Ca.R.(z,w) =Ca .. H .. (z,x)CabHb(x, y)CadHd(y, w), (2. 7) 

is a Cauchy-like matrix with the [D(z),D(w)]-displacement ranks (s = 
a + b + d) such that 

6.1D(z),D(w)l(Ca.H.(z,w)) = GsHJ, {2.8} 

where the pair of matrices G8 , H8 are [D(z),D(w)]-generators of the 
size n x s, 

Gs = [Ga,Ca .. H .. (z,x)Gb,Ca .. H .. (z,x)CabHb(x,y)Gd], 

Hs = [Ca .. H .. (y, w )T CabHb (x, y)T Ha, CadHd (y, w )T Hb, Hd]· 

Proof. We have 6_(D(z),D(w)J ( Ca.H. (z, w)) = GaH'! CabHb (x, fj) Ca .. H .. 
(y,w) +Ca .. H .. (z,x) GbH'[CadHA1J,w)+Ca .. H .. (z,x) CabHb (x,y) GdHJ 
= GsH'{, where s = a+b+d and Gs = [Ga,Ca .. H .. (z,x)Gb,Ca .. H .. (z,x) 
CabHb (x,y)Gd], Hs = [Ca .. H .. (Y,w)TCabHb(x,y)THa, CadHd(Y,w)THb, 
Hd]· Q.E.D. 

Theorem 2 Let Ca. H. (e, j) be an n x n generalized Cauchy-like ma­
trix associated with the symmetric Sylvester operator 6,[D(e),D(i)) ( ·) : 

Fnxn ~ Fnxn of {2.3) such that 6,(D(e),D(ill(Ca.H.(e,j)) = GrH'f. 
Let C(P, e), C(j, ij) be a pair of Cauchy matrices, where ei, fi,Pk, ql are 
all distinct. Then we have the following matrix equations 

Ca. H. (e.ir1 = c(j, ij)Ca.+2H•+2 (P, ii.)-1C(fi, e), {2.9) 

where Ca.+2H.+2(p,ij) is a Cauchy-like matrix associated with [D(P), 
D( ij) ]-displacement generators, 

Gr+2 = [i, C(P, e)Gr, C(p, e)Ca,H, (e,j)i], 
- - T - - r- - - T -Hr+2 = [C(f,q) Ca.H.(e,f) l,C(f,q) Hr,lJ, 
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for F = (1, ... , 1). Furthermore, the complexity of our computations is 
O(nr log2 n) arithmetic operations. 

Proof: Choose the [D(p), D(e)], [D(j), D(q)]-displacement rank a, d 
of the Cauchy-like matrices CaaHa (p, e), CadHd (f, q) respectively equal 
to 1; i.e., a = d = 1. We now have C(p, e) = CaaHa (p, e), C(j, ij) = 
CadHd (], ij) from the lemma 2. From the theorem 1, it follows that 
C(p, e)CarHr (e,j)C(j, q) = Car+2Hr+2 (p, q). Substitute this matrix 
equation i_!ltO th~ trivial m~trix identity CarHr (e, f) = C(p, e)-1C(i5, e) 
CarHr(e,f) C(f,q) C(f,q)-1 and obtain equations Ca.n.(e,f) = 
C(p, e)-1Car+ 2Hr+2(p, q)C(j, ij)-1. By inverting both sides ofthis equa­
tion, we immediately obtain the equation (2.9). The complexity is im­
mediately followed by the corollary 1. Q.E.D. 

Theorem 3 (cf. {1]) Given the [D(m), D(n)]-displacement generators 
Gu, Hu with displacement rank u of a Cauchy-like matrix Ca,.n)m, n), 
x < u < n, it requires O(u2n) operations to compute the D[(m), (n)]­
displacement generators Gx, Hx of the Cauchy matrix Ca.,H., (m, n). 

Corollary 2 Let the matrix Car+2Hr+ 2 (p, q) be the Cauchy-like matrix 
as in Theorem 3. Then we use O(r2n) to compute the new generator 
Gr1 and Hr1 for the matrix Ca 1 H 1 (p, q), where r1 ~ r < r + 2 < n. 

r r 

Proof. The running time of computing the displacement generators 
Gr1, Hr' is immediately followed by Theorem 3. Q.E.D. 

3. Recursive Triangular Factorization of a 
matrix. 

In this section, we will recall the known method of the Recursive 
Triangular Factorization to a strongly nonsingular matrix (20], (21]. 

Definition 4 A matrix M is strongly nonsingular if all its leading prin­
cipal submatrices are nonsingular. 

Let us denote I identity matrix, 0 denotes a null matrix. Given an 
n x n strongly nonsingular matrix M, we partition the matrix M into 
four n/2 x n/2 blocks, e.g. 

M=( ~ ~ )· (3.1) 

The matrix S is called the Schur complement of A in M and can be 
computed as 

S=F-DA-1B. (3.2) 
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we may write its inverse as 

) . (3.3) 

Let matrices A and S be investable. We can continue this process 
recursively for the submatrices A and S. Based on the following propo­
sitions, we may do the factorization to all leading principal submatrices, 
1 x 1, 2 x 2, 4 x 4, ... , n x n. The total numbers of the steps for the Recur­
sive Triangular Factorization is r1og2 n 1· Each step of the computations 
cost matrices multiplications and subtractions. 

Proposition 2 {[20}, {21}} If M E Fnxn is matrix with leading princi­
pal submatrices being nonsingular, so are A and S. 

Proposition 3 {[20}, {21]} Suppose M is a matrix with leading prin­
cipal submatrices being nonsingular and write S as (3.2). Let Mt be a 
leading principal submatrix of S and let S1 denote the Schur complement 
of M1 inS. Then s-1 and S!1 are located in the southeastern blocks of 
M-l. 

Here is the algorithms of the Recursive Triangular Factorization for 
inversion. 
Algorithms 3.1. Recursive Triangular Factorization for inversion 
Input: an matrix M E Fnxn. 
Output: the inversive matrix M-1. 

Computations: 
1. Use Algorithms 3.1 Compute A-1 as (3.1). 
2. Compute the Schur complementS= F- DA-1 B. 
3. Use Algorithms 3.1 to the inverse matrix s-1 

4. Compute M-1 from (3.3). 

4. Modified Recursive Triangular Factorization 
to a Cauchy-like matrix 

In this section, we will describe the techniques of the modified Re­
cursive Triangular Factorization to a Cauchy-like matrix. As we can see 
from the equation (1.2), the complexity of the Recursive Factorization 
depends on the complexity of a Cauchy matrix by a vector. It needs 
only O(nlogn) ao to compute a special Cauchy matrix times a vector. 
It motivates us to modify the process of the Recursive Factorization so 
that the complexity bound of [20] can be improved by a factor of log n. 

Let us recall some well known results first. 
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Lemma 3 ([20}, {21}) Let bj E Fnx1, j = 1, 2, 3, be tree distinct vectors 
and Mi E Fnxn be cauchy-like matrices such that ~[D(b;),D(iiHl)l(Mi) = 
GiH[, where Gi, Hi E Fnxr;, ri < n, for i = 1, 2. The matrix 
M = M1M2 is a Cauchy-like matrix with ~[D(iil),D(ii3>l(M) = GrH'!', 
Gr = [G11M1G2], Hr = [M[H1.H2], Gr, Hr E Fnxr, r = r1 + r2. 
Furthermore, O(r1r2Acv(n)) ao suffice to compute Gr and Hr. 

By multiplying CMtWt (x, b)-1 on both sides of the symmetric Sylvester 
equation for CM1w1 (x,b), it follows: 

Lemma 4 Given ann x n Cauchy-like matrix CM1w1(x,b) as defined 
in definition 3 such that {2.3} holds fort << n, the matrix CM1w1 (x, 'b)-1 

satisfies ~[D(b),D(x)] (CM1w1 (x, b)-1) = GrH'!',where Gr = [CMtWt (x, b)-1 

Mt], Hr = [(CM1w1(x,b)-1)TWt]· 

Fact 1 By Lemma 4, the rank ~[D(ii),D(x)J ( CMtWt (x, b)-1) < < t. 

Lemma 5 {[20}, {21}} Let M and N be n x n matrices which satisfy 
~[D(p),D(ii)] (M) = Gr HT and ~[D(p),D(ij)] (N) = G HT respectively 

1 Tl T2 T2 • 

Then the matrices M + N and M- N are Cauchy-like matrices associated 
with a [D(P), D(q)] -generator of length at most r2 + r1. 

Lemma 6 {[20}, [21]) Let Ca 1 H 1 (ij, q) be an n x n generalized Cauchy­
like matrix associated with the• sy~metric Sylvester operator ~[D(P),D(ii)) 
( ·) : Fnxn -t Fnxn such that ~(D(P),D(ij)] ( Ca 1 H 1 (P, q)) = Gr1 H~. Let 

r r r 

Ca.~H.~(fi,q) = ( ~ ~ ) , 

where A, B, D, F and S as {3.1} and (3.2}. Then the displacement 
ranks of A, B, D, F and S are all less than r1. 

Fact 2 {[3}) Every Cauchy matrix is nonsingular and every square sub­
matrix of Cauchy matrix is also nonsingular. 

Fact 3 {[20]} The matrix Ca.+2Hr+2(P, q) as in Theorem 2 is a strongly 
nonsingular matrix. 

Now let us describe the complexity of the modefied Recursive Trian­
gular Factorization to Cauchy-like matrices. 

Theorem 4 The arithmetic complexity of the solution of a strongly non­
singular generalized Cauchy-like equations is bounded by O(nr2 log2 n) 
operations. 
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Proof. Let v be a given vector and CarHr (e, f) E Fnxn be a given 

generalized Cauchy-like matrix satifies ~[D(e},D{i}] ( CarHx (e, f)) = GrH'f.'. 
By the theorem 2, the computations of x = CarHr(e,J)- 1v are equiv­
alent to the computations of x = C(f, q)Car+2Hr+2 (jj, q)-1C(p, e)v. We 
choose the new vectors p, q, where the elements of the vectors are n-th 
roots of 1 and -1, e.g. p=&, iJ.=/3, where ai and /3j of definition 1. Com­
pute the generators of the matrix Gr1 and Hr1 by corollary 2. Then, 
we apply the Recursive Triangular Factorization Algorithms 3.1 to the 
matrix Ca 1 H 1 (&,/3). Partition the matrix into~ x !!2 blocks, 

r r 

A B 
D F ). (4.2) 

where A, B, D, F and S as (3.1) and (3.2). We compute the gen­
erators of A, B, D, F, A-1 , S as (3.2), s-1. This process continues 
until we have the generators of the inverse Ca 1 H 1 ( & , /J) - 1. Finally, 

r r 

we compute X = c(f, ij)Ca IH I(&, /J)-1C(p, e)v. The computations of 
r r 

the generators of Ca, H 1 (&, /J)-1 in each step involve with the multi-
r r 

plications of a special Cauchy matrix times a vector. The complexity 
of O(nr2 log2 n) operations is followed by Corollary 1, 2, Lemma 1 and 
Theorem 2. Q.E.D. 
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