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Abstract A gossiping is a communication primitive in which each node of the 
network possesses a unique message that is to be communicated to all 
other nodes in the network. We study the gossiping problem in known ad 
hoc radio networks, where during each transmission only unit messages 
originated at any node of the network can be transmitted successfully. 
We survey a number of radio network topologies. Assuming that the 
size (a number of nodes) of the network is n we show that the exact 
complexity of radio gossiping in stars is 2n-1, in rings is 2n±O(l), and 
on a line of processors is 3n ± 0(1). We later prove that radio gossiping 
in free trees is harder and it requires at least 3~n - 16 time steps to 
be completed. For free trees we also show a gossiping algorithm with 
time complexity 5n + 8. In conclusion we prove that in general graphs 
radio gossiping requires fl(n log n) time, and we propose radio gossiping 
algorithm that works in time O(n log2 n). 

1. Introduction 
The importance of communication networks and their use on a daily basis 

has been steadily growing over the past few decades. One of the most strik­
ing examples of modern networking technology is the Internet with its diverse 
applications in research, business, education, and entertainment. Mobile radio 
networks [19] are expected to play an important role in future commercial and 
military applications. These networks are suitable in situations where instant 
infrastructure is needed and no central system administration (such as base 
stations in a cellular system) is available. 

There are two important communication primitives used in the process of 
dissemination of information in networks: broadcasting and gossiping. In the 
broadcasting problem, a distinguished source node has a message that needs to 
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be sent to all other nodes. The gossiping is a communication primitive in which 
each node of the network possesses a unique message that is to be communicated 
to all other nodes in the network. The gossiping problem raises naturally both 
in the theoretical as well as more applied setting. It is a part of several mul­
tiprocessor computation tasks, such as global processor synchronization, linear 
system solving, Discrete Fourier Transform, and parallel sorting, e.g.,see [4, 13]. 

Most of the work in the field has been done under the assumption that 
processors can transmit messages of an arbitrary size in a single time step. 
The gossiping problem with bounded (size) messages was previously studied 
in the matching model, e.g., see [3]. In this model during every time step 
nodes organize themselves and exchange information in independent pairs. The 
results presented in (3] include the study of the exact complexity of the gossiping 
problem in Hamiltonian graphs and k-ary trees, and optimal asymptotic bounds 
for general graphs, in the matching model with unit messages. Their paper 
contains also a number of asymptotically optimal results in the matching model 
with messages of arbitrarily bounded size. Another interesting study of the 
gossiping problem with limited size messages in graphs with bounded degree 
can be also find in [12]. 

In this paper we study the gossiping problem with unit messages in known 
ad hoc radio networks. We adopt here a communication model used previ­
ously, e.g., in [1, 14, 6]. A radio network is modeled as an undirected graph 
G = (V,E). The nodes in set V = {v0 , .. ,Vn-d are interpreted as processors 
(transmitter/receiver devices) while undirected edges in set E indicate that ev­
ery neighboring node in the graph is in the transmission range. The processors 
work synchronously. In each time step, any processor can either transmit or 
receive a message. A message transmitted by processor v reaches all its neigh­
bors in the same time step. However, any neighbor w can receive it only if no 
message from another processor reaches it at this time step. Otherwise a colli­
sion occurs and none of the messages is delivered tow. The size of the network 
corresponds to the number of nodes in the underlying graph of connections. In 
what follows we assume that the size of the network is n. 

It is only recently that studies on radio gossiping have been intensified, 
see [7, 9, 10, 15, 11, 16, 17, 18]. However this work is devoted to the case 
when the messages used in the gossiping process can be of an arbitrary size. 
Under this strong assumption Chrobak et al. (9] showed that deterministic 
gossiping can be performed in unknown directed ad-hoc radio networks in time 
O(n312 log2 n). A constructive version of their algorithm was recently proposed 
by Indyk, see [16]. This result was recently improved by Gq,sieniec and Lingas 
[15] for networks with diameter D = n'", for a < 1. They presented an alter­
native gossiping algorithm working in time O(nVDlog2 n). These results show 
that radio networks with a long diameter constitute a bottleneck in determinis­
tic radio gossiping with messages of an arbitrary size. An alternative approach 
to the radio gossiping problem was presented by Clementi et al. in [11]. They 
proposed deterministic gossiping algorithm with running time O{Dd2 log3 n), 
where d stands for the maximum in-degree of the underlying graph of con-
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nections. Chrobak et al. in [10] proposed also a randomized radio gossiping 
algorithm with expected running time 0( n log4 n). A study on oblivious gos­
siping in ad hoc radio networks can be found in [7]. An alternative radio model 
was studied by Ravishankar and Singh. They presented distributed gossip­
ing algorithms for networks with nodes placed randomly on a line [1 7] and a 
ring [18]. 

In this paper we initiate a discussion on gossiping in known radio networks 
with messages of a limited size. In what follows we assume that the messages 
originated in all nodes of the network are unique and they are of the same size. 
Moreover each transmission performed by any node of the network can contain 
only one, a unit, message originated in some node of the network. A similar con­
cept of communication in unknown radio networks with messages of a limited 
size has been recently adopted by Christersson et al. in [8]. Another interesting 
study of randomized multiple communication in unknown radio networks with 
messages limited to O(logn) bits can be found in (2]. 

2. Radio gossiping in stars and rings 
A star of size n is a free treeS= {V,E}, where V = {v0 , .. ,Vn-d and 

E = {(vo,vl), .. ,(vo,Vn-d}. Node vo is called a central node (center) and all 
other nodes form arms of the star. 

Theorem 1 The exact complexity of radio gossiping in stars of size n is 2n-l. 

A ring of size n is a graph R = (V,E), s.t., V = {v0 , .• ,vn-d and E = 
{(v;,V(i+l) modn) :i=O, .. n-1}. 

Theorem 2 The exact complexity of radio gossiping in rings of size n is 2n ± 
0(1). 

Lower bound As in other instances of the gossiping problem also in this case 
every unit message has to be transmitted to all other nodes of the network. We 
say that a delivery occurs at node v at time step t if node v receives a message 
at time step t. We show that during a single time step any communication 
algorithm performs at most ln/2J deliveries. Assume opposite, i.e., at least 
ln/2J + 1 deliveries have occurred. It means that there exist three nodes with 
consecutive labels v;_ 1 , v;, Vi+ I to which some messages have been delivered. 
However this leads to a contradiction since node v; is not able to receive any 
messages when its both (and only) neighbors are in the receiving mode. Finally 
since every node is expecting n -1 deliveries the total number of steps required 
in this case is 2: n(n- 1)/ln/2J 2: 2n- 2. 

Upper bound We show that there exists an algorithm performing radio gos­
siping on a ring of size n in time 2n + 9. The algorithm consists of a number 
of steps. During each step consecutive processors along the ring are grouped 
into alternating pairs, i.e., active (transmitting) pairs alternated with dormant 
(expecting messages) pairs. We place as many as possible alternating pairs on 



196 

the ring assuring that all active pairs are at least at distance 2 apart. Note 
that in the worst case at one point on the ring there may be two active pairs 
at distance 5 apart (if the distance was six we could introduce another active 
pair). We call this phenomenon as a gap, see Figure lb. The pattern of al-

•> b) 

Figure 1. a) 4 consecutive rounds, b) maximum gap 

ternating pairs is fixed however it is rotated along the ring by one position, 
e.g., in clockwise order at the end of each step. Note that two elements of any 
active pair are responsible for transmissions to opposite (clockwise and anti­
clockwise) directions. A round for a node is a number of steps between two 
consecutive clockwise transmissions. If the gap was of size 2 (n is a multiple 
of 4) all rounds would consist of 4 steps, see Figure la. However some long 
rounds can have as many as 7 steps when the gap is of size 5. Since every orig­
inal message has to be transmitted through at most f(n- 1)/21 ::; n/2 nodes 
in clockwise (and anti-clockwise) order and each long round occurs with peri­
odicity at least f(n- 3)/41 ~ n/4- 1, each traversing message can experience 
at most 3 long rounds. Thus the time complexity of radio gossiping in rings of 
size n is bounded by 4 · n/2 + 3 · 3 = 2n + 9. 

3. Radio gossiping on a line 
A line of size n is a free tree L = {V,E}, where V = {v0 , .. ,Vn-d and 

E ={(vi, Vi+l) : i = 0, .. n- 2}. Nodes va and Vn-l are called the left end and 
the right end respectively. 

Theorem 3 The exact complexity of mdio gossiping on a line of size n is 
3n ± 0(1). 

Lower bound To prove the lower bound 3n- 0(1) we will consider a similar 
but easier problem called here a monotonic gossiping. The task is to send all 
original messages only to the nodes being on their right hand side. We will 
need the following definitions. 

Stack-and-knot problem A stack and knot SK(n) is an object that consists 
of a short line of length 4, a knot K, and a stack S of n messages available at 
node v0 , see Figure 2a. A stack-and-knot problem is to move all messages from 
the stack at node v0 to node v3 using radio transmissions with unit messages. 

Lemma 1 The exact complexity of stack-and-knot problem in SK(n) is 3n. 
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Proof: Due to a collision problem during each step of any algorithm we can 
perform at most one successful transmission towards the right end of the knot. 
Thus the process of transmission of n messages from stack S at node v0 to node 
v4 requires at least 3n independent steps. 

Note also that the algorithm with transmission pattern, s.t., node Vi trans­
mits in time step t if (i = t) mod 3, where initial time step t = 0, solves 
stack-and-knot problem in SK(n) in time 3n. 0 

Lemma 2 Monotonic gossiping on a line of size n requires 3n- 6 steps. 

Proof: Let L be a line of size n. Lets split line L into two parts A and B, where 
part A is formed by the left end of L of size n- 3 and part B corresponds to the 
right end of size 3, see Figure 2b. According to Lemma 1 a transmission of all 
(n- 3) messages from part A to the node B3 takes at least 3(n- 3) steps. Note 
that to complete monotonic gossiping the additional three steps are required 
to transmit to B3 messages originated in nodes B1 and B 2 . It means that to 
deliver all messages from the nodes of line L to the node B 3 (which is equivalent 
to monotonic gossiping) we need at least 3(n- 3) + 3 = 3n- 6 rounds. 0 

Corollary 1 Radio gossiping on a line of size n requires 3n - 6 steps. 

Lemma 3 Monotonic gossiping on a line of size n can be completed in 3n- 3 
steps. 

Proof: The algorithm runs in rounds. Each round consists of 3 steps. During 
step i, for i = 0, 1, 2, all nodes with index (j = i) mod 3, for j = 0, .. , n- 1, 
transmit and all other nodes remain silent (expecting messages). Following this 
pattern during each round every node sends one message towards the right end 
of the line. And after n - 1 rounds the monotonic gossiping is completed. 0 

Upper bound We present here a gossiping algorithm with running time 3n + 
0(1) that is a combination of algorithms on a ring and quick pipelining on 
a line. However before we start the presentation we give an outline of two 
simpler algorithms working respectively in 4(n- 1) and 3~n- 3 steps. Note 
that applying the idea of alternating pairs (see section 2, the gap problem does 
not exist here) on a line, each round is of size 4 and the gossiping problem can 
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be solved in 4(n- 1) steps. The efficiency of this algorithm can be improved 
when we notice that gossiping into two directions is required only during initial 
Ln/2J rounds. Afterwards sequences of messages traversing to the left and to 
the right become disjoint. This allows to use monotonic gossiping on both 
of them. Thus the total time of improved gossiping algorithm is bounded 
ln/2J · 4 + Ln/2J · 3-3 S 3!n- 3. 

In what follows we present further improvement showing that monotonic gos­
siping is actually performed on a sparser sequence of messages allowing us to 
achieve a gossiping algorithm with running time 3n + 0(1). The gossiping al­
gorithm works in two phases: Phase 1 and Phase 2. The main goal of Phase 1 
is to move all messages originated in the left half of L to its right half (as far 
as possible) and vice versa. During Phase 1 nodes run a code of two different 
processes. Process 1 is responsible for transmission of original messages in two 
opposite directions. Initially all nodes and then gradually decreasing number of 
central nodes are involved in that process. Process 2 is responsible for efficient 
monotonic gossiping (on a sparse sequence of messages) on both ends of the 
line. During Phase 2 all nodes take part in efficient monotonic gossiping and 
they run the code of Process 3. 

More formally we define sets of pairs (i, t), where i stands for a label of a 
node and t is a number of a time step, as follows: 

• G1 = {(i,t)i(O < t S 2n) and (r1 SiS n- rl)}, 

• G2L = {(i, t)i(12 < t S 2n + 12) and (iS n/2- (r1- 3))}, 

• G2n = {(i, t)i(12 < t S 2n + 12) and (i?: n/2 + (r1- 3))}, 

• GaL = {(i, t)l(2n + 12 < t S 3n + 12) and (i S n/2- r2)}, 

• Can= {(i, t)l(2n + 12 < t S 3n + 12) and (i?: n/2 + r2)}. 

Phase 1 corresponds to sets G1,G2L, and G2R, where pairs in set G1 rep­
resent nodes running the code of Process 1 and pairs in sets G2L and G2R 

represent nodes running the code of Process 2 on the left end and on the right 
end of a line respectively. Similarly Phase 2 corresponds to sets GaL and GaR 
whose elements represent nodes running the code of Process 3 on the left end 
and on the right end of a line respectively, see Figure 3a. 

Phase 1 and Phase 2 run in rounds. Each round of Phase 1 consists of 4 steps 
and each round of Phase 2 consists of 2 steps. During Phase 1 a number of a 
round Tl is defined as rt/41, where tis a current time step. We show later that 
Phase 1 takes at most 2n + 12 steps, i.e., ln/2J + 3 rounds. Similarly, during 
Phase 2 a number of a round r2 corresponds to the value rCt- (2n + 12))/21, 
where t is a current time step. 

The nodes governed by Process 1 execute a fixed pattern of transmissions 
during each round. The pattern is based on values of (t mod 4) and (i mod 4), 
where t is a current time step and i is an index of a node. In contrast Process 
2 and Process 3 have more complex the transmission selection mechanism that 
is based on offset values b, c, d and e, within sets G*, compare with Figure 3b. 
The transmission selection in Process 2 is based on values (b mod 3) in G2L 
and (c mod 3) in G2R as well as the number of an internal step t mod 4 of 



Gossiping with Unit Messages in Known Radio Networks 199 

I 10 
[nn] I, n 

-i·-+- I ~-L fl Rwndr, 

I I I 

[nnj 

!'hue I 

, I I ~ r II R"'ndr, 

! J J I 
r, 1 r, 

a) b) I, '· 
Figure 3. Gossiping on a line: a) Sets G1, G2L, G2n, G3L, and Gan; b) Offset 
calculation. 

round f t/4l. Similarly the transmission selection in Process 3 is based on values 
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Figure 4. One round of Phase 1 
Analysis of Phase 1: Initially each node contains a unit message. This 
message is kept in two copies. One will be send to the left and the other one 
to the right neighbour. The following invariant holds. During an execution 
of one round (four consecutive steps) of Process 1 each node receives two new 
messages: one from its left and one from its right neighbour. It also transmits 
two messages: one message to its right neighbour (received during the last 
round from its left neighbour) and one message to its left neighbour (received 
during the last round from its right neighbour), see middle part in Figure 4. 
Note also that shrinking middle part of the line executing code of Process 1 
after each round leaves always 2 messages on its left and 2 messages on its right 
border. These two messages are later dispatched and transmitted to the end 
of the line by Process 2. 
Both ends of the line are managed by Process 2 as follows. An invariant at the 
beginning of each round states that every third node is empty (starting with 
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Figure 5. One round of Process 2 

the most central one} and all other nodes contain a unit message, see Figure 5. 
During initial 3 steps of each round every node E G2L U G2R receives one 
message from its right neighbour and sends one message to its left neighbour. 
The last step of each round is used to move to the left (right) additional one 
half of messages available at nodes in G2L (G2R). This is to move a pattern 
of empty nodes towards the center of a line in order to maintain a validity of 
the invariant at the beginning of the next round. Note also that at any node 
the execution of Process 2 starts three rounds after the execution of Process 
1 is completed in order to avoid collisions caused by nodes executing codes of 
different processes. In total, Phase 1 consists of ln/2 J + 3 rounds which is 
(ln/2J + 3) · 4:::; 2n + 12 time steps. 

Analysis of Phase 2: The order in which messages are positioned on the line 
L at the end of Phase 1 allows to move them to the end of the line (in each half 
independently) in time 2·ln/2J. This is done by the execution of the algorithm 
used in the proof of Lemma 1 as follows. In each half of L all messages are 
grouped into two disjoint sequences sl and s2 in which consecutive messages 
are at distance 3 apart. In odd steps of Phase 2 the monotonic gossiping 
algorithm is applied on sequence S1 and in even steps on sequence S2 . The 
monotonic gossiping algorithm applied on each sequence requires (and it can 
be completed in) ln/2J steps since this is the distance that has to be traversed 
by the most centrally positioned message and all messages traverse with the 
speed one position per one time step. Thus the total time of monotone gossiping 
performed in Phase 2 is bounded by 2 · ln/2J :::; n. 

Lemma 4 Radio gossiping on a line of size n can be performed in time 3n+ 12. 

Proof: Phase 1 requires :::; 2n + 12 time steps. The partial monotonic gossiping 
in Phase 2 takes time :::; n. Thus the total time complexity is bounded by 
3n + 12. 0 

Theorem 3 follows from Lemma 4 and Corollary 1. 

4. Gossiping in trees 
In this section we discuss the time complexity of the radio gossiping problem 

in general free trees. 
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Theorem 4 The exact complexity of radio gossiping in trees of size n is ~ 
3tn- 16 and ~ 5n + 8. 

Lower bound We use again the stack-and-knot argument, see section 2. Con­
sider a line L of length 2m+ 1 with a knot of length 4 in the middle of the line, 
see Figure 6, where n = 2m+ 5. In order to solve the gossiping problem on line 
L all messages from the left half of L have to be moved to the right half of L and 
vice versa. All these messages have to traverse via node a. This requires at least 
4m independent time steps: 2m steps in which node a receives unit messages 
from its left and from its right neighbors, and 2m steps devoted to appropriate 
transmissions to the left and to the right hand side. Note that line L has knot 
I<, and we have to guarantee that all messages are transmitted to the nodes 
on the knot too. Since node b (in K) may interfere in the process of moving 
elements along line L, the last message mx transmitted through a can be send 
in time 4m + k, for some k ~ 0. In order to complete the gossiping on knot I< 
it is still required another m steps to send mx to the end of the line. Thus the 
cost of gossiping on line L takes at least time 4m + k + m = 5m + k. On the 
other hand note also that during 2m rounds (when 2m messages originated in 
L have been delivered to a) out of initia14m + k rounds both node a and node b 
didn't transmit. The other 2m+k rounds could have been used either for trans­
missions from a to b or from b towards the end of the knot I<. Note also that 
the number of messages transmitted beyond b in K cannot exceed the number 
of messages delivered from a to b. Which means that the number of messages 
transmitted beyond b is bounded by (2m+ k)/2. It means that there are at 
least 2m- (2m+ k)/2 = m- k/2 other messages that have to be transmitted 
beyond bin knot K. Due to Lemma 1, this process requires at least 3(m- k/2) 
additional steps. Thus to complete the gossiping task in the knot we need at 
least 4m + k + 3(m- k/2) = 7m- k/2 time steps in total. We need to find a 
balance between the two bounds. They meet each other when 2m= 3k/2. And 
this happens when k = 4m/3. Thus the minimal number of steps required by 
gossiping on a line with one knot is 5m + 4m/3 = 6~m ~ 3kn- 16. Since a line 
with one knot is a simple form of a free tree we have proved that the gossiping 
problem in trees is harder than its counterpart on a line. 

Upper bound We show here that the gossiping in any tree of size n can be 
performed in time O(n). We start the presentation with a simple gossiping 

Figure 6. Line with a knot 



202 

algorithm with running time 6!n, and then we present its tuned version with 
running time 5n + 8. 

We need the following definitions. Let G = (V, E) be an undirected gr·aph 
and let r; = maxv;EV dist(v;,vj), for each v; E V. A radius of G is defined as 
rc = mini=l, .. ,\VI r; where node Vc is called a central node. Recall also that 
rc :S Ln/2J. 

Gossiping in time 5n+8 The algorithm behaves similarly to our best gos­
siping algorithm on a line. It collates messages in the center of the tree and 
simultaneously broadcasts them along its all branches. Similarly, as it happens 
on the line, when two sequences of messages (collated and broadcasted) work 
against each other, all messages are traversing with a speed 1/4, i.e. one posi­
tion ahead in every 4 consecutive time steps (see page 198, Process 1). However 
in the final stage when only the broadcast sequence is available the speed of it is 
much higher, and it is 1/2 (see page 198, Process 2). The algorithm collecting 
all messages in the central node can be completed in time 4(n-1)+ 12 = 4n+8. 
At this time only one message has not been broadcasted from the center (all 
other messages are already traversing with a speed 1/2 along all branches of 
the tree). The time remaining to complete the gossiping process is bounded 
by 2 · Ln/2J :::; n, where ln/2J is the length of the longest possible branch 
(a radius of a tree). In total the complexity of the algorithm is bounded by 
4n + 8 + n = 5n + 8. 

5. General undirected graphs 

In this section we study the time complexity of gossiping in general undi­
rected graphs. 

Theorem 5 The asymptotic complexity of radio gossiping in general undi­
rected graphs of size n is O(nlogn) and O(nlog2 n). 

Upper bound The algorithm is based on a broadcasting algorithm due to 
Chlamtac and Weinstein [5] that works in time O(D log2 n), where D is a 
diameter of the graph. Their broadcasting algorithm goes along consecutive 
BFS levels in the graph spending at most O(log2 n) time at each level. Our 
gossiping algorithm runs (similarly as in trees) in two stages. In Stage 1 we 
collect all messages in some distinguished node z transporting them (in the form 
of a pipeline) along branches of any BFS spanning tree rooted in z. This can be 
done in time O(n). The second stage (broadcasting) is performed via pipelined 
distribution of n unit messages from node z. The broadcasts are scheduled such 
that when the ith broadcasted message is at BFS level j (formed by nodes at 
distance j from z), the wave with (i + 1)th broadcasted message is at level j- 3. 
This allows to avoid collisions caused by messages at different BFS levels. All 
collisions caused by nodes on the same BFS level are handled in time O(log2 n) 
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using techniques from (5]. In total, the pipelined gossiping process can be 
accomplished in time 0( n log2 n). 

Lower bound We need the following definitions. 

Definition The undirected graph G = {V = L U R, E} is proper if: 

1 G is bipartite, with partition L and R, 

2 ILl:::; IRI, and 

3 for each wE R there exists vEL, s.t., (v,w) E E. 

We say that the size of a proper graph G = {V = LUR, E} is IRI. Let n = IRI. 
A one-way broadcasting problem in proper graphs is to transmit one message 
originally stored in all nodes in L to all nodes in R. A one-way gossiping problem 
in proper graphs is defined as follows. Assume that initially each node in L 
has the same set S of n messages. The task is to deliver one copy of each of n 
messages from S to every node in R. (Note that it doesn't matter which node 
in L transmits this copy) 

Consider one (atomic) step of any gossiping algorithm. Two cases apply: 

Case 1 Assume that there exists a proper graph G with IRI = n, s.t., one can 
deliver at most O(nllogn) messages to nodes in R during a single step of any 
communication procedure. We show that in this graph the one-way gossiping 
problem cannot be solved in time o(nlogn). And indeed, the property of the 
graph imposes that the number of messages received in Rat any time cannot be 
greater than 0( nl log n). Note that to accomplish one-way gossiping we need to 
deliver from L to R n · n = n2 messages in total. However this process requires 
at least n2IO(nllogn) = l1(nlogn) steps. 

Update now G toG', s.t., nodes in L form a complete graph (to guarantee 
that G' is connected and gossiping in G' is feasible). We claim that gossiping in 
G' is harder than one-way gossiping in G, where setS is formed by n messages 
originated in R in gossiping problem. And indeed, any algorithm that solves 
gossiping problem in G can mimic one-way gossiping in G'. This means that 
gossiping in G' requires l1 ( n log n) steps, and the lower bound follows in this 
case. 

Case 2 This is a complementary case, i.e., we assume that for any proper 
graph there exists a way to inform in a single step w( n I log n) = n · f ( n) I log n 
nodes in R, for some asymptotically growing positive integer function f(n), s.t., 
f(n) = w(l) and f(n) = o(logn) (e.g. f(n) = Jlogn). We show that under this 
assumption we can solve one-way broadcasting problem in any proper graph of 
size n in time o(log2 n). 

According to our assumption, we can inform in one round at least n · 
f(n)flogn nodes in R. When this is done we remove all informed nodes from 
R and select appropriate number of nodes in L to much the property of proper 
graphs, i.e., if ILl > IRI we pick at most IRI nodes in L to match property 3 in 
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proper graphs. When this is done we perform another step of one-way broad­
casting, remove informed nodes in Rand again select appropriate nodes in L. 
We repeat this process as long as the size of Lis grater than, e.g., logn. After­
wards all uninformed nodes in R receive broadcasting message sequentially in 
separate steps. Let T(n) be the maximum number of time steps required by the 
one-way broadcasting algorithm in proper graph with JRI = n. The recurrence 
on T(n) is defined as follows 

1 T(i) = T(i- i · f(i)jlogi} + 1, fori> logn, 

2 T(i) = i, fori~ logn. 

In order to solve the recurrence we can find, e.g., a good estimation on a 
number of steps after which a value of argument n will be decreased by half. 
Note that after each step the value of an argument is decreased by some value. 
Initially by value ~~<:>, and after some number of steps when the value of the 

argument will drop to ! , by value y;:{:t/ . Since all consecutive decrements had 
.2 

values ;:::: j · 1{: l the number of decrements can be bounded by ,.k ~ i.fr;l. 
~ 

Hence after at most i.fr;l recursive steps the value of argument n will be de-
creased by half. Thus 

T(n) ~ T(!) + i.f~i)• 
and 

T(n) ~ L:~~t 2](;·-1) ~ logn · o(logn) = o(log2 n) 

since f(n) = o(logn) and f(n) = w(1). 

This means that we can perform one-way broadcasting in any proper graph 
G of size n in time o(log2 n). For any proper graph G = {V = L U R, E} 
of size n we define its extension G" = {V",E"}, where V" = V U {v} and 
E" = E U {( v, v) : v E L}. Note that due to our result for any G" there should 
exist a broadcasting procedure (with source node v) in time o{log2 n). However 
we also know that this is not possible due to the construction of a family of 
graphs (extension of proper graphs) requiring O{log2 n) broadcasting time, by 
Alon et al. in [1]. This means that case 2 is not feasible and that the minimum 
gossiping time in undirected graphs is bounded from below by O(nlogn). 
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