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Abstract In this paper, we investigate refined definitions of random sequences. Classical 
definitions have always the shortcome of making use of the notion of an algo­
rithm. We discuss the nature of randomness and different ways of obtaining 
satisfactory definitions of randomness after reviewing previous attempts at pro­
ducing a non-algorithmical definition. We present alternative definitions based 
on infinite time machines and set theory and explain how and why randomness 
is strongly linked to strong axioms of infinity. 
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1. Introduction 
Various attempts at outlining, understanding and formalizing randomness have 

been carried out. One major approach stems from probability theory and statistics. 
It is based essentially on statistical properties such as stability of relative frequencies. 
Sequences produced by fairly tossing a coin is the core idea of random sequences. 
This approach merely describes the properties that should have a random sequence; it 
does not provide a definition or notion of randomness. 

It should be mentioned that many people in statistics and probability object to think­
ing of points in a probability space as being random and prefer to talk of random pro­
cesses for pickings points instead. (This viewpoint is the one of H. Rubin as expressed 
to A.H. Kruse in [Kruse, 1967].) We tend to agree totally with this. It encourages 
us in thinking that randomness has not much to do with the theory of probabilities 
apart from the trivial statistical facts concerning "random objects". Nevertheless, it is 
certainly worthwhile to investigate where random objects appear (e.g., Rado's graph, 
randomness in complexity theory, ... ) and find coherent randomness definitions veri­
fied by those objects. 

The other major approach is of an algorithmic nature. It is sometimes mixed with 
the previous approach. This approach is based on unpredictability. It does provide 
some way to define randomness but then it is rather surprising to have algorithms in­
volved since probability theory does not use the notion of an algorithm. Is it then 
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possible to find a mathematical definition for random sequences not based on algorith­
mic unpredictability? 

Durand et al. [Durand eta!., 2001] propose such a definition by opting for a ran­
domness whose strong properties are relatively consistent after showing that it is im­
possible to get a notion of randomness having provably those properties. In their def­
inition, they have to take a basis for randomness and use "arithmetical randomness" 
to be just that. The algorithmic nature has then not completely disappeared from the 
definition. Other set-theoretical approaches are those of A.H. Kruse [Kruse, 1967], 
with the use of an appropriate class theory instead of ZFC, and M. van Lambalgen 
[van Lambalgen, 1992], adding to ZFC an extra atomic predicate of randomness and 
some axioms which govern its use. 

What is randomness after all? We could define randomness as the absence of any 
law. The problem is again in the fact that we will want (to be able to do something 
from the definition and not to get an inconsistency) the avoided laws to be definable in 
some way and somehow we will come back to some algorithmically-based definition. 

Another way of presenting randomness is the complete independence between any 
two terms, or even only between any one term and its predecessors, of a random 
sequence. Usually some independence is sought by using some algorithmic method. 
We propose a method based completely on set-theoretic independence and its strong 
link with the theory of large cardinals. This has prompted more and more the author 
to believe in a strong connection between large cardinality concepts and randomness 
occurrences. This idea is somehow also at the basis of M. van Lambalgen's study 
in [van Lambalgen, 1992] apart from the fact that van Lambalgen searches for new 
axioms, giving predicates for randomness, to add to ZFC while we think the axioms 
are somewhat already there in the set theory literature. 

Let us now proceed to a brief description of the contents of this paper. In the 
first section, we discuss classical definitions of randomness through a definition, using 
games, of Muchnik et al. and obtain a simple characterization of this classic ran­
domness using infinite time Turing machines. This is what we call the unfeasibility 
approach. 

We then continue in section 2 by giving several methods making it possible to 
introduce some "non provable" randomness. We present Durand et al. 's method, gen­
eralize it and also introduce in the same direction some randomness notions, based on 
independence from ZFC, using original infinite time machines tailored to be able to 
capture all the properties of sets of reals. We call this the unprovability approach. 

Using those notions, we construct in section 3 randomness notions hopefully meet­
ing our goal. We call this the unknowability approach. Our ultimate randomness no­
tion seems to be unknowably randomness (Randomness notion 5) along Randomness 
hierarchies I or 2. Surely, this is the strongest form one could wish for a randomness 
notion since then there is no way (in our base theory ZFC or even in ZFC + 3 some 
large cardinal) to connect any one value to the other values of such a random sequence. 

2. Notations 
In this paper, a sequence (as in random sequence) is an infinite binary sequence, 

i.e., belonging to {0, l}w = {0, 1}~'~, which can also be seen as a real, i.e., belonging 
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to !It {0, 1} <w is the set of finite sequences, which can also be seen as N. For any 
s E {0, 1} <w, {0, 1 }:;'denotes the set of infinite binary sequences that extends. For a 
sequence a, ak denotes the k + 1-th term of the sequence. 

3. Unfeasibility-based randomness 

3.1. Algorithmic randomness ... 
Muchnik et al. [Muchnik et a!., 1998] have given various temptative definitions 

of randomness and compared them making all the while sure that they verify several 
properties that everyone believes a random sequence should verify. It turns out that 
the two most restrictive definitions of randomness are chaotic and unpredictable. The 
former is based on those sequences whose initial segments' entropies grow sufficiently 
fast. All chaotic sequences turn out to be unpredictable, the truth of the converse is 
an open question. Because every other known definition of randomness reduces to 
the notion of unpredictableness, we will use it as our base definition and we call it 
Muchnik randomness. 

Definition 1 Let a be a sequence, f-l : {0, 1} <w -> JR+ a computable quasi-measure1 

that we extend to intervals { 0, 1 }:;' by having f-l( { 0, 1 }~) = f-l( s) and C E Q+* called 
the capital2• 

A one-player gambling game is played against the sequence a using the quasi­
measure f-L. We call it a {-l-game. At the start of the game, the player has his wallet Wo 
equal to C. At the k-th move, the player plays by giving n = n( k) and a guessed value 
i = i(k)for an(k)· As this is a gambling game, he also makes a bet w = w(k) E Q+* 
such that w(k) :::; wk-1· 

If the player was incorrect about the guessed value, he loses his bet : Wk 

Wk-1 - w(k). Otherwise 

W = w: + (k) f-l(2l!-i(k)) 
k k-1 w ("' ) f-l '-"i(k) 

wherefor j = 0, 1, 

2lj ={a' E {0, l}w I a~(k) = j and a~{l) = an(l)forl = 1, 2, ... ,k- 1} 

The sequence a is called {-l-predictable if there is computable winning strategy for 
winning {-l-games against a. Otherwise, it is called {-l-unpredictable. 

The sequence a is Muchnik random if it is {-l-unpredictable for some computable f-l· 

Theorem 1 A Muchnik random sequence is Martin-Lijf random3• 

PROOF. See theorem 7.4 in [Muchnik et al., 1998]. • 
3.2. . .. and infinite time machines 

Finite automata on infinite sequences have been introduced by Btichi in [Btichi, 
1962] to prove the decidability of the monadic second order theory of (w, <). Btichi 
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automata differ from finite automata on finite sequences only by its condition of ac­
ceptance of a word. A word is accepted by a Btichi automata if and only if the 
set of states, through which the automata goes an infinite number of times during 
an execution (there may be several executions if the automata is nondeterministic), 
contains at least a final state. Then Btichi introduced in [Btichi, 1965] finite au­
tomata that are able to describe transfinite sets of sequences. Using those automata, 
he proved the decidability of the monadic second order theory of (a,<), where a 
is a countable ordinal. It featured special transitions for limit ordinal stages such 
that the state reached at that limit stage ~ depends only on previously reached states 
{ s E S I \;/ (3 < ~ 3-y > (3 <.p('Y) = s}. He modified again the definition, using still 
other special transitions for particular limit ordinal stages, to use those automata to 
prove the decidability of the monadic second order theory of (wi. <). For a survey of 
Btichi automata, see [BUchi, 1973]. 

In [Lafitte, 2001], we defined a variant of BUchi automata making it as powerful 
as infinite time Turing machines as defined by Hamkins and Lewis in [Hamkins and 
Lewis, 2000]. We will now propose a definition of machines working with infinite 
time on reals but with access to transfinite tapes. It borrows ideas from Btichi automata 
deciding the monadic second order theory of (w1, <)and W 2-automata as studied in 
[Lafitte, 2001]. Much ofthe idea about the use of stationarl sets is due to Menachem 
Magidor. 

Definition 2 Fix a n E N. We will work with time and tapes of cardinalitl Nn. 
An enhanced tape is a function from Wn to { 0, 1}. 
A continuum machine, or c-machine6, is a Turing machine with k ~ 3 separate 

enhanced tapes, one for input, k - 2 's for scratch work, and one for output. The 
scratch and output tapes are filled with zeros at the beginning of any computation. At 
non-limit stages, it behaves like a normal Turing machine according to its transition 
relation. At limit stages, if the transition says so, the head is plucked from wherever it 
might have been racing towards, and placed on top of the first cell. Moreover; it enters 
a limit state. For a given cell of the tape, at a limit stage it takes the value of the lim 
sup of the cell values before the limit. 

A c-machine distinguishes different kinds of limit states. At a limit stage, it is in a 
composition of limit states 

.Oo X .Ql X . • . X .On 

where each .Q is defined as 

.0; = { q E Q I 3a of co finality w; with {(3 < a I q13 = q} stationary in a} 

A c-automaton is a c-machine that only reads and never writes. 

The output of a c-machine can be considered as a real when considering only the 
"first" w terms ofthe tape. Assuming the very reasonable "2No < Nw". with this defi­
nition of continuum machines, we can effectively work on R using and comprehending 
completely its power, i.e., properties concerning sets of reals. 

The notion of a c-machine is clearly a generalization of infinite time Turing 
machines7 and by the simple techniques used in [Lafitte, 2001], has at least the same 
power of computation. Hence the following theorem also applies to c-machines. 
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Theorem 2 If r E lR is not writable by an infinite time Turing machine, then it is 
Muchnik random. 

PROOF. Taker E {0, 1 }w such that it is not Muchnikrandom. For every computable 
measure p, there is thus a strategy to win the p-game. The strategy is necessarily 
computable by an infinite time Turing machine. 

We translate the strategy in an infinite time Turing machine, that will be able to 
writer since the strategy generates winning games. 8 

Theorem 2 is our cornerstone theorem for characterizing simple randomness in 
terms of machine computability of reals. 

The following theorem is the Lost Melody Theorem of [Hamkins and Lewis, 2000]. 
It shows for our purpose that Muchnik random reals are not so much random as some 
can be recognized as such. 

Theorem 3 There are random reals that are still singleton recognizable by infinite 
time Turing machines. 

PROOF. We sketch the proof. 
Consider the ordinal stages of repeat-points, that is by which it either halts or re­

peats, of computations with a null input. Let o be the supremum of those repeat-points. 
By the nature of infinite time Turing machines, o is a countable ordinal in L, Godel's 
class of constructible sets. Let (30 = o, f3n be a countable ordinal appearing first in 
Lf3n+l (not in Lf3n) and (3 = supn f3n· (3 is then the smallest ordinal ~ o such that 
L/3+1 F (3 is countable. 

Since Lf3+I has a canonical well-ordering, there is some real r E £13+ 1, which is 
least with respect to the canonical L order, such that r codes (3. The real r is the one 
we are looking for. 

The real r is not writable because if it were, then we could solve the halting problem 
by searching for a real, appearing at some moment on a tape, that codes an ordinal 
large enough to see the repeat-point of the computation in question. Since r codes 
(3, which is as large as o, r is big enough and so our algorithm succeeds. And this 
contradicts the undecidability of the halting problem. 

By usual techniques for coding the La's, the singleton { r} is decidable : given a 
real, one must verify that it codes an ordinal, that this ordinal is larger than o and then 
by the coding techniques, check whether our real really is the least code in La+l for 
some o: and whether o: really is the least ordinal above o such that o: is countable in 
Lcx+1· 8 

We now have a way of obtaining randomness through the use of infinite time ma­
chines. How can we get stronger notions of randomness, while not excluding reals 
that are actually "random"?8 

One way is by fixing some strong requirements for our randomness notion; so 
strong that there is no such notion. We then loosen up the conditions by requiring 
that "the randomness notion satisfies the requirements" is merely relatively consistent. 
This is the Durand et al. approach. We can actually try to go on like this and obtain 
stronger and stronger notions. We will go through this method in the following section 
and apply it to other randomness notions than the Durand et al. one. The main problem 
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of this way of obtaining stronger randomness is that it has to be based on another 
randomness notion and this, of course, doesn't help in obtaining a non-algorithmical 
and independence-based randomness notion. 

Another way is by having more powerful infinite time machines. We must however 
make sure that the gain in power is really a gain in excluding non-random reals. This 
will be the second part of the following section. 

4. Unprovability-based randomness 

4.1. Durand et al. 
Durand et al. in [Durand et al., 2001] were looking for a non-algorithmically-based 

randomness definition. They proposed the following definition. 

Definition 3 Let x be an infinite binary sequence. 
The sequence x is Solovay random over L if it avoids any null G0 (countable in­

tersections of open sets) set with a code9 in L. We note PL the predicate for this 
randomness, and RL = {x E {0, l}w I PL(x)}. 

The sequence x is arithmetically random if it avoids any null arithmetically coded 
G0 set. We have also the similar notations PA and RA. 

The sequence xis consistently random if x E RA and if RL is of full measure, then 
x E R£. We have also the similar notations Pc and Rc. 

A randomness predicate p is said to be consistent if it verifies the following condi­
tions: 

(1) ZFC proves that { x E {0, 1 }w I p(x)} is a full set; 

(2) 'v'W(x), ifZFC proves that { x E {0, 1 }w I W(x)} is null, then ZFC does not prove 
that there is an x E {0, l}w satisfying p(x) 1\ W(x); 

(3) ZFC proves that 'v'x E {0, 1 }w, if p(x ), then x is Martin-LOfrandom. 

Theorem 4 ([Durand et al., 2001]) In the Solovay model10, RL is a full G0 set and 
PL verifies (2)11 . 

Corollary 5 The randomness pc is a consistent randomness. 

PROOF. The randomness pc satisfies obviously (1) and (3) because of Theorem 4 
and of the definition of arithmetical randomness. 

In the Solovay model, RL is of full measure, so pc(x) +-+ pL(x). Hence pc 
satisfies (2)plaiw • 

This study prompts a way of obtaining always finer randomness notions. 
Take a randomness predicate p and the corresponding set of random sequences R. 

Set some requirements (predicates { P1 , P2 , .•. , Pk} k~2 ) for the quality of random­
ness desired. To be able to operate our method, R has to verify the requirements 
only12 in a certain model. Fix an l ::; k, the new randomness predicate p' (R') is the 
consistent realisation of p on top of some randomness notion Pbase• noted PbaseP and 
it is defined by : 

p'(x) if and only if x E Rbase and if Pt(R), then x E R. 
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This is what Durand et al. did. We can go even further 13 by then defining the 
following randomness notion p+, noted Pbase~ : 

p+ (x) if and only if x E Rbase and if cons(.Pt (R) ), then x E R'. 

And we can continue like that and obtain 14 p++ (Pbase~+)' p+3 (Pbase~3 ), .•. The 
drawback is that we don't know much of the obtained gain in strong ness for our ran­
domness notion. We will complement this idea in the second part of this section. 

The Durand et al. randomness is based on unprovability on top of common ran­
domness notion. Do we really still need this arithmetical/computational basis for ran­
domness? We aim at answering this question in section 3. But first, we look for still 
stronger randomness notions with a precise measure of the gain. 

4.2. More unprovability-based randomness 
We saw that c-machines have very peculiar properties and we will base some new 

randomness notions on them. To reach those notions, we need to introduce some 
set-theoretical material. 

An uncountable cardinal number /'(, is inaccessible if it is regular and a strong limit 
cardinal. An immediate consequence of inaccessibility is that VK, the collection of all 
sets of rank less than !'(,, is a model of ZFC; another immediate consequence is that "' = 
~K is a fixed point of the aleph sequence. By G1idel's second incompleteness theorem, 
it follows that the existence of inaccessible cardinals is unprovable in ZFC. In fact, 
a slightly more involved argument shows that the relative consistency of inaccessible 
cardinals is unprovable. Thus the existence of inaccessibles is to ZFC as the existence 
of an infinite set is to Peano arithmetic. For that reason, large cardinal axioms are 
sometimes referred to as strong axioms of infinity. 

Modern set theory recognizes a substantial number of large cardinal axioms. In­
terestingly enough, these axioms form a linearly ordered scale, on which the relation 
of a stronger axiom to the weaker theories is just as described above in the case of 
inaccessible cardinals and ZFC. This scale of large cardinals serves as a measure of 
consistency strength of various set theoretic assumptions. 

One of those large cardinals is a weakly compact cardinal and we introduce them 
now. Every weakly compact is not only inaccessible, but on the scale of large cardinals 
is also above Mahlo cardinals. Among large cardinals stronger than weakly compact 
cardinals and even Woodin and measurable cardinals, supercompact cardinals are most 
prominent. Above supercompact and huge cardinals, the scale approaches its end with 
the existence of a non-trivial elementary embedding j : V>. ---> V>., as by a theorem of 
Kunen, j : V ---> V is inconsistent. For more on large cardinals and set theory at large, 
see [Jech, 1978), [Kanamori, 1994) and [Kanamori and Magidor, 1978). 

Definition 4 Let "' be a regular uncountable cardinal. We call a set C t;;;; "' closed 
unbounded in "' if 

1 for every sequence ao < a1 < · · · < a~ < · · · (.; < 1) of elements of C, of 
length 1 < K,, we have lim~~'Y a~ E C (closed); 

2 for every a < K,, there is (3 > a such that (3 E C (unbounded). 
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We say that S ~ K is stationary in K if S n C =f- 0 for every closed unbounded 
subset C of K. 

A cardinal K is weakly compact if it is uncountable and satisfies the partition prop­
erty K--> (K)2. 

Jensen [Jensen, 1972] proved the following: 

Theorem 6 Assuming V = L, a regular cardinal "' is weakly compact if and only if 
for every stationary A ~ "'· such that every a E A is of cofinality w, {a I cf( a) > 
w, a < sup A, and A n a is a stationary subset of a} =f- 0. 

Baumgartner [Baumgartner, 1976] studied the question for "' = N2 and obtained 
a relative consistency result with ZFC+"::l weakly compact cardinal". Magidor in 
[Magidor, 1982] obtained an equiconsistency result that we use to prove the following 

theorem. 

Theorem 7 There is a c2 -machine s.m such that the ouput real t of s.m (on a blank 
input) is such that "t =f- 0" is equiconsistent with the existence of a weakly compact 
cardinal. 

PROOF. From the study in [Gurevich eta!., 1983], we can easily construct a c2-

automaton such that the language recognized by this automaton is nonempty if and 

only if {a < w2 I cf( a) = w 1 and a n X is stationary in a} is nonempty for every 
X s;; {a < w2 I cf( a) = wa}. We can code this language (or a countable part of it) in 
a real r such that r =f- 0 if and only if the language is not empty. Using Baumgartner's 
and Jensen's results (Theorem 6), it is clear that "r =f- 0" is independent of ZFC. 

Using Magidor's result in [Magidor, 1982], in the same manner, we construct a c2 -

automaton such that "t =f- 0" is equiconsistent with the existence of a weakly compact 

cardinal. • 

The first part of Theorem 3 can be extended15 to general c-machines to give finer 
randomness definitions. 

REMARK. We can also get the other half of Theorem 3 by using core model theory 
but we won't enter into such troubled waters. It is important to notice that this second 

part of the theorem tells us that somehow there will always be some reals non writable 
by such machines that will not be really random (because they are singleton recogniz­
able) and that we always need to seek a stronger randomness. This, of course, prompts 

the importance of the randomness notions of the last section. D 

Randomness notion 1 The sequence t E {0, l}w is Cn·random if it is not writable 
by a Cn -machine. We use the notation Pen for this randomness' predicate. 

Theorem 7 implies : 

Corollary 8 C3-randomness is strictly stronger than c2-randomness. 

PROOF. c3 can decide and thus writer from Theorem 7. The nice thing is that the 
gain in randomness is quantified by a "3 weakly-compact cardinal". • 
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Jech and Shelah [Jech and Shelah, 1990], using supercompact cardinals, general­
ized Magidor's result to ~n and that enables us to prove the following. 

Theorem 9 For any n E N, there is a Cn -machine 9J1 such that the ouput real t of9J1 
(on a blank input) is such that "t =/= 0" is implied by the existence ofn supercompact 
cardinals. 

PROOF. As in Theorem 7, using the generalization of Magidor's result by Jech 
and Shelah, we can construct for any n E N a suitable Cn -automaton and obtain the 
~~~ . 
Theorem 10 The hierarchy of randomness given by the hierarchy of c-machines is at 
least as strict as some part of the large cardinal hierarchy. 

PROOF. By Theorem 9, this hierarchy of randomness is as strict as : "3 n + 1 super­
compact cardinals" is stronger consistency-wise than "3 n supercompact cardinals" . 

• 
We can consider taking those mysterious reals c (of Theorems 7 and 9) as oracles 

for our c-machines. We are not sure if there is a gain in randomness doing this. 
But one can still do as in the first part of this section and define for any m E N : 

Randomness notion 2 The randomness PA~,';, using as the Pl requirement: "3 n 
supercompact cardinals", 

or perhaps more interestingly, Pen~~ using as the R requirement: "~ n super­
compact cardinals". 

The advantage of the latter notion is that we are guaranteed, with the randomness 
base PA. not to put aside any real that should be considered as random. 

REMARK. Note that PAP'n+ 1 is a stronger notion than PA~n. 0 

5. Unknowability-based randomness 
The previous randomness notions still lack the unknowability (using independence 

from ZFC) that we are looking for. 
We propose a hierarchy of randomness definitions based on the results of the pre­

vious section using the large cardinal empirical hierarchy. 

Randomness notion 3 A real~ E {0, l}w is a large cardinal random real if there is 
a c-machine 9J1 with metamathematical16 ouput ~such that in ZFC, "the ouput real 
of9J1 is non zero" is equiconsistent with the existence of a large cardinal. 

It is clearly quite, and perhaps too, restrictive but at least the notion is really of 
the "unknowable" nature and is not based on algorithmic notions. It has also the 
advantage of relying on the only well-understood notion of "objects beyond ZFC", 
i.e., large cardinals. 
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Using the "unknowable" method, the most natural definition seems to be 

Randomness notion 4 Each bit is unknowable from the previous ones: J E {0, 1 }w 
is increasingly unknowably random if there is a countable family of proposi­
tions { Qi}iEN such that 

and 

Vn EN, Qn is independent ofZFC + A Qi 
i<n 

. _ { 1 ifQi is true, 
J, - 0 otherwise. 

It is not an effective definition but it can be in part realized using c-machines : let 
Qi be "ri is null", where ri is the problematic real for Ci-machines in Theorem 9. 

We can propose a variant of this definition by requiring that 

Vn E N, Qn is independent of ZFC + A Qi 
itf-n 

but we don't know of any realization of such a strong definition. 
From our different hierarchies of randomness of the previous section, we can define 

an unknowable randomness by using generic sets. 

Definition 5 Let (IP, :::;, 1/ be a partial order. 

1 D c IP is dense in IP ijfVp E IP :Jq :::; p q E D. 

2 G C IP is a filter in IP iff 

(a) Vp,qEG:IrEG r:Spl\r:Sq, 

(b) Vp E GVq E IP q :S p-+ q E G. 

3 G isiP-genericon][lliffG isa.filteron IPandforalliP-dense DE ][ll, DnG =/= 0. 

The existence of a generic set for a particular partial order IP is not necessarily 
trivial. Nevertheless there is a much studied proposition that guarantees us (if, of 

course, we suppose it to hold) that most of the generic sets that we consider exists. It 
is called Martin's Axiom and it is independent of ZFC. See [Jech, 1978] for more on 

this. 
Fix a strict randomness hierarchy {pf"}iEN ( { R{f hEN) from the previous section. 

Take for partial order IP the set C { 0, 1 }w of infinite binary random sequences (some­

where in our fixed randomness hierarchy) with the order -< : 

p -< q iff p > q and there is i > 0 SUCh that p f N\{O, ... ,i-1} = q 

where p is the smallest n such that p E R![. 
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Randomness notion 5 Fix a hierarchy of randomness notions whose strictness is 
according to the hierarchy of some large cardinals. The sequence~ E {0, 1 }w is un­
knowably random along this hierarchy if~ is the union17 of a (IP', -<) {pf};EN -generic 
set. 

If we take for example the Randomness hierarchy definition I, by the previous ran­
domness definition, we obtain random sequences where each bit is unknowable from 
the other ones in the strong sense that the hierarchy is strict because of the supposed 
strictness of the hierarchy of the large cardinals used. It thus has the advantage of be­
ing in compliance with classical notions of randomness while making sure it verifies 
our "unknowability" requirement. 
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Notes 
I. For any s E {0, 1} <w, !L(s) = fL(S ~ 0) + !L(s ~ 1) and fL(E) = 1 where ds the empty sequence. 

2. Without loss of generality, we can assume C = 1. 

3. A sequence x E {0, 1 }w is Marrin-Liif random if it avoids all effectively null sets. It is one of the 
classical definitions of randomness. Algorithms appear in the word 'effectively'. For more on Martin-Ltif 
randomness, see [Martin-Ltif, 1966). 

4. See Definition 4. 

5. For any ordinal a : N, denotes the a-th cardinal and Wa is the smallest ordinal of cardinality Na. 
Following von Neumann, we identify an ordinal {3 with the set of ordinals a < {3. 

6. We use the notation en-machine to indicate that we work on Nn. 

7. An infinite time Turing machine is a c-machine (with k = 3) working with countable tapes and (of 
course) countable time. The difference with c-machines is in the limit stages' behaviour : It is placed in a 
special unique limit state. For a given cell of the tape, at a limit stage it takes the value of the lim sup of the 
cell values before the limit. 

8. Nevertheless, stronger notions of randomness still are better notions if such strong random reals 
exist. 

9. c 1:;; w X 2<w isacodeforaGo setU 1:;; {0, l}W ifU = nn U(n,u)Ec{0,1}~. 

I 0. Let M be a transitive model of ZFC and let " be an inaccessible cardinal in M. The Solovay model 
is M[GJ where G is an M-generic ultrafilter on P, the notion of forcing that collapses each>. < 1< onto 
No. 

II. Actually, it verifies (2)plain: ifw(x), if {x E {0, 1}w I w(x)} is null, then there is no x E {0, l}w 

satisfying p(x) 1\ lll(x). 
12. As much as we know or can prove. 

13. If P1(R) is relatively consistent (cons(Pl(R))), there is a model in which P1(R) is true. Living in 
this model, we can now consider taking R' instead of R in our "then x E R". And so on ... 

14. p++(x) if and only ifx E Rbase and ifcons(cons(Pl(R))), then x E R+. 

15. by replacing in the proof each occurrence of the La's by Va 's. 
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16. the truth about the ouput of !m. 

17. By definition of -<, all the infinite sequences are mutually compatible. There is a sequence that 
contains all of them, called the union. 
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