
BOUNDARY INFERENCE
FOR ENFORCING SECURITY POLICIES
IN MOBILE AMBIENTS

Chiara Braghin, Agostino Cortesi, Riccardo Focardi•
Dipartimento di Informatica, Universita Ca' Foscari di Venezia,
Via Torino 155, 30173 Venezia -Mestre (Italy}
{ braghin,cortesi.focardi} illdsi.unive.it

Steffen van Bakel
Department of Computing, Imperial College,
180 Queens Gate, London SW7 2BZ, (UK)
svb@cs.ic.ac.uk

Abstract The notion of "boundary ambient" has been recently introduced to model mul­
tilevel security policies in the scenario of mobile systems, within pure Mobile
Ambients calculus. Infonnation flow is defined in tenns of the possibility for
a confidential ambient/data to move outside a security boundary, and boundary
crossings can be captured through a suitable Control Flow Analysis. We show
that this approach can be further enhanced to infer which ambients should be
"protected" to guarantee the lack of infonnation leakage for a given process.

Keywords: Mobile Ambients, Security, Static Analysis.

1. Introduction
A Trusted Computing Base is the set of protection mechanisms within a computer

system the combination of which is responsible for enforcing a security policy [1].
One of the main challenges faced when building a TCB is deciding which parts of the
system are security-critical. Our focus is on Multilevel Security, a particular Manda­
tory Access Control security policy: every entity is bound to a security level (for sim­
plicity, we consider only two levels: high and low), and infonnation may just flow
from the low level to the high one. Typically, two access rules are imposed: (i) No

•work partially supported by MURST Projects "lnterpretazione Astratta, 'fYpe Systems e Analisi Control­
Flow", and MEFISTO, and EU Contract IST-2001-32617.

R. Baeza-Yates et al. (eds.), Foundations of Information Technology in the Era of Network
 and Mobile Computing © Springer Science+Business Media New York 2002

384

Read Up, a low level entity cannot access information of a high level entity; (ii)No
Write Down, a high level entity cannot leak infonnation to a low level entity.

In order to detect information leakages, a typical approach (see, e.g., [2, 8, 9, 10,
12, 13]) consists in directly defining what is an infonnation flow from one level to
another one. Then it is sufficient to verify that, in any system execution, no flow of
infonnation is possible from level high to level low. This is the approach we follow
also in this paper.

To model infonnation flow security, we adopt the scenario of mobile systems. This
particular setting, where code may migrate from one security level to another one,
complicates even further the problem of capturing all the possible infonnation leak­
ages. As an example, confidential data may be read by an authorized agent which,
moving around, could expose them to unexpected attacks. Moreover, the code itself
could be confidential, and so not allowed to be read/executed by lower levels.

In order to study this problem in an as abstract manner as possible, we consider
the "pure" Mobile Ambients calculus [5], in which no communication channels are
present and the only possible actions are represented by the moves perfonned by mo­
bile processes. This allows the study of a very general notion of infonnation flow
which should be applicable also to more "concrete" versions of the calculus.

The infonnation flow property of interest is defined in tenns of the possibility for a
confidential ambient/data to move outside a security boundary. In [6], a very simple
syntactic property is introduced that it is sufficient to imply the absence of unwanted
infonnation flow. In [3], a refinement of the control flow analysis defined in [11] is
introduced that deals with the same property with improved accuracy.

As an example, consider two different sites venice and montreal, each with some
set of confidential information that need to be protected. This can be modeled by just
defining two boundary ambients, one for each site:

venice6 [Pd I montrea16 [P2] I Qt,

where Q is an untrusted process. In order to make the model applicable, a mechanism
for moving confidential data from one boundary to another one is certainly needed.
This is achieved through another boundary ambient which moves out from the first
protected area and into the second one. In the example, label b denotes a boundary, h
a high-level ambient, l a low-level ambient and c a capability. Consider the example
depicted in Figure I. Process

venice6 [sene/' [outc venice .inc montreal] I hdatah [inc send]]
montreal6(openc send) I Qt

may evolve to (step (b))

venice6 [J I sene/' [inc montreal! hdatah [J J I montrea16 [openc send J I Qt

then to (step (c))

venice6(] I montreaf[openc send I sene/'[hdatah[]]] I Qt

and finally to
venice6 [] I montrea16 [hdatah []] I Qt

Boundary Inference for Enforcing Security Policies 385

Note that send is labeled as a boundary ambient. Thus, the high level data hdata is
always protected by boundary ambients, during the whole execution.

outveniae. ~
in montreal L__j

I montreal I

(a) venice needs to send confidential data hdata to montreal.

r montreat.!

in montreal

open sand

open sand

(b) The confidential data is sent inside the secure "envelope"send.

I montreal I

(c) The confidential data safely arrive in montreal.

!montreal I

(d) The envelope is dissolved to allow confidential data to be accessed in montreal.

Figure 1. Venice and Montreal exchange confidential infonnation.

The analysis developed in [3] allows to verify that no leakage of secret data/ambients
outside the boundary ambients is possible. When applied to this example, it shows that
h is always contained inside b, i.e., a boundary ambient. This basically proves that the
system is secure and no leakage of h data may happen.

In this paper we are interested in merging these ideas towards the definition of a
TCB, to a more ambitious perspective: which are the ambients that should be labeled
"boundary", to guarantee that the system is secure, i.e. that no h data may fall into

386

an unprotected environment? Is there always a solution to this problem? Is there a
minimal solution?

We show that these problems can be properly addressed by re-executing the Control
Flow Analysis presented in [3]. A successful analysis infers boundary ambients until
a fixed point is reached, returning the set of ambients that should be "protected".

In the example above, all we know is that hdata is information that must be pro­
tected during the whole execution of the process; thus, a successful analysis should
infer venice, montreal and send as ambients to be labeled "boundary".

The rest of the paper is organized as follows. In Section 2 we introduce the basic
terminology on ambient calculus, then we present the model of multilevel security for
mobile agents and we show how to guarantee absence of unwanted information ftows
through the control flow analysis of [3]. In Section 3, we introduce the enhanced
Control Flow Analysis. Section 4 concludes the paper.

2. Background
In this section we introduce the basic terminology on ambient calculus on multi­

level security and we briefly recall the control flow analysis defined in [3].

2.1. Mobile Ambients
The Mobile Ambients calculus has been introduced in [5] with the main purpose

of explicitly modeling mobility. Indeed, ambients are arbitrarily nested boundaries
which can move around through suitable capabilities. The syntax of processes is given
as follows, where n denotes an ambient name.

P,Q .. - (vn)P restriction
0 inactivity

PIQ composition
!P replication
nlm(P) ambient
inl' n.P capability to enter n
outt' n.P capability to exit n
opent' n.P capability to open n

Labels la E Laba on ambients and labels tt E Labt on transitions (capabilities),
have been introduced in the control flow analysis proposed in [11]. This is just a way
of indicating "program points" and will be useful in the next section when developing
the analysis.

Intuitively, the restriction (vn)P introduces the new name nand limits its scope to
P; process 0 does nothing; P I Q is P and Q running in parallel; replication provides
recursion and iteration as !P represents any number of copies of P in parallel. By
ntm [P] we denote the ambient named n with the process P running inside it. The
capabilities int' n and outl' n move their enclosing ambients in and out ambient n,
respectively; the capability openl' n is used to dissolve the boundary of a sibling
ambient n. The operational semantics [5] of a process Pis given through a suitable

Boundary Inference for Enforcing Security Policies 387

reduction relation ~ and a structural congruence = between processes. Intuitively,
P ~ Q represents the possibility for P of reducing to Q through some computation.

2.2. Modeling Multilevel Security
In order to define Multilevel security in Mobile Ambients we first need to classify

infonnation into different levels of confidentiality. We do that by exploiting the label­
ing of ambients. In particular, the set of ambient labels Lab a will be partitioned into
three mutually disjoint sets LabR-, Labi, and Lab8, which stand for high, low and
boundary labels. We denote by£ the triplet (LabR-, Labi,, Lab8).

Given a process, the multilevel security policy may be established by deciding
which ambients are the ones responsible for confining confidential information. These
will be labeled with boundary labels from set Lab8 and we will refer to them as
boundary ambients. Thus, all the high level ambients must be contained in a boundary
ambient, and labeled with labels from set Lab~. On the other side, all the external
ambients are considered low level ones and consequently labeled with labels from
set Labi,. This is how we will always label processes, and corresponds to defining
the security policy (what is secret, what is not, what is a container of secrets). In all
the examples, we will use the following notation for labels: bE Lab8, h E Labn,
m, m' E Labi, and c, ch, em, em' E Labt.

In [3] we introduced a refinement of the Control Flow Analysis of [11], in order
to incorporate the ideas above, thus yielding to a more accurate tool for detecting
unwanted boundary crossings. The main idea is to keep infonnation about the nesting
of boundaries, and about "unprotected" ambients.

Definition 1 The refined control flow analysis works on triplet (l~,I~,il), where:

(I~): The first component is an element of p(Laba x (Laba U Labt)). If a
process contains either a capability or an ambient labeled f. inside an ambient
labeled f.a which is a boundary or an ambient nested inside a boundary (referred
as protected ambient) then (f. a, f.) is expected to belong to I~. As long as
high level data is contained inside a protected ambient there is no unwanted
infonnation flow.

(le) : The second component is also an element of p(Lab ax (LabauLabt)). If
a process contains either a capability or an ambient labeled l inside an ambient
labeled la which is not protected, then (la, l) is expected to belong to /~.

(H) : The third component keeps track of the correspondence between names
and labels. If a process contains an ambient labeled l a with name n, then (la, n)
is expected to belong to fi.

The analysis is defined by a representation function and a specification, like in
[11]. They are depicted, respectively, in Figure 2 and Figure 3, in which we consider
a process P. executing at the top-level environment labeled env.

Observe that within the specification of the analysis (depicted in Figure 3), some
predicates are used to enhance readability, namely

388

(res)
(zero)
(par)
(rep!)
(amb)

(in)

(out)

{jc.(P)
f3f.Proct((vn)P)
f3f.Proct(O)
f3f.Proct(P I Q)
f3f.Proct(!P)
f3f.Proct(nl" [P))

ac. (. t') f'l,Proct m n.P

c. t' f3t,Proct(out n.P)

c. t' (open) f3t,Proct(open n.P)

f3fnv,Fal•e(P)
= f3f,Proct(P)

(0,0,0)
= f3fProct(P) U f3f,Proct(Q)

f3f.Proct (P)
case Proct of
True: f3f.,Proct(P) U ({(l, F)}, 0, {(t>, n)})
False: if(ia E Lab8) then

let Proct' = True else Proct' = False in

f3{'.,Proct' (P) U (0, {(i, f>)} '{(f>' n)})
case Proct of
True: f3f.Proct(P) U ({ (i, it)}, 0, 0)
False: f3f.Proct(P) U (0, { (i, it)} , 0)

case Proct of
True : f1f.Proct(P) U ({ (i, it)} , 0, 0)
False: f3f.Proct(P) U (0, { (i, it)}, 0)

case Proct of
True: f3f.Proct(P) U ({(i,it)} ,0,0)
False: f3f.Proct(P) U (0, {(l, it)} , 0)

Figure 2. Representation Function for the refined Control Flow Analysis

{
True

• pathE (fa, f) =
False

ifla =tv 3f1,f2,·· .,fn ¢Lab~: n ~ 01\
W, f1), (f1, f2), ... , (fn, f) E I"n 1\ fa, f ¢Lab~,
otherwise.

ifla = fv 3ll>l2, ... ,in¢ Lab~: n ~ 01\
(fa, ii), (it, l2), ... , (in, f) E I'"E 1\ ea, l ¢Lab~,
otherwise.

The representation function maps processes to their abstract representation, i.e. a
triplet (I"n, I'"F;, H) representing process P •.

Example 2 Let P be a process of the form: P = n 1~ [m1; [out'' n]] , with l~ E
Lab~ and l~ E Lab1, thus the representation function of Pis the following: (3 c. (P) =
({ (l~, i~), (l~, et)}, {(env, i~)}, {(i~, n), (f~, m)}).

The specification of the analysis amounts to recursive checks of subprocesses,
which provide constraints that the triplet (I"n, I'"E, H) should satisfy in order to be a
correct solution for the analysis. It is possible to prove that a least solution of this anal­
ysis exists and it may be computed as follows: first apply the representation function

Boundary Inference for Enforcing Security Policies 389

(res) (I~, I~, H) l=.c (vn)P iff (I~,I~,H) l=.c P

(zero) (I~,I~,H) l=.c 0 always

(par) (iB, I~, H) l=c PI Q iff (I~ ,I~, H) l=.c P 1\ (I~ ,is, H) l=c Q

(repl)

(amb)

(in)

(I~, I"s, H) l=c !P iff (I~, I"s, H) l=c P

(fB,l"s,H) l=c n1"[P] iff (I~, I"s, H) l=c P

(iB,I~,H) l=c in1' n.P iff (I~ ,I~, H) l=.c p 1\

Vf.a, ea', ea" E Laba :

case((ea,f.1)EI~ 1\ (ea",ea)EI~ 1\ (f.a",ea')ei~ 1\ (ea',n)EH)
==::} (ea',ea) E I~

case ((ea, £1) E I~ 1\ (ea", £a) E I~ 1\ (f.a", ea') E I~ 1\ la E Labs

1\ cea'' n) E H) ==::}

if (ea' E Labs} then (ta', f.a} E I~
else (f.B', ea) E I"s

case ((ea' f.1) E fE 1\ (ea"' ea) E I~ 1\ (ea"' ea') E I~ 1\ cea'' n) E H) ==::}

if< ea' e Labs)

then cea' ,ea) E /~ 1\ { (l,l') E I"s I pathE(ea,e)} £;I~
else (ea', ea) E I"s

(out) (I~, I"s, H) l=.c out1' n.P iff (/~,I~, H) l=.c P 1\
Vf.a, ea', ea" E Laba :

case ((f.B, f.1) E I~ 1\ (ea' ,f.a) E I~ U I~ 1\ (ea", ea') E I~
1\ w'' n) E H) ==::}

if(f.B E Labs} then (f.B",ea) E I"s
else cea"' ea) E I~ 1\ {(f., f.') E in I pathn(la, f.)} £; I"s

case ((ea, l 1) E I~ 1\ (ea'' ea) E I~ 1\ cea"' ea') E I~ 1\ w'' n} E H)
==::} (ea", f.a} E I"a

case ((f.B' l 1) E fE 1\ cea' ,ea) E fE 1\ cea" ,ea') E I~ 1\ (ea', n) E H)
==::} (ea", f.B) E I"s

(open) (I~, I"s, H) l=.c open1' n.P iff (I~ ,is, H) l=.c P 1\
Vf.a, ea' E Laba :

case({ea,f.1)EfE 1\ (fa,fa')ei~ 1\ (ea',n)EH} ==::}

if (ea' E Labs) then { (ea' fa") I cea'' fa") E I~} £; is A

{ce,l')l(l,f.')ei~ 1\ (fa',l')ei~ Apathn(l',e)}£;iE

else { {ea, f.) I (ea' ,l) E I~}£; I~
case((f.B,f.1)efn A (ea,ea')ei"a 1\ (fa',n)EH)

==::} { (ea,l) I (ea',e) E I~}£; I~

Figure 3. Specification of the Control Flow Analysis

390

to the process P., then apply the analysis to validate the correctness of the proposed
solution, adding, if needed, new infonnation to the triplet until a fixed point is reached.

Example 3 Let P be the process of Example 2. The least solution of P is the triplet
([~,I'F;,ii) where I~= {(i~,l~),(l~,lt)}~ I'E.= {(env,lV,(env,l~),(l~,lt)}, and
H = {(£~, n),_(l~~ m)). Observe that (IB,IE, H) strictly contains pc.(P), as ex­
pected being (/B, IE, H) a safe approximation.

More fonnally, the fixed point algorithm works as follows:

Algorithm 4 (Fixed Point Algorithm)
Input: a process P. and a partition labeling C.

(i) Apply the representation function pc. to process P. to get a triplet (I~, I~, H);

(ii) for all the constraints of the specification of the analysis, validate the triplet
(I1 ,11, H) generated in (i):

1 if the constraint is satisfied, continue;

2 else, in case the constraint is not satisfied, this is due to the fact that
either I~ or I'E do not consider nestings that may actually occur. In this
case, modify I~ and fE by adding the "missing" pairs, thus getting a new

triplet u1+1 , I1+1 , H). Then, go back to (ii) with i = i + 1.

The iterative procedure above computes the least solution independent of the itera­
tion order.

The result of the analysis should be read, as expected, in tenns of infonnation flows.

Theorem 5 No leakage of secret data/ambients outside the boundary ambients is pos­
sible if in the analysis no high level label appears in I'E.

Example 6 Consider, for instance, a process, which allows an application (say, an
applet) to be downloaded from the web within montreal; then, the application may
open the ambient send and disappear.

P4 = veniceb1 [semi'• [outc venice.inc montreal I hdata" [inch tllter]] I
I download"'' [outcm' venice.incm' web.incm' montreal] 1 I

I montreaf2 [opencweb.opencapplication1 I
webm (applicationm [open em send.Jiltel" [) 1 I open em download)

In this case, there is no information flow, as the application is not exporting any
data out of the montreal boundary. In this case, the refined CFA yields to positive
infonnation, namely:

18 = { (bt, ba}, (bt, m'), (ba, h), (ba, c), (h, ch}, (m', em'), (b2, ba), (b2, h),
(b2, m'), (b2, b2), (b2, m), (b2, c), (b2, em'), (b2, em), (m, h), (m, m'),
(m, b2), (m, m), (m, em'), (m, em)}

I~ = {(env, bt), (env, b3), (env, m'), (env, b2), (env, m), (m', em'), (m, m'),
(m, b2}, (m, m), (m, em'), (m, em)}

ii = { (b1, venice), (b3 , send), (b2, montreal), (h, hdata), (m', download),
(m, web}, (m, application), (m, filter)}

Boundary Inference for Enforcing Security Policies 391

Observe that the result is also better than the Hansen-Jensen-Nielsons's CPA [11]
as the latter does not capture the fact that h enters m only after it has crossed the
boundary and can never return back.

3. Inferring Boundaries
Let us turn now to the boundary inference issue. By now, we consider a process P

wherein high level data are known, i.e. Lab H is fixed. We are interested to partition
the set of ambient labels into Lab L and Lab 8 so that Lab 8 is the minimal labeling
that guarantees the absence of direct infonnation flow concerning confidential data. In
other words, the aim of the analysis is to detect which ambients among the "untrusted
ones" should be protected (let's say by a firewall or by encryption) as they may carry
sensitive data.

Since we want to infer a minimal set of boundary ambients it makes sense to dis­
criminate all the ambients belonging to process P., thus we assume that initially all
ambient occurrences have different labels. Note that this condition may not be verified
during the execution of process P because of the replication operator. Given this initial
labeling, a label has at most one parent, thus we can give the following definitions.

Definition 7 (Border of an ambient) Given an ambient with label e in a process P,
we denote by B(e) the border of the ambient n labeled e, i.e. the label of the ambient
which n belongs to. Observe that B(e) is defined for all ambients but the environment
env.

For example, in process P = pt [m k [n t [0]] I q• [0]] , the border of the ambi­
ent labeled lis B (e) = k.

Definition 8 (Upward closure) The upward closure of the border of an ambient la­
beled e, B(e), is the minimal set that contains B(e) and such that m E B(e) =>
B(m) E B(e).

For instance, considering again process P = pt [mk [nt [0]] I q• [0]] , the
upward closure of the border of e is lJ(e) = {k, t, env}.

We have already observed that Algorithm 4 takes as input a labeling, where labels
are partitioned into three distinct sets: high, low and boundary. Let us introduce this
notion more formally in order to deal with a dynamic labeling, where only the high
labels cannot change status.

Definition 9 (i-th Label Partitioning C;) We denote by C; and we call it the i-th La­
bel Partitioning, the triplet C; = (Labn, Lab~, Labi). We assume that Labn,
Lab 8 and Lab L are mutually disjoint, and that Lab H U Lab 8 U Lab L = Lab a.

3.1. The Algorithm
The algorithm described below analyses process P starting from the initial labeling

.Co. It may either succeed (in this case a labeling .C k is reached that fulfills the security
property we are interested in) or it may fail. The latter case simply means that the
process P cannot be guaranteed to be secure by our analysis.

392

Initial Label Partitioning. Given a set of high level labels Lab H• we initially
partition the remaining ambients into the following sets:

Lab~ = {l E Lab0 \ Labn l3h E Laba 1\ l = B(h) 1\
~h' e Labn: B(h') E B(h)}

Lab1 = Lab\ (Labn u Lab~)

Through this step, the boundaries that guarantee the absence of infonnation flow
in the initial state of process P are defined. Observe that in this way we avoid initial
boundary nesting. This is how the boundaries are inferred:
For all h ambients belonging to the process P:

1 compute the border B(h). If B(h) = env, process Pis insecure by construction,
then stop with failure;

2 if B(h) e Lab4 \ Labn, compute the upward closure B(h) and label B(h) as
boundary iff ~h' e Labn : B(h') e B(h).

Algorithm 10 (Boundary Inference Algorithm) The analysis is perfonned by the
fixed point algorithm parameterized with respect to£ i· At the beginning, i = 0.

(i) Compute Algorithm 4 with input£, and P •.

(ii) During the execution of Algorithm 4, whenever a high level ambient n labeled
h gets into an unprotected environment, i.e. 3£ : (l, h) e IE do:

1 if (env, h) E IE, the analysis terminates with failure, as it cannot infer a
satisfactory labeling that guarantees absence of infonnation leakage;

2 otherwise, if (env, h) ¢IE:
- a new labeling £i+1 should be considered, labeling every l such that

(l, h) e IE as a boundary. Let L = {ll (l, h) e I'E} then £i+l =
(Labn,Lab~ U {L},Labt \ {L}).

- go to (i) with i = i + 1.

Refining the solution. Through this step, a more precise label partitioning £.
might be computed. From the set of boundaries inferred by the analysis, we take
away, if possible, the set of boundaries B that are not needed to guarantee absence
of information leakage (i.e. boundaries nested inside other boundaries). Observe that
the set of boundaries nested inside other boundaries can be empty. This refinement
procedure can be seen as a narrowing step in the sense of Abstract Interpretation.
More fonnally:

£. = (Labn, LabB \ B, LabL U B)
B = {l e LabB 13£' : (t' ,l) E ~~ 1\ ~l": (t",l) E I'E)}

Before addressing termination, soundness and minimality issues, let us try to un­
derstand the behavior of this algorithm by looking at an example.

Boundary Inference for Enforcing Security Policies

Example 11 Let us consider again the example given in the Introduction:

venicez [send" [outc venice .inc montreal J I hdatah [inc send] J I
I montrealz [openc send) I Ql

393

• Given the set of high level labels Lab H in P, the initial label partitioning .Co
is computed. .Co= (LabH = {h},Lab~ = {x},Lab~ = {y,z})

• Applying the representation function {Jl·o toP., it returns the triplet (11, f~, H):

fo
p

JO
E

H

=
=
=

{(x,y),(x,h),(y,c),(h,c)}
{(env,x), (env,z), (z,c)}
{(h, hdata), (x, venice), (y, send), (z, montreal)}

Executing Algorithm 4, the pair (y, h) is introduced in I~. reflecting the fact
that ambient send leaves ambient venice during the execution of process P.

• At this point, a new label partitioning should be considered:

.C1 = (LabH = {h},Labk = {x,y},Lab}, = {z})
Algorithm 4 is computed again. During its execution, the pair (z, h) E fE. re­
flecting the fact that the boundary send, containing confidential data, is opened
inside the low ambient montreal during the execution of process P.

• At this point, the following new label partitioning is considered:

.C2 = (LabH = {h}, Lab~= {x,y,z}, Labi = 0)
Algorithm 4 is computed again, and a fixed point is finally reached. In this case,
there is no need to refine the solution. Thus, the set of ambients that should be
labeled as boundaries is {venice, send, montreal}.

3.2. Soundness and Minimality
In this final section we formally prove termination and correctness of the Boundary

Inference Algorithm described in section 3.1. Moreover, we show a minimality result
on the computed solution.

Theorem 12 (Termination) The algorithm always terminates.

Proof. Straightforward, as the number of labels is finite.

Theorem 13 (Soundness) If there exists a label partitioning .C k such that the analysis
of process P (with initial label partitioning .Co) terminates with success and, in the
resulting triplet (f'B, I~, H), no high level ambient does appear in the pairs of I~.
then the labeling .Ck is sufficient to guarantee the absence of direct leakage within the
process P.

We introduce a new predicate to formalize the notion of protected ambient. Given a
Iabella E Lab a, ProtectedW) is true iff J3la' : [W', ga) E I~ 1\ ga ::j: env] V ga E
Lab~.

394

The following result guarantees a minimality condition of the refined solution com­
puted by Algorithm 10.

Lemma 14 In the solution (I~, I~, H) 1=£ P.:

(i) I.E B =>Protected(/.) both in£ and£ •.
(ii) Protected(/.) in£<=> Protected(/.) in£ •.

(iii) p£(P.) = p£. (P.) and Protected(I.) in p£(P.) <::>Protected(/.) in p£. (P.).

Theorem 15 (Minimality) Let£ be the triplet (Labif, Lab£, Lab!,) and£. the la­
bel partitioning generated by the Boundary Inference Algorithm 3.1. Then, the Fixed
Point Algorithm 4 parameterized with respect to £ and to £ • compute the same solu­
tion (I~,I~,fi).

Proof. Essentially the proof simply amounts to observing that, if computing both
the algorithms step by step, the pairs added to I~ or I~ are the same. It is proven by
induction on the steps computed by the algorithms. Only the cases for capabilities are
non-trivial.

Base of the induction: performing one step from pc.(P.) = p£•(P.) with label
partitioning £ and£. has the same effect.

(in): Protected(/.4 ") is the same both in p£(P.) and p£•(P.) from point (iii) of
Lemma 14, thus I~ is modified exactly in the same way with£ and£ •.
..., Protected(/.4 ") => /.4 ", /.4 ', /.4 ¢ B, thus I~ is modified exactly in the same
way with £ and£ •.

(out) : Protected(/.4 ") is the same both in pc.(P.) and pc.. (P.) from point (iii) of
Lemma 14, thus I~ is modified exactly in the same way with£ and £ •.

(open) : the case is analogous to the out one.

The inductive step is proved by exploiting the fact that the predicate Protected(£)
is the same for£ and£. in each step. Observe that minimality within each step is
guaranteed by the fact that Algorithm 4 computes the least solution.

4. Conclusions
& far as we know, the idea of inferring a security policy that avoids direct infor­

mation leakage when modeling mobility through Ambients, has not been investigated
in the literature yet. Major emphasis, in fact, has been put on Access Control issues
[7, 4] than in Information Flow properties. Most of the works in this area, in fact,
focus more on enhancing the language to control how ambients may move in and out
of other ambients, than on looking at how to "protect" high-data information from
untrusted environments.

A few interesting open issues are under investigation to complete the picture we
draw in this paper. In particular, it would be interesting to see if there is an ordering
among labeling w.r.t. which the analysis behaves monotonically, and if optimizations
can be applied to our algorithm to reduce the overall complexity.

Boundary Inference for Enforcing Security Policies 395

References
[1] US Department of Defense. DoD Trusted Computer System Evaluation Criteria. DOD

5200.28-STD, 1985.
[2] C. Bodei, P. Degano, F. Nielson, and H.R.Nielson. Static Analysis of Processes for No

Read-Up and No-Write-Down. In Proc. FoSSaCS'99, volume 1578 of Lecture Notes in
Computer Science, pages 120-134, Springer-Verlag, 1999.

[3] Chiara Braghin, Agostino Cortesi, and Riccardo Focardi. Control Flow Analysis of Mo­
bile Ambients with Security Boundaries. In Bart Jacobs and Arend Rensink, editors, Proc.
of Fifth IFIP International Conference on Formal Methods for Open Object-Based Dis­
tributed Systems (FMOODS'02), pages 197-212. Kluwer Academic Publisher, 2002.

[4] M. Bugliesi and G. Castagna. Secure Safe Ambients. In Proc. 28th ACM Symposium on
Principles of Programming Languages (POPL'Ol), pp. 222-235, London. 2001.

[5] L. Cardelli and A. Gordon. Mobile Ambients. In Proc. FoSSaCS'98, volume 1378 of Lec­
ture Notes in Computer Science, pages 140-155, Springer-Verlag, 1998.

[6] A. Cortesi, and R. Focardi. Information Flow Security in Mobile Ambients. In Proc. of In­
ternational Workshop on Cuncurrency and Coordination CONCOORD'Ol, Lipari Island,
July 2001, volume 54 of Electronic Notes in Theoretical Computer Science, Elsevier, 2001.

[7] P. Degano, F. Levi, C. Bodei. Safe Ambients: Control Flow Analysis and Security. In Pro­
ceedings of ASIAN'OO, LNCS 1961,2000, pages 199-214.

[8] R. Focardi and R. Gorrieri. A Classification of Security Properties for Process Algebras.
Journal of Computer Security, 3(1): 5-33, 1995.

[9) R. Focardi and R. Gorrieri. The Compositional Security Checker: A Tool for the Verifica­
tion of Information Flow Security Properties, IEEE Transactions on Software Engineering,
Vol. 23, No.9, September 1997.

[1 0) R. Focardi, R. Gorrieri, F. Martinelli. Information Flow Analysis in a Discrete Time Pro­
cess Algebra, in Proc. of 13th JEEE Computer Security Foundations Workshop (CSFW 13),
(P.Syverson ed), IEEE CS Press, 170-184,2000.

[II) R. R. Hansen, J. G. Jensen, F. Nielson, and H. R. Nielson. Abstract Interpretation of Mo­
bile Ambients. In Proc. Static Analysis Symposium SAS'99, volume 1694 of Lecture Notes
in Computer Science, pages 134-148, Springer-Verlag, 1999.

[12] M. Hennessy, J. Riely. Information Flow vs. Resource Access in the Asynchronous Pi­
Calculus. ICALP 2000:415-427.

[13) G. Smith, D.M. Volpano, Secure Information Flow in a Multi-Threaded Imperative Lan­
guage.ln Proc. of POPL 1998: 355-364.

