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Abstract TQL is a query language for semi-structured data. TQL binding mecha­
nism is based upon the ambient logic. This binding mechanism is the key 
feature of TQL, but its implementation is far from obvious, being based 
on a logic which includes "difficult" operators such as negation, uni­
versal quantification, recursion, and new tree-related operators. In [6] 
an "implementation model" is presented, here we first extend it with 
tree operations, hence obtaining an algebra for the full TQL language. 
Then we shortly describe the evaluation techniques that we exploit in 
the actual implementation. 

1. Introduction 
TQL is a query language for semi-structured data based on the tree logic, an 
enriched subset of the ambient logic defined in [7, 5]. The tree logic is a logic to 
define sets of trees. It can be naturally used to express types and constraints 
over semistructured data. As a consequence, problems as subtyping, constraint 
implication, constraint satisfiability, can all be expressed and investigated as 
the validity (or satisfiability) of some class of TQL formulae. TQL uses the 
tree logic as its matching mechanism; as a consequence, more problems, such 
as query correctness and query containment (and their combinations), become 
special cases of the validity problem. The high expressivity of the logic allows 
us to express complex types, constraints, and queries, giving us, for types and 
constraints, an expressive power that is higher than the one of other propos­
als [12, 4]. This unified framework for types, constraints, and queries is a 
central aim of the TQL project, but its further discussion is out of the scope 
of this paper. 

In this paper we describe the foundations of some focal aspects of our imple­
mentation of the TQL evaluator. The implementation goes through five steps: 
source level rewriting of the TQL query into a normal form; tmnslation of the 
TQL query into a term of the TQL algebra; logical optimization of the alge­
braic term into a more efficient form; execution of the algebraic term. We are 
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still designing a physical optimization phase, where queries will be rewritten 
taking physical information into account. For reasons of space, we cannot go 
through all those phases, but we will focus on the most original aspects, that 
are the TQL algebra, and the algorithms to implement its operations. 

The major constributions of this paper are: (i) the definition of the TQL 
algebra, an algebra of operators over trees and over tables (i.e. relations) of 
trees, where both the trees and the tables may be infinite, and the translation 
of TQL into the TQL algebra; (ii) the description of the implementation of 
the TQL algebra; the crucial problems we solve are: the finite representation 
of the infinite tables that arise during evaluation of TQL, and the algorithms 
used to implement operators such as negation and universal quantification. 

2. TQL by examples 
Consider the following bibliography, where, informally, a[FJ represents a 

piece of data labelled a with contents F (the data model will be fully de­
fined in the next section); F is empty, or is a collection of similar pieces of 
data, separated by "/". When F is empty, we can omit the brackets, so that, 
for example, Darwen[ ] can be written as Darwen. In this paper we consider a 
data model where the content F is unordered. 

The bibliography below consists of a set of references all labeled book. Each 
entry contains a number of author fields, a title field, and possibly other fields. 

BOOKS= book[ author[Date] / title[DBJ I publisher[ Addison- Wesley] ]/ 
book[ author[Date] J author[Darwen] J title[ Foundation for Future DB] 

I year[2000]/ pages[608] ]I 
book[ author[Abiteboul] J author[Hull] J author[ Vianu] 

I title[Foundation of DB]/ publisher[Addison- Wesley]/ year[1994] J 

Suppose we want to find all the books in BOOKS where one author is Date; 
then we can write the following query (hereafter X and x are variables and 
everything else is a constant; in the concrete syntax, variable names begin with 
a$ character): 

from BOOKS F .book[X], X F .author[Date] select text[X] 

The query consists of a list of matching expressions contained between from 
and select, and a reconstruction expression, following select. The matching 
expressions bind X with every piece of data that is reachable from the root 
BOOKS through a book path, and such that a path author goes from X to 
Date; the answer is text[author[Date] J title[DB] / ... ] J text[author[Date] / 
author[Darwen]/ ... ], i.e. the first two books in the database, with the outer 
book rewritten as text. The operator .book[X] is actually an abbreviation for 
book[X] / T. The BOOKS F book[X] / T statement means: BOOKS can be 
split in two parts, one that satisfies book[X], the other one that satisfies T. 
Every piece of data satisfies T (True), while only an element book[ ... ] satisfies 
book[X]; hence, BOOKS F book[X] IT means: there is an element book[X] at 
the top level of BOOKS. 
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In TQL a matching expression is actually a logic expression, combining 
matching-like and classical logical operators. For example, the following query 
combines path-expression-like logical operators and classical logical operators 
(V, :::} ) to get schema information out of the data source. It retrieves the tags 
appearing into each book. 

from BOOKS I= VX(.book[XJ :::} .book[X 1\ .x[T]]) select tag[x] 

The query can be read as: get tag[x] for those labels x such that, for each 
book book[X], x is the tag of one of the elements of the book. Observe how 
the free variable x carries information from the binder to the result. The same 
property is expressed below using negation, as 'there exists no book where x is 
not a sub-tag. For more examples, see (6, 10]. 

from BOOKS I= --, .book[-, .x[T]] select tag[x] 

3. TQL data model 
Every query, and every piece of data, in TQL denotes an information tree. 

An information tree (over a label set A) is an unordered tree whose edges are 
labelled over A (i.e. a[ b[ ]\c[ ]]\ a[] would be a tree with two edges labelled by a 
carrying b[ ]\c[] and the empty tree as children). We allow infinitely branching 
trees in the formalization, but we do not support them in the implementation. 
Formally, information trees are nested multisets of label-tree pairs: 

Definition For a given set of labels A, the set IT of information trees over A, 
ranged over by I, is the smallest collection such that: (a) the empty multiset, 
{}, is in IT; we will use 0 as a notation for {}; {b) if m is in A and I is 
in IT then the singleton multiset { (m, I)} is in IT; we will use m[I] as a 
notation for { (m, I)}; (c) IT is closed under multiset union I:!JjEJ M (j) where 
M E J -+ IT; we will use ParjEJ M(j) as a notation for l!JiEJ M(j), and 
I \ I' for H:Jl'. 

In examples and discussions, we will often abbreviate m[O] as m[], or as m. We 
assume that A includes the disjoint union of each basic data type of interest. 

4. TQL Syntax and Semantics 
We give here only a synthetic definition of the language; for a complete 

formal exposition see [6], for an informal one see [10]. 
In the syntax below, A and B denote formulas of the tree logic, Q denotes 

queries, and the symbol "' denotes a binary operator belonging to a fixed set 
of label comparison operators, such as=, ~. closed under negation. 

In a query f ( Q), the function f is chosen from a fixed set I set of functions 
of type IT -+ IT I set includes functions such as count, that returns the 
information tree n[O] when is applied to an information tree with n elements. 
To simplify notation, we skip the distinction between functions and their syn­
tactical representation. 
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In a formula A, variables that are not bound by 3x, 3X, or /1{, are free in A, 
and they are used (as X and x in previous examples) to pass information from 
the binder (Q F A) to the query result. Thus, in from Q F A select Q' all the 
label and tree variables that are free in A are (by definition) bound in the scope 
Q' (i.e., they score as bound variables when we consider the whole from-select 
expression). In the syntax below, we write Ev whenever the variable vis bound 
in the scope E, as in 3X.Ax or in from Q I= A select QFV(A)' Finally, a binder 
Q I= A is only well formed when no recursion variable ~ is free in A. 

Hereafter, we use Aset to denote the set of all formulae A, Xset the set of 
label variables x, X set the set of tree variables X and {set the set of recursive 
variables ~. and similarly for any other syntactic entity in Section 5. 

TQL syntax 

L ::=nIx 
A,B ::= 0 I L[AJ I AlB IT 1-.A I AAB I X l3x.A., I3X.Ax I£,...,£' I { l~t{.A~ 
Q ::= from Q I= A select Q~V(A) I X I 0 I Q I Q' I L[QJ I f( Q) 

A formula Jl~.A~ is well formed when ~ only appears positively in A~. 
The interpretation of a formula A, i.e. the set of all information trees that 

satisfy A, is only defined with respect to a pair of valuations p and c5 that give 
a value to the free variables of A. The valuation p maps label variables x to 
labels (elements of A) and tree variables X to information trees, while c5 maps 
recursion variables ~ to sets of information trees. This interpretation is defined 
by the map [A]p,o, as specified in the table below. 

To simplify the notation in the comparison case, we define the p's extension 
p+ by fixing p+(n) = n for each n E A and p+(x) = p(x); hence, we can express 
in one line all the four cases of label comparison. 

Tree Logic: formulas as sets of information trees 

[ODp.~ =del 
[T]p.~ =de/ 
[-.ADp.~ =def 
[3x.A]p, ~=def 
[X]p.~ =def 
[{]p, ~ =de/ 

{0} 
IT 
IT\ [A]p.~ 
Un~A [A]p[:r>-+n],~ 
{p(X)} 
6({) 

[L[A]]p.~ =def 
[A I B]p.~ =d•f 
[A A BDp, ~ =def 
[3X.A]p,o =d•f 
[L"' L']p,o=def 
[tL{ .A]p, 6 =def 

{p+(L)[J] I IE [A]p.~} 
{I I I' I IE[A]p.o,l'E[B]p,o} 
[A]p,o n [B]p,o 

UIEIT [A]p[X>-+I],6 
if p+(L) "'p+(L') then IT else 0 
n {s c; IT 1 s 2 [ADp.~[{ ... sj} 

We say that an information tree I satisfies a formula A with respect to p, 8, 
and write I Fp,o A, when I E [A]p,o· The definition above can be read, in 
terms of satisfaction with respect to p, 8, as follows. 0 is only satisfied by the 
information tree 0. L[A] is satisfied by m(I], if m = p+(L) and I satisfies A.T 
is satisfied by any I. A' I A" is satisfied by I iff there exist I' and I" such that 
I' I I" = I (where I is multiset union) and I' satisfies A', and I" satisfies A". 
-.A is classical negation: it is satisfied by I iff I does not satisfy A. A' A A" is 
satisfied by I iff I satisfies both A' and A". I satisfies 3x .A iff there exists some 
value n for x such that I is in [A]p[xHnJ,o· Here p[x ~ n] denotes the valuation 
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that maps x ton and otherwise coincides with p. [L ...... L'Dp,6 is the set IT if 
the comparison holds (w.r.t. p), else it is the empty set. J.LfA is satisfied by 
I iff I satisfies A{~+- J.L~.A}. Formally, [J.LfA~p,o is the least fix-point (with 
respect to set inclusion) of the function that maps any set of information trees 
S to [A~p,o(~>-tS]; the function is monotonic since any path from~ to its binder 
is required to contain an even number of negations. 

Valuations are the "pattern matching" mechanism of our query language; 
for example, m[n[O]] is in [x[X]Dp, 0 if p maps x to m and X to n[O]. We call 
binding process the process of finding all possible p's such that IE [ADp, 0• The 
implementation of the binding process is the core of the TQL processor. 

The semantics of a query is defined in the following table. A query is evalu­
ated with respect to an input valuation p, initialized with bindings for all the 
reachability roots of the database and also used to pass information from the 
surrounding from-select clauses. 

from-select is the interesting case. Here, the sub-query Q' is evaluated once 
for each valuation p' obtained by the binding process for the formula A and the 
tree Q, that is once for each valuation p' that extends the input valuation p 
(p' 2 p) and such that [QDP E [ADp',• (o is initialized with the empty valuation 
f since no recursion variable can be free in A); all the resulting trees are then 
combined using the I operator. 

Query semantics 

[ODp =d•t o [Xllp =det p(X) [m[QJDP =de/ m[[QDp) 
[x[Q]Dp =de/ p(x)[[QDPJ [f(Q)Rp =def f([QDp) [Q I Q'Dp =det [QDp I [Q'Dp 

[from Q I= Aselect Q'Dp =def Parp'E{p'l dom(p')=dom(p)UFV(A), p1 ?_p, (Q)pE(AI.• .• }[Q'Dp• 

As usual, negation allows us to derive useful 'dual' logical operators, such 
as universal quantification and disjunction. In [9] we describe the semantics 
and implementation of such operators and of path formulas, the derived logical 
operators that allow the programmer to retrieve information found at the end, 
or in the middle, of any path described by a regular expression over labels. 

5. TQL Algebra 
As happens with any declarative query language, TQL queries are translated 

into an algebraic form before execution. They are translated into terms of 
TQL Algebm, an algebra with two main sorts, tables and information trees, 
that are used to translate, respectively, binders and queries. Binder translation 
performs a "semantic inversion": it transforms the operators of the tree logic, 
whose terms denote functions from a valuation to a set of trees, into algebraic 
operators, that receive a tree and return a set of valuations (a table). For 
example, a formula x[T], that denotes the function >.p. {p(x)[I] I IE IT}, 
is translated into the table expression if Q = y[Y] then {(x~-ty)} else 0 that 
(informally) for each tree denoted by Q, returns the set containing the valuation 
(x 1-t m) if Q = m[I] for some m, I, and the empty table otherwise. 
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TQL Algebra has been defined as a tool to translate TQL but is quite 
natural and general. The table operators are essentially the standard relational 
operators [1], generalized to infinite tables and to admit IT as a domain. The 
only new operators are the two operators, if and U, that are needed to build a 
table depending on the structure of the input information tree, and two more 
that are used to define and apply recursive functions. The tree expressions 
exactly mirror operators used to build an information tree, plus the operator 
that, mirroring the behavior of from-select, uses a table to build a tree. 

In this section we will present the syntax and semantics of TQL Algebra; 
in the next sections we will show how TQL is translated into the algebra, and 
how the algebra is implemented. 

5.1. Algebra Sorts and their Semantics 
The example above shows how the TQL variables x and X become, in the 

algebra, the field names of the rows of the algebraic tables (i.e., the column 
names), while new algebraic variables (y, Y) are introduced. Hence, in this 
section, the term variable will refer to the algebraic variables y, Y, while x and 
X will be called row field names. Hereafter, the meta variable V will stand for 
either a field name X, whose universe U(X) is defined to be the set IT of 
all information trees, or a field name x, whose universe U(x) is defined to be 
the set A of all labels. The metavariable V will range over schemas, i.e. finite 
sequences V1, ... , Vn. 

The query algebra is based on four sorts: a sort of row expressions, ranged 
over by R or R v, a sort of label expressions, ranged over by £, a sort of table 
expressions, ranged over by T and Tv, and a sort of tree expressions, ranged 
over by Q. 

A row expression R v denotes a row (or valuation) over V, that is a function 
that maps each V E V to an element of U(V) (such as (x f-t m, X f-t m(O)), 
if V = { x, X}). 1 v will denote the set of all rows having schema V. 

A table expressions Tv denotes a finite or infinite table with schema V, that 
is a set of rows over V. A table expression is used to represent the evaluation 
of a TQL binding operation Q I= A; this evaluation returns a set of valuations 
with the same schema. Hence, P(1 v) denotes the set of all tables with schema 
V. The set P(1 v) contains two special tables: ov, the empty table with schema 
V, and 1 v, the full table with schema V. Finally, a label expression £ denotes 
an element of A, and a tree expression Q denotes an element of IT. 

5.2. Syntax 
The syntax is presented in the table below. The algebra variables are r, y, 

Y, M. Pedices are used to specify where variables are bound: for example, in 
letrec M = >.Y. TM,Y in Tk, M is bound in both TM,Y and Tk, while Y is 
bound in TM,Y only. 

As shown in the table below, the TQL Algebra has two forms of row ex­
pressions: the variable row expression r v, and the concatenation of two row 



428 

expressions. Row variables arise during the translation of from Q I= A select Q' 
queries, and range over the valuations obtained by the binding Q I= A; in the 
algebra, a row variable is bound by the operator ParrET Qr. 

The TQL Algebra has three label expressions. R(x) extracts a label field x 
from R; m is a label constant; y is a label variable, bound by the if operator. 

The TQL Algebra has three operators to build one-row tables, that are 
{Rv}, {(x>-t£)}, and {(X>-+ Q)}: {Rv} denotes a table, with schema V, only 
containing the row denoted by nv. {(x>-t£)} and {(X>-+Q)} both denote a 
table with one row and one column only, mapping, respectively, x to the label 
denoted by £, X to the denotation of Q. 

Then we have six table operators: universe (denoting the full table lv), 
union, cartesian product, projection, complement, and restriction, each carry­
ing schema information. They correspond to standard operations of relational 
algebra. Restriction a"f~c· Tv is subtle, since each argument C and C' of the 
comparison may be either a label £ or a field name x. When at least one 
argument is a field name x, then x must appear in the schema V of Tv, and 
restriction is used to select a subset of the rows of Tv, depending on the value 
of their x field. In the special case when both arguments are label expres­
sions, restriction returns either the whole Tv, if the comparison succeeds, or 
an empty table, if the comparison fails (evaluates to false). 

Then, the table algebra contains two operators that analyze a tree and build 
a table according to its structure; the first (if) analyzes the vertical structure 
m[/] of a singleton information tree, and the second analyzes the horizontal 
structure of an information tree, by evaluating an expression Ty• ,Y" for each 
horizontal partition Y' I Y" of the information tree denoted by Q. 

Finally, the table algebra has two operators used to translate recursive formu­
las: letrec M == ,\y. TM,Y in Tf.J computes the least fix-point of the monotone 
function ,\M.(,\Y. TM,y), in the space of functions from trees to tables, while 
M(Q) applies such a fix-point to a tree. 

The tree algebra reflects the TQL operators used to build trees. The essential 
difference is that here X does not denote a variable but the name of a field in 
the row p, while we have a new metavariable Y, ranging over the tree variables. 
A variable Y is bound by the if, U, and letrec operators. 

Query algebra, primitive operators: 

nv "= row expression 
rv variable row expression (rv E rset) 

nN'; 'R"v" row concatenation (V' n V" = 0, V' U V" = V) 

t>­
y 

X 

label expression 
label variable (y E Yset) 

label 
field extraction from the row (x E V) 

comparison argument in the restriction operator 
row field name (x E Xset) 

label expression 
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Tv"= 
{Rv} 
{(xt-t£)} 
{(Xt-tQ)} 

table expression 

one-row table 
singleton: one column/one row {V = {x}) 
singleton (V = {X}) 

1 v universe: every row over V 
Tv uv T'v binary union 
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TN' x v' · v" T"v" cartesian product (V' n V" = 0, V' U V" = V) 

fl~' Tv' projection (V <;; V') 
Co v (Tv) complement 
a 't~c• Tv restriction 
if Q = y[Y] then Tl,y else T'v test for y[Y] 
urY'IY"=Q} Ty',Y" union of Ty',Y" for decompositions Y' I Y" of Q 

letrec Mv' = .XY. T~v~, ,Y recursive definition of a func~ion (Mv' E M set) 
in T::v• from trees (Y) to tables; Mv appears positively 

in TN' 
Mv(Q) application of a recursive function to a tree 

Q .. _ .. - tree expression 

ParrvETv Qrv union of Qr v computed once for each r v of Tv 
tree variable (Y E Yset) y 

nv(X) 

0 

Ql Q' 
L:[Q] 
f(Q) 

5.3. 

field extraction from the row R (X E V) 
empty tree 
binary union 
singleton tree 
predefined function application 

Semantics of TQL Algebra 
Algebra expressions are evaluated with respect to an environment e, that as­
sociates each free label variable with a label, each free tree variable with an 
information tree, each free recursive variable with a function from trees to ta­
bles, and each row variable with a row of the right type. Formally, the type 
esem of e is defined as follows, where (T 4 U) x (T' 4 U') is the type of par­
tial functions mapping T to U and T' to U', and dom(f) = K means that 
f: K -t K'. 

'Rsem 
n_Vsem 
fsem 
e~em 
esem 

(Xset.!:.t A) X (X set.!:.t IT) 
{p I pE'Rsem, dom(p) = V} 
UvP(lv) 
(Yset.!:.t A) X (Yset.!:.t IT) X (Mset.!:.t IT.!:.t Tsem) X (rset.!:.t 'Rsem) 
{e I eEe~em• Vrv E dom(e). e(rv) E n_Vsem} 

The type of the semantic function Ae.A_. ~-]e is: esem -t (('Rset !0.-t 'Rsem) x 
(.Cset.!:.t A) X (Qset.!:.t IT) X (Tset.!:.t Tsem)). Most of the algebra semantics is 
straightforward. The crucial point is the information flow among the different 
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sorts: tables depend on tree expressions when a singleton table is built, and 
when a tree analysis operation (if or U) is performed. Information flows from 
table expressions to trees when ParreT Qr is evaluated, and it flows through 
the row variable r. 

letrec involves the computation of a minimal fixpoint, that is well-defined 
since the function mapping f' to >.t: 1/.~T~e[Y~t][Mv~t·] is monotone, be­
cause Mv only appears positively inside 7. We report here a couple of cases, 
while the full table is in (9]. 

The semantics of some table and tree expressions: 

ll.a~~.civ .lle {p I p E 11.7v .IJ., p(x) ~ ll.C.IJe} 
ll.letrec Mv = .\Y. 7 in i'lJe let f = minfixf'(,\t: I7.11.7.1Je[Y>-+t][MV>-+f'l) 

in 11./'.IJe[MV>-+fJ 
ll.Mv(Q).IJ. 
ll.Par.er QlJ. 

e(Mv)(ll.Q.IJ.) 
= Parpell.Tlle [Q]e[r..-+p] 

5.4. Derived Operators 
As for TQL, in the actual system there are many more algebraic operators 

that can be defined in terms of the primitive ones. In the translation of base op­
erators of TQL (Section 6) the only derived operators we use are some variants 
of if and a generalized natural join operator 7v ~TN' (defined in (9)). 

6. Translation of TQL into TQL Algebra 
The translation of a formula A is the kernel of the translation problem. By 

definition, a formula defines a function from a substitution to a set of trees, but 
we want to transform it into an algebraic expression which, applied to a tree, 
yields a set of substitutions. 

In detail, we assume that the algebraic expressions Q and 'R, that compute 
the database Q and the input substitution p, are given. We define now the 
translation [ A]Q,'I?.V,e of a formula A as an algebraic expression that computes 
the set of all substitutions p' such that [Ql, F(p;p'), < A, i.e. the rows that are 
passed from the binder Q t= A to the select branch of a query. In order to deal 
with recursive formulae, we have to add a third parameter"' : {set-4 M set that 
maps logical recursive variable to the algebraic ones. For each "f, i' describes 
its schema, i.e. i'( e) = V {:} "'(e) = Mv, for some M. 

The transl~tion [ A]Q,'RY;y depends on a function S(A, V, i') that computes 
the schema of [ A]Q,Rv,"Y (essentially, it subtracts V from FV(A), but recursion 
is subtle; see (9]). 

We shortly describe some cases of the binder translation algorithm. T re­
turns the table t0, the table that, when joined to any other table, does not 
exclude any row. A clause Q t= 0 returns the table 1° if Q is 0, and the table 
00 otherwise. The operator 1\ is interpreted by table join. The translation 
[X]Q,Rv,"Y depends on which variables are already bound by nv: if X be­
longs to V, then the resulting expression must have an empty schema, hence 
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can only be 1° or o0 (depending on whether Q coincides with RY(X)); oth­
erwise, the expression must denote a table mapping X to Q. [n[AnQ,nv,1 

denotes a table QS(A,V,i) if the information tree denoted by Q does not match 
n[I'], otherwise it denotes the same table as [A]y,RY,1 , evaluated in an envi­
ronment that binds Y to I'. If xis in V, the translation [x[A]]Q,'R.V,1 goes 
essentially as in the previous case. Otherwise, the table denoted by [ A]y,nv,1 
has to be joined with the one mapping x to the label y (table join corresponds 
to conjunction). [ ·A]Q,nv,1 is the table with all the rows that do not satisfy 
[ A]Q nv,"(' Comparison translation uses the abbreviation nr(L), which stands 
for n\r(L) if L E V, and for L otherwise (when L is a variable not in V, or 
a constant). [A I B]Q,nv,'Y is executed by considering every possible decom­
position I' I I" of the denotation of Q, and by collecting all rows that satisfy 
both I' F= A and I" F= B. The nesting U(- 1>4 _) of the algorithm corresponds to 
the nesting "there exists a decomposition I' I I" such that both I' F= A and 
I" F= B hold". For existential quantification, [3X. A]Q,nv,'Y can be computed 
as nFV(A)\{X}~AllQ,RV,'Y' because an information tree I belongs to [3.:\:'.A]p,O 
if, for some I', IE [A]p[X,....I'],o· 

Observe that the translation actually depends only on the shape of A and 
on the schema V of nv, while Q, nv and "Yare only 'plugged' somewhere, 
without ever analyzing their shape. 

The translation of recursion is the trickiest bit. In [ A]y,nv,'Y[€,....MJ• the M 
variable corresponds to ~, hence it means 'here you evaluate the translation of A 
again'. However, in general, you have to evaluate it against a different tree, since 
some of the logical operations (and their algebraic counterparts) 'walk' inside 
the input database; for example, m[I] F= m[A] is reduced to I F= A, changing 
both the formula and the model (m[A] -+ A, m[I] -+ I). For this reason, 
the translation process [ A]Q,nv,1 analyzes A and produces a translation by 
keeping track, at any time, of the 'current tree expression' Q. Therefore, the 
translation of the recursion body A is performed parametrically with respect 
to the actual input tree (,\Y.~ A]y,nv,'Y[;HMj), and, whenever e is met, the 
corresponding M (i.e. "Y(~)) is applied to the current input tree Q. 

Binder and query translation 

~T~Q,7~.V,-y =def 
~O~Q.nv,, =def 
~A A B~Q.nv,, =def 
~ x~Q.nv,, =def 
~ x~Q.nv,, ==def 
~ n[A]]Q,nv,, ==def 
~ x[A]~Q.nv,, =de/ 
~ x[A]]Q,nv,, =def 

~ -,A~Q.nv,, =def 

~L ~ L'~Q.nv,,=def 

10 
if Q == 0 then 1° else o0 

ffAll v IXIS(A,V,)'),S(B,V,i) ffBll v 
II IIQ,n ,-y II IIQ,n ,-y 
if Q == R( X) then 1° else 0° 
{(X>-+Q)} 
if Q == n[Y) then ~A~y.nv,, else OS(A,V,i) 

if Q = R(x)[Y) then ~A~y,nv,, else o5 <A.V.i) 

if Q = y[Y] 
then {(x>-+y)} IXI{x},S(A,V,i) ~A~ v Y.n ,, 
else OS(x[A),V,)') 

CoS(A,V,i) m A~Q.nv,) 
S(L~L',V,-'r) 1s(L~L',V,i) 

an¥<LJ-n¥(L'J 

if X E V 
if Xrf.V 

ifx E V 
ifx rf.V 
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~A I B~Q,1lY,'Y =def 

~3x. A~Q,RV,'Y =def 

~3X. A~Q,RV,'Y =def 

lfJt{.A~Q,RV,'Y =def 

lf{~Q,RV,'Y =def 

lfO~nv =def 0 

US(AJB,V,i') (ll"All ,..,.S(A,V,i'),S(B,V,i') ll"Bll ) 
{:)I'J:V"=Q} II 11)11 ,RV,'Y "" II II:V",Rv,'Y 

nS(A,V,i') IT All 
S(A,V,i')\{x}ll IIQ,RV,'Y 

nS(A,V,i') IT All 
S(A,V,i')\{X}II IIQ,RV,'Y 

letrec M 8 (1'(.A,V,i') = >.Y.~A~;v.nv,-y[(>->M]in M 8 (1'(.A,V,i'l(Q) 

-y({)( Q) 

~X~nv =def Rv(X) 

lfm[Q]~nv =def m[lfQ~nv] 

lff(QHnv =def f(lfQ~nv) 

~x[QJllnv =def RV(x)mQ~nv] 

~Q I Q'~nv =def ~Q~nv I ~Q'~nv 

The following theorem states the query translation correctness. The core of 
the proof is the binder translation correctness statement [9], needed in the 
from-select case. 

Theorem 1 Let Q E Q8et, e E esem, and 'R.Y E 'R'f.t· Then: 

FV('R.V) ~ dom(e), FV(Q) ~ V =? [QD.(nv) = [[fQ~nv ~. 

1. Implementing the Algebra 
The essential problem we have to face is the representation of infinite ta­

bles and trees. Our solution is not complete; we actually implement a finite 
representation of infinite tables, but with the following limitations: (i) we only 
deal with finite trees; if the user runs a query that would need to evaluate a 
sub-query an infinite number of times, the evaluation is aborted; (ii) we do 
not implement general comparison between label expressions, but only equal­
ity comparison (and its negation) when at most one of the two compared label 
expressions is an unbound label variable, and full comparison when none of the 
two label expressions is an unbound label variable; (iii) recursion evaluation 
may loop forever; guarded recursion (when the recursive variable is separated 
from its definition by a L[_] operator) is safe, however, and it seems to be ex­
pressive enough for most purposes, including all queries that use path formulas. 

A finite information tree is simply represented by an implementation of 
nested multi-sets; we keep the semantic notation (0, j, m[J]) for the imple­
mentation of information tree operators and of labels (m). 

The implementation of tables is the interesting part, since we have to repre­
sent infinite tables, and complex operations over them. A table is represented 
by a structure called disjunctive constraint, closely related to proposals in the 
field of constraint databases ((14], (15]). The constraint algebra we define here, 
however, does not seem to have been studied before. 

A constraint is, essentially, a table with schema V where each cell contains 
either a value or the finite representation of a cofinite set. For example, an 
infinite table containing [(x~l),(X~m[O])] and [(xMm),(X~J)] for any I 
but 1[0], m[O] would be represented by the following constraint: 
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{m[O]} i.e.: { [x:= {I}, X:= { m[O]}], [x:= { m }, X:= {1[0], m[O]}]} 
{ 1[0], m[O]} 

Formally, a simple constraint R is a tuple of sets S;, each labelled with a 
different variable V;, written as [V1 := Sr, ... , Vn := Sn], and such that: each 
V; is either a label variable or a tree variable, and S; is, respectively, a set of 
labels or a set of information trees; each S; is either a singleton or the cofinite 
complement P of a finite set P. The set dom(R) =def {V;} iEI is the domain 
of the simple constraint. Each simple constraint R defined on a domain V 
represents a set of rows p v; in detail R = [V1:= S1 , •.• , Vn:= Sn] represents the 
set of all rows p over V that satisfy the constraint: 

[R] =def {pI pE1dom(R), p(Vi.)ESr 1\ ... 1\p(Vn)ESn} 

A disjunctive constraint Tv (or simply constraint) is a set of simple constraints, 
each with the same domain V. It represents the union of all the sets of rows 
represented by its simple constraints. 

Given this model, for each operator op defined on tables in Tset we have to 
define (at least) an implementation op that works on disjunctive constraints. 
In [9] we describe them, in particular we describe original and effective algo­
rithms for complement and coprojection (the dual operator of projection). 

8. Related Works and Conclusions 
There are many algebras dealing with semi-structured data and XML [11, 

8, 3, 16, 13, 2], but only some of them have a documented implementation [8, 
11, 13]. These algebras operate on trees and tables of trees too, although some 
of them represent tables as trees or forests. 

However, due to the specific, logic-based, nature of TQL, none of the other 
algebras has the operators we need to support our language. Namely, TQL 
Algebra is the only one that supports: (i) logical complement operator, that is 
a complement that is not defined on the active domain of the DBMS but on the 
infinite sets A and IT; (ii) dual operators, such as co-projection, that allows 
the translation of universal quantification even in presence of free variables; 
(iii) specific fix-point operators to deal with horizontal and vertical recursion; 
(iv) iterators allowing analysis of the horizontal structure of a forest. 

Finally, due to formal approach we have taken, our algebra is the only one 
where the correctness of the language translation has been proved. 

The work on design and implementation of TQL is far from finished. At 
the language level, we are currently working on (i) extensions of the language 
to deal with order and with trees having a superimposed graph structure; (ii) 
adding a type and constraint system to the language; (iii) defining a TQL 
sublanguage that, by exhibiting a lower expressive power, may be implemented 
on more standard algebras. 

At the implementation level, we are working towards the design of better 
persistent data structures and physical operators, endowed with a cost model, 



434 

to allow cost-based physical optimization. The current TQL system is available 
at http: //tql. di. unipi. it/tql. 
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