
MODEL CHECKING BIRTH AND DEATH

Dino Distefano, Arend Rensink, Joost-Pieter Katoen
Faculty of Computer Science, University of Twente
P. 0. Box 217, 7500 AE Enschede, The Netherlands
E-mail: {ddino, rensink, katoen}@cs.utwente.nl

Abstract This paper proposes Allocational Temporal Logic (AUTL) as a formalism to
express properties concerning the dynamic allocation (birth) and de-allocation
(death) of entities, such as the objects in an object-based system. The logic is
interpreted on History-Dependent Automata, extended with a symbolic repre­
sentation for certain cases of unbounded allocation. The paper also presents a
simple imperative language with primitive statements for (de)allocation, with an
operational semantics, to illustrate the kind of behaviour that can be modelled.
The main contribution of the paper is a tableau-based model checking algorithm
for AUTL, along the lines of Lichtenstein and Pnueli 's algorithm for LTL.

1. Introduction
One of the aspects of computation that state-of-the-art model checking does not

deal with very well is that of dynamic allocation and deallocation (birth and death) of
entities. This is especially true if the number of entities is not known beforehand, or
even unbounded. Though there are now calculi (such as the 1!'-calculus [15]) that can
express the generation of fresh names, as well as models (such as History-Dependent
automata [16]) that can describe both the birth and the death of entities, what has been
missing so far is a logic where these concepts are captured as primitives; a logic that
should be as fundamental to reasoning about dynamic allocation as standard proposi­
tional logic is to reasoning about a fixed state space.

An attempt to formulate such a logic is presented in this paper. Called alloca­
tional temporal logic (AUTL), it has the following features: (i) Entity variables x, y,
interpreted by a mapping to the entities existing (i.e., alive) in a given state. The inter­
pretation is partial: a variable not mapped onto an existing entity stands for an entity
that has died. (ii) Entity equations x == y (where x, y are entity variables), asserting
that x and y refer to the same entity. This cannot hold if either x or y has died; hence
the entity equations express a partial equivalence of entity variables (symmetric and
transitive, but not reflexive). (iii) Entity quantification 3x.¢, which holds in a given
state if c/J holds for some interpretation of x, provided that xis alive. (iv) A predicate
x new to express that the entity referred to by xis fresh, i.e., newly born. In addition,
AL't'TL has the standard LTL temporal operators.

R. Baeza-Yates et al. (eds.), Foundations of Information Technology in the Era of Network
 and Mobile Computing © Springer Science+Business Media New York 2002

436

The logic is interpreted over high-level allocational B uchi automata (HABA) which
extend HD-automata [16] with a predicate for the unboundedness of (the number of
entities in) a state, and with a (generalised) Biichi acceptance condition.

Together with the logic AUTL, the main contribution of this paper is that the
model-checking problem for AliTL is shown to be decidable. In particular, we present
a tableau-based model-checking algorithm that decides whether a given AUTL-for­
mula holds for a given HABA. Our algorithm extends the tableau-based algorithm for
LTL [14]. To the best of our knowledge, this yields the first approach to effectively
model-check models with an unbounded number of entities. This is of particular inter­
est to e.g. the verification of object-oriented systems in which the number of objects
is typically not known in advance and may be unbounded. Furthermore, reasoning
about (de)allocation of fresh names is relevant also in relation to privacy and locality
as discussed in, e.g., [1, 5, 15].
Organisation of the paper. This paper introduces the logic (Section 2) and HABA
(Section 3), as well as a simple imperative language, featuring statements for the al­
location and deallocation of entities, with an operational semantics in terms of HABA
(Section 4). The latter provides an intuition about the sort of behaviour that HABA
can model. The main contribution of the paper is the proof of AUTL model checking
property (Section 5). A discussion about related and future work completes the paper
(Section 6). Proofs are reported in the long version of this paper [9].

2. Allocational temporal logic
Syntax. Let L Var be a countable set of logical variables ranged over by x, y, z, and
Ent be a countable set of entities ranged over by e, e', e1 , • • .. Allocational Tempo­
ral Logic (AUTL) is an extension of propositional LTL [17] that allows existential
quantification over logical variables that can denote entities, or may be undefined. For
x E L Var, the syntax of AUTL is defined by the following grammar:

c/J ::= x new I x dead I x = x 13x.c/J l..,c/J I c/J V c/J I Xc/J I c/J U c/J

The operators have the following intuitive meaning. Formula x new holds if the entity
denoted by x is new in the current state. Formula x dead holds if the entity denoted
by x has died. Formula x = y holds if variables x and y denote the same entity in the
current state; x = x is violated if x is undefined, i.e., if x does not denote any entity.
3x.rp is valid in the current state if there exists an entity for which rp holds if assigned
to x. X (next) and U (until) are the standard LTL operators. We denote x f. y for
..,(x = y), x alive for -,(x dead), and x old for x alive 1\ -,(x new). The other boolean
connectives and temporal operators F (eventually) and G (always) are standard.

Semantics. An allocational sequence a is an infinite sequence of sets of entities
E0 E 1E 2 · · • where E; ~ Ent, fori E N. Let a; = E;Ei+l · · ·. For given a, Ef
denotes the set of entities in the i-th state of a. The semantics of AUTL-formulae
is defined by a satisfaction relation a, N, (J f: c/J where a is an allocational sequence,
N ~ Eg is the set of entities that is initially new, and (J : LVar __, Ent is a partial
valuation of the free variables in rp. Let Nj denote the set of new entities in state i,
i.e., Ng =Nand Nj+1 = Ef+1 \Ef, and let Bf : LVar __, Ent denote the valuation
at state i, where Bf(x) = B(x) if B(x) E Ek for all k ~ i, and is undefined otherwise.

Model Checking Birth and Death 437

The condition avoids that contradictions like 3x.X(x dead => Xx alive) are fulfilled.
Note that once a logical variable is mapped to an entity, then this association remains
along a unless the entity dies, i.e., is deallocated. Thereafter, although the entity may
be reallocated, the logical variable remains undefined. The satisfaction relation I= is
defined as follows:

a,N,() I= xnew
a, N, () I= x dead
a,N,() I= x = y
a, N, () I= 3x.¢
a,N,() I= •¢
a,N,() I=¢ V'I/J
a,N,O I= X¢
a,N,O I= ¢>U'IjJ

iff x E dom(O) and O(x) EN
iff x ~ dom(O)
iff x, y E dom(O) and O(x) = O(y)
iff 3e E E0 : a,N,O{e/x} I=¢
iff a, N, () 'F ¢
iff either a, N, () I= ¢or a, N, () I= 'ljJ
iff a 1, Nf, Of I=¢
iff 3i: (ai,Nf,Bf I= 'ljJ andl;lj < i: aj,Nj,Oj I=¢).

Here, 0{ ejx} is defined as: B{ ejx }(x) = e and 0{ ejx }(y) = O(y) for y i= x.

Example 2.1. Properties concerning dynamic allocation and de-allocation can be for­
malised in AUTL. For example, formula G(l;lx.l;ly.l;lz.(x = y V x = z V y = z)) as­
serts that the number of entities that are alive never exceeds 2, while G((F:Jx.x new) 1\
l;lx.X(x alive)) states that the number of entities that are alive grows unboundedly. As
a more involved example,

x alive U 3y.(y new 1\ (x alive U 3z.(z new 1\ y i= z 1\ x alive)))

states that before x is deallocated, two new entities will be allocated. Note that for­
mulas like G(x dead => X(x dead)), stating that entities cannot be allocated once they
are de-allocated, and X(x dead V x old) are tautologies.

Folded allocational sequences. In AUfL-formulae, entities can only be addressed
through logical variables and valuations of variables (i.e., entities) can only be com­
pared in the same state. These observations allow a reallocation (re-denomination)
of entities from one state to its next state, as long as this is done injectively. For
E, E' <:;; Ent, a reallocation>. from E toE' is a partial injective function>. : E --' E'.
A folded allocational sequence is an infinite alternating sequence Eo.\oE1:\1 · · ·,

where A; is a reallocation from E; to Ei+1 for i ~ 0. We write .\f for the reallo­
cation function of a in state i. Note that for folded allocational sequence a, N 0 = N,
and Nf+I = Ef+ 1 \cod(.\f). Similarly, 00 = () and Of+1 = :\f o Bf. Thus, entity e
is considered to be deallocated if e !/ dom(>.). Using these adapted definitions of N
and B, a satisfaction relation for AUTL can be defined in terms of folded allocational
sequences precisely in the same way as above. The two kinds of sequences are equiv­
alent models for AUTL-formulae [9]. The use of reallocations yields a local notion
of entity identity that in turn allows minimisation of models [16].

3. High-level Allocational Biichi automata
In this section, we introduce an extension of (generalised) Bilchi automata. High­

level Allocational Bilchi automata (HABA) generate folded allocational sequences

438

and are inspired by History-Dependent automata [16]. HABA are basically Btichi
automata where to each state a set of entities is associated. These entities, in turn,
serve as valuation of logical (entity) variables.

Let oo ¢ Ent be a special, distinguished entity, called black hole. Its role will be­
come clear later on. We denote E 00 = E u { oo} for arbitrary E s; Ent. Furthermore,
forE, E 1 ~ Ent, a oo-reallocation is a partial function A : E 00 _, E'f such that
A(e) = A(e') f. oo ::::} e = e' for all e,e' E E and oo E dom(A) ::::} A(oo) = oo.
That is, A is injective when mapping away from oo and preserves oo.

Definition 3.1. A High-level Allocational Buchi Automaton (HABA) 1l is a tuple
(X, Q, E,-t, I, :F) with

• X ~ LVar a finite set oflogical variables;

• Q a (possibly infinite) set of states;

• E : Q -t 2Ent x Jm, a function that associates to each state q E Q a finite set
Eq of entities and a predicate Bq which holds iff there is a bounded number of
entities in q.

• -t s; Q x (Ent00 _, Ent00) x Q, such that for q -t ~ q', A is an oo-reallocation
from E';? toE'; with (i) oo E dom(,\) iff Eq = (E, ff) and Eq' = (E', ff), and
(ii) oo E cod(,\) ::::} Eq' = (E', ff).

• I : Q _, 2Ent x (X _, Ent) a partial function yielding for every initial state
q E dom(I) an initial valuation (N, 9), where N £;; Eq is a finite set of entities,
and 9 : X _, Eq is a partial valuation of the variables in X;

• :F ~ 2Q a set of sets of accept states.

We write q -t ~ q' for (q, A, q') E -t. We adopt the generalised Btichi acceptance
condition, i.e, p = q0A0q1 A1 q2 • • • is a run of HABA 1l if q; -t ~ Qi+l for all i E N
and I { i I q; E F} I = w for all F E :F. Predicate B q holds in state q iff the number of
entities in q is bounded (denoted r q 1). An unbounded state q (denoted L qj), possesses
the distinguished entity oo that represents all entities that may be added to q. High­
level state q thus represents all possible (concrete) states obtained from q by adding a
finite number of entities to Eq. If a transition to state q' maps entities onto the black
hole oo, these entities cannot be distinguished anymore from there on. Moreover, if
q -t ~ q', entities in the black hole are either preserved (if L q 'J), or are destroyed (if
r q'l). The black hole thus allows to abstract from the identity of entities if these are
not relevant anymore. The initial valuation (N, 9) associated to an initial state facil­
itates the generation of models for AUTL-formulae. This is shown in the following
definition that formalises the correspondence between runs of the HABA and folded
allocational sequences.

Definition 3.2. A run p = q0 A0q1A1 .. · of HABA 1l = (X, Q, E,-t, I, :F) gener­
ates an allocation triple (u, N, 9), where u = E 0 ,\g E1,\f · · · is a folded allocational
sequence, if there is a generator, i.e., a family of functions rjJ i : E; -t E~ satisfying
for all i ~ 0:

1. Ve,e' E E;. (r/J;(e) = r/J;(e') f. oo::::} e = e') 4. A; o r/J; = rPi+l oAf
2. VeE Ei+l· (r/Ji+l(e) = oo::::} e E cod(Ai)) 5. Eq, ~cod(¢;)
3. rq;l::::} (VeE E;: r/J;(e) f. oo) 6. I(q0) = (¢0 (N), ¢o o 9)

Model Checking Birth and Death 439

In the previous definition, notice the difference between oo-reallocations A; of HABA
transitions and reallocations Af of folded allocational sequence a. Let runs(1-l) denote
the set of runs of 1-l and .C(tl) = { (a, N, 6) I 3p E runs(tl) : p generates (a, N, 6)}.

Example 3.3. The picture just below depicts a HABA with X = {x,y}. Squares
denote bounded states, (large) circles denote unbounded states, small circles denote
entities, and accept states have a double boundary. Here for simplicity we assume
I.FI = 1. Dashed arrows indicate oo-reallocations. In initial states, dotted lines repre­
sent 6, and filled circles denote new entities. In q1, variable x denotes (old) entity e1,
while y is undefined. Entity e 3 in state Q2 represents the same entity as e 1 in Q1. while

e1 (in q2) represents a new entity. Run
Q1A12(q2A22)w generates sequences where the
initial entity dies after the second state, while

!-----·-··_·---~ the new entity created in the second state will
~ be alive forever. After the second state, at ev-

qg

.\22 :, ___ : -"•-~- _ ery step, a new entity is created and it will be
.• oo alive only in one state. Run Q1A14(Q4A44)w

generates sequences where the entity in the ini­
tial state dies immediately. Once q4 is reached,
a new entity e3 is created at every step, and in
this run thus the number of entities grows un­
boundedly,

4. Programming allocation and deallocation
This section introduces a simple programming language .C capturing the essence of

allocation and deallocation. It is used for providing an intuition about the setup and
the sort of behaviour that can be modelled by HABA. The operational semantics for .C
is defined using HABA as underlying model.

Syntax. For PVar a set of program variables with v, v; E PVar and PVar n LVar =
0, the set of statements of .Cis given by:

(p E) .C
(s E) Stat

(bE) Bexp

decl v1, ... ,vn: (s1 II·· ·II sk)
new(v) I del(v) I v := v I skip Is; s I if b then s else s fi
I while b do s od
v = v I b v b I ·b

A program p is a parallel composition of a finite number of statements preceded by
the declaration of a finite number of global variables. new(v) creates (i.e., allocates) a
new entity that will be referred to by the program variable v. The old value of v is lost.
Thus, if v is the only variable that refers to entity e, say, then after the execution of
new(v), e cannot be referenced anymore. In particular, e cannot be deallocated any­

more. In other words, there is no automatic garbage collection. del(v) destroys (i.e.,
deallocates) the entity associated to v, and makes v undefined. The assignment v := w
passes the reference held by w (if any) to v. Again, the entity v was referring to might
become unreferenced (for ever). Sequential composition, while, skip, and conditional
statement have the standard interpretation. For the sake of simplicity, new and del

440

create and destroy, respectively, a single entity only; generalisations in which several
entities are considered simultaneously can be added in a straightforward manner.

Example 4.1. The following program, where g(i) = (i+l) mod 4, models the imple­
mentation of a naive solution to the dining philosopher problem:

DPhil - decl Vt, v2, va, V4 : Ph, II Ph2 II Ph a II Ph4) where
Ph; while tt do if (v; alive 1\ Vg(i) alive) then

del(v;); del(vg(i)); new(v;); new(vg(i)) elseskipfi
od

The variables v; and Vg(i) represent the left and the right chopstick of philosopher Ph;,
respectively. If v; and Vg(i) are defined 1, then the chopsticks are on the table. Taking
the chopsticks from the table is represented by destroying the corresponding entities,
while putting the chopsticks back on the table is modelled by creating new entities.
Some properties that can possibly be satisfied by this program, stated in AUTL, are:
FG('v'x.'v'y.(x = y)), expressing that eventually there is only one chopstick on the table
(an inconsistency), or G('v'x.'v'y.'v'z.(x old 1\ y old 1\ z old 1\ (x = y V x = z Vy = z))),
expressing that among the philosophers there exists a greedy impostor who always
eats and never thinks (an unfair computation).

Operational semantics. A (symbolic) semantics of our example language is given
in terms of HABA where entities are represented by a partial partition of a subset of
PVar; that is, the set E of entities is of the form {X1 , •.. ,Xn} with X; ~ PVar
and X; n Xi = 0 (fori i- j). Note that we do not require U; X; = PVar which
would make it a full partitioning. Variable v is defined iff v E X; for some i. Then,
v refers to the entity represented by the set Xi. Otherwise, vis undefined. Using this
approach, there is no need to represent (in a state) a mapping from the set of program
variables onto the entities.

Let Par denote the compound statements, i.e., r(E Par) ::= s I r II s. The
semantics of p = decl v,, ... , Vn : (s, II · .. II Bk) is the HABA 1ip = (0, Q, E,--+
,I, :F) where

• Q ~ Par x 22PV••·, i.e., a state q = (r, E) consists of a compound statement
and a set of entities; we have lqJ iff 0 E E (i.e., we represent the black hole
by 0).

• E(r,E') = E'\{0} andJ(s1;skip II .. ·II sk;skip,0) = (0,0);

• --+ is the smallest relation defined by the rules in Table l such that for r, E--+ >.
r', E' we have 0 E E =? 0 E dom(A).

• letF; = {(s~ 11···11 sA,, E) E Q Is;= skipV s; =while b do s od;s"} and

F; = { (s~ II · · · II sA,, E) E Q I s: =skip V s; = s; while b do sod; s"}; then

;: = {F; 1 o < i ~ k} u {F; 1 o < i ~ k}.

•Notice that v dead iff --.(v = v). Again, here v alive stands for --.(v dead).

Model Checking Birth and Death 441

Table 1. Operational rules for the semantics of£.

.A:X;>-+{X;\{v} ifw~X;
l-v-: =-w-, -=E,_---t->.-----:-sk7i p-, 7{ x=-=-,7\ 7{ v'""}7/ w---.~-:X:-:-,--}U{--;-::X-::-; ,--,U-,-{ v'}7/ w-E-:X~;} X; U { v} otherwise

-n-ew-c(--cv)-, E=---t->.-s,.-,ki-p,-.,.{ X=-c; \--,-{ v....,}'7C/ X07;_E_E=}:-U----,..,{ {~v }~} >, (Xi) = X;\ { v}

vEX; .A·X·>-+{ Xi
del(v),E--t>. skip, (E\{Xi}) · J l.

ifj ¥ i
otherwise

while b do 8 od, E --t;d if b then 8i while b do 8 od else skip fi, E skip; s2, E --t;d 82, E

1 ~ j ~ k 1\ 8j,E--t>. 8j,E'
SI//···11 8j 11· .. 11 sk,E--t>. 81 11···11 8j 11···11 8k,E' II skip,E--t;d II skip,E

V(b)(E) -.V(b)(E)
if b then 81 else 82 fi, E --t;d 81, E if b then s1 else s2 fi, E --t;d s2, E

A few remarks are in order. 1/.p has a single initial state s1; skip II · · · II sk; skip,
where each sequential component is terminated by a skip statement. The set of accept
states for the i-th sequential component consists of all states in which the component
has either terminated (si = skip) or is processing a loop (which could be infinite).

The condition on 0 in the definition of--t can be seen as a kind of "preservation
law" of the black hole. In fact, once a state explodes into an unbounded one, the black
hole generated by this explosion will last forever. Note that in Def. 3.1 this is not
always the case. The semantics of the boolean expressions is given by the function
v : Bexp X 22 Pva. --t]$defined by V(v = w, E) = tt if :JXi E E : v, w E xi and
false otherwise, V(b 1 V b2 ,E) = V(b1,E) V V(b2 ,E), and V(--.b,E) = •V(b,E).
Note that II skip is a shorthand for skip II . . . II skip. Whenever entity Xi is not
referenced by any program variable, the state will become unbounded. Entity Xi will
then be mapped by ..\ onto 0 (recall that in the special case of 11. P we represent oo
by 0), which can be viewed as a "black hole" collecting every non-referenced entity.
These entities share the property that they cannot be deallocated anymore, thus they
will have the same future, i.e, they will be "floating" in the black hole ad infinitum.

Although, there may be an unbounded number of entity creations, for the semantics
defined in this section we have the following result:

Theorem 4.2. For any p E £: 1/.p is finite state.

In [9] it is shown that IQH. I is exponential in the number of sequential components of
p and super-exponential in IPVarl.

5. Model-checking A.UTL
In this section, we define an algorithm for model-checking Aet'TL-formulae against

a HABA. The algorithm extends the tableau method for LTL [14] to AffTL.

442

We will evaluate AUTL-formulae on states of a HABA by mapping the free vari­
ables of the formula to entities of the state. It should be clear that, in principle, any
such mapping resolves all basic propositions. In turn, the basic propositions determine
the validity of arbitrary formulae. There are, however, two obstacles to this principle,
the first of which is slight and the other more difficult to overcome.

• It is not always uniquely determined whether or not an entity is fresh in a state.
Our model allows states in which a given entity is considered fresh when ar­
riving by one incoming transition (since it is not in the codomain of the real­
location associated with that transition), but not when arriving by another (the
entity is the image of an entity in the previous state). This obstacle is dealt with
by duplicating the states where such an ambiguity exists.

• For variables (of the formula in question) that are mapped onto entities in the
black hole, entity equations are not resolved, since it is not clear whether the
variables are mapped to distinct entities that have imploded into the black hole,
or to the same one. To deal with this obstacle, we introduce an intermediate
layer in the evaluation of the formula on the state. This additional layer consists
of a partial partitioning of the free variables; that is, a set of nonempty, disjoint
subsets of the set of all free variables. An entity equation is then resolved by
the question whether the equated variables are in the same partition. It is the
partitions, rather than the individual variables, that are mapped to the entities.

Assumptions. The duplication proposed above to overcome the first of these obstacles
is straightforward; we will not work it out in more detail in this paper (see [9] for
details). In the remainder, we assume that the necessary duplication has been carried
out already: that is, we will assume that for every state q E Q there is an associated
set Nq ~ Eq that contains the entities that are new in q; i.e., such that

a) q' -t >. q implies Eq \cod(A) = Nq b) I(q) = (N,O) implies N = Nq.

Note that, because of b), we can henceforth assume that I has just 0 as its image- the
component N is now uniquely associated with q. Another assumption needed below
is that every quantified variable actually appears free in the subformula; that is, we
only consider formulae 3x.4J for which x E fv(4J). Note that this imposes no real
restriction, since 3.x.4J is equivalent to 3x.(x alive 1\ 4J).

Valuations. A valuation of a formula in a given state is an interpretation of the free
variables of the formula as entities of the state. Such an interpretation establishes the
validity of at least the atomic propositions within the formula, i.e., the sub-formulae of
the form x = y (which holds if x andy are interpreted as the same entity) and x new
(which holds if x is interpreted as a fresh entity).

Definition 5.1 (valuations). Let E ~ Ent 00 • An E-valuation is a triple (4J,3, IJI)
where 4J is an AUTL-formula and

• 3 is a partial partitioning of fv (4J); that is, 3 = {X 1 , ..• , X n} such that 0 C
X; s;; fv(4J) for 1 ~ i ~ nand X; n Xi = 0 for 1 ~ i < j ~ n (but not
necessarily Un Xn = fv(rj>), which would make it afull partitioning).

Model Checking Birth and Death 443

• 8: :=: -t E is a function mapping the partitions of 3 to E, such that 8 is
injective where it maps away from oo- i.e., 8(X;) = 8(Xj) -=J oo => i = j.

This is easily lifted to the states of a HABA: (qi, :=:, 8) is a q-valuation (for some
q E QH.) if it is an Eq-valuation (if fql) or E~-valuation (if lqJ). We write Vq(qi),
ranged over by v, to denote the set of q-valuations of qi, and Vq to denote the set of all
q-valuations. We denote the components of a valuation vas (¢v, 3v, 8v)·

A technicality: below we will need to restrict partial partitioning :=: and mappings
8 of a valuation (qi, :=:, 8) to subformulae of qi, which means restricting the underlying
sets of (free) variables upon which:=: and 8 are built to those of that subformula. For
this purpose, we define:=: r 1/! = {X n fv(1j!) I X E :=:,X n fv(1j!) t= 0} and e r 1/! =
{(X njv(1j!),8(X)) I X E dom(8),X njv(1j!) f= 0}.

The atomic proposition valuations of a state q of a HABA are those q-valuations of
basic propositions of AUTL (i.e., freshness predicates and entity equations) that make
the corresponding properties true.

Definition 5.2. Let 1l be a HABA and Jet q E Q 1-1. be arbitrary. The atomic proposition
valuations of q are defined by the set A V q ~ Vq of all triples (¢, :=:, 0) for which one
of the following holds:

• ¢ = tt;
• ¢=(x=y),andx,yEXforsomeXE3;

• qi = (x new), and x EX E :=:implies 8(X) E Nq.

Closure. Along the lines of [14], we associate to each state q of a HABA sets of
q-valuations, specifically aimed at establishing the validity of a given formula ¢. For
this purpose, we first collect all AUfL-formulae whose validity is possibly relevant
to the validity of a given formula ¢ into the so-called closure of qi.

Definition 5.3. Let qi be an AUTL-formula. The closure of qi, CL(qi), is the smallest
set of formulae (identifying ••1/J with 1/J) such that:

• ¢, tt, ff E CL(¢);

• •1/! E CL(¢) iff1j! E CL(¢);

• if 7/!1 V 7/!2 E CL(¢) then 1/!1, 1/!2 E CL(¢);
• if:lx.1j! E CL(¢) then 1/! E CL(¢);

• ifX1jJ E CL(qi) then1jJ E CL(¢);

• if •X1/J E CL(qi) then X•1/J E CL(qi);

• if1/J1 U1/!2 E CL(qi) then1/J1,1/J2,X(1jJ1 U7/!2) E CL(qi).

Since valuations map (sets of) variables of a given formula to entities, possibly
to the black hole, it is important to know how many of these variables have to be
taken into account at the most. This is obviously bounded by the number of variables
occurring (free or bound) in ¢, but in fact we can be a little more precise: the number
is given by K(qi) defined as K(qi) =max {l/v(1/J)II1/J E CL(qi)}.

444

The interesting case for the model checking construction is when one or more vari­
ables are indeed mapped to the black hole. Among other things, we will then have to
make sure that sufficiently many entities of the state have imploded into the black hole
to meet the demands of the valuation. For this purpose, we introduce the black number
of a function, which is the number of entities that that function maps (implodes) into
the black hole. For an arbitrary set A and (partial) mapping a: A _, Ent 00 we define
!1(a) = l{a E A I a(a) = oo}l.

Tableau graph. We now construct a graph that will be the basis of the model checking
algorithm. The nodes of this graph, called atoms after [14], are built from states of a
HABA, valuations of formulae from the closure, and a bound on the black number.

Definition 5.4. Given a HABA 1i and an AUTL-formula 4>, an atom is a triple
(q, D, k) where q E Q1-1., D ~ {v E Vq(.,P) 11/J E CL(</>), !1(ev) :5 k} and k :5 K(</>)
if LqJ or k = 0 if r q l' such that for all v = (1/J, s, e) E Vq with 1/J E CL(</>) and
!1(e) ::; k:

• ifvEAVq,thenvED;

• if 1/J = •1/J', then v E D iff (1/J', S, e) ¢ D;

• if 1/J = 1/Jt V '¢2, then v ED iff (1/J;, Sf 1/J;, e f '¢;) ED fori= 1 or i = 2;

• if'¢= 3x.1/J',thenv E Diffthereexistsa('I/J',S',e') E DsuchthatS =
S' f'I/J, e = e' f'I/J andx E US';

• if 1/J = •X¢', then v E D iff (X•¢', S, e) E D;

• if 1/J = 1/Jt U 1/J2, then v E D iff either ('¢2, S f '¢2, e f 1/J2) E D, or both
(1/Jt, S f 1/Jt, e f 1/J1) E D and (X'¢, S, e) E D.

The set of all atoms for a given formula 4> constructed on top of 1i is denoted A 1-1. (4>),
ranged over by A, B. We denote the components of an atom A by (q A, DA, kA)·

Definition 5.5. The tableau graph for a HABA 1i and an ATL-formula </>, denoted
G'H.(</>), consists of vertices A1-1.(4>) and edges~ ~ A'H.(</>) x (Ent00 Ent00) x
A1-1.(4>) determined by:

(q,D,k)~>. (q',D',k') iff q~>. q',

VX.,PECL(</>): (X¢, S, e) ED{::} (1/J, S, .X o e) ED',

k' _ { min(K(</>), k + !1(-X)) iflq' J
- 0 iffq'l

Note that if 1i is finite-state, then G1-1. (4>) can be effectively constructed: the set of
atoms is finite for every given state. A path through a tableau graph is an infinite se­
quence of states and transitions, starting at an initial state of the HABA and satisfying
the acceptance condition of the HABA, such that all "until" -subformulae in any ofthe
atoms are satisfied somewhere further down the sequence.

Definition 5.6. An allocational path in GH(4>) is an infinite sequence 7r=(qo, Do, ko)
Ao (q1,D1,kt) A1 ... such that:

Model Checking Birth and Death 445

1 q0 >.oq1>.1 · • · E runs(H);

2 for all i 2 0, (q;, D;, k;) -t "' (q;+J, Di+J, ki+J);
3 for all i 2 0 and all ('lj; 1 U'lj;2,2,8) E D;, there exists a j > i such that

('I/J2,2 f 'I/J2, Aj-1 o · · · Ai o (8 f 'I/J2)) E Dj.

Given an allocational path 1r in G 'H. (¢) of this form, we say that 1r fulfills ¢ if the
underlying run p = q0)..0 q1 >. 1 · · · generates an allocation triple (a, N, B) with a gen­
erator (hi);o; such that k0 = min(K(¢), !1(h0)) and a, N, B != ¢. If¢ is clear from
the context, we call 1r a fulfilling path. Furthermore, if there exists (a, N, B) E £(1i)
such that a, N, B f= ¢we say that¢ is 1i-satisfiable.

This sets the stage for the main results. We first state the correspondence between
the fulfilment of a formula by a path and the presence of that formula in the initial
atom of the path. For a partition interpretation 8 let 0: fv (¢) ---' Ent oo (flattening of
8) be defined as 0: x 1--t 8(X) if x EX E dom(8).

Proposition 5. 7. A path 1r in G 'H. (¢) fulfills ¢ if and only if there exists (¢, 2, 8) E
Do (for some 3, 8) such that I'H.(q0) = 0.

Furthermore, there is a correspondence between the satisfiability of a formula in
the HABA and the existence of a fulfilling path in the tableau graph.

Proposition 5.8. ¢is 1i-satisfiable iff there exists a path in G'H.(¢) that fulfills¢.

From now on we can (almost) rely on standard theory (see [14]). The first observa­
tion is that a tableau graph can have infinitely many different paths, therefore looking
for a fulfilling path for ¢ is still not an effective method for model checking. We need
the following definitions.

A subgraph G' ~ G'H.(¢) is self-fulfilling if every node A in G' has at least an
outgoing edge and for every ('ljJ 1 U 'lj;2, 2, 8) E D A there exists a node B E G' s.t.

• A= Ao -t>.o AJ-t>., · · ·-t>.,_ 2 Ai-1--t>,,_, A;= B

• ('I/J2, 2 f 'I/J2, Ai-l o · · · Ao o (8 f 'I/J2)) E DB.

A prefix in G'H.(¢) is a sequence Ao -t >.o A1 -t "' · · · -t >.,_ 2 A;-1 -t >.,_, A; such
that A0 is an initial atom (i.e., QAo E J'H.) and A; is in a self-fulfilling subgraph.

Let Inf(rr) denote the set of nodes that appear infinitely often in the path 1r. Inf(rr)
is a strongly connected subgraph (SCS). We can prove the following implications:

Proposition 5.9. 1r is a fulfilling path in G 'H. (¢) :::? Inf (1r) is a self-fulfilling SCS of
G'H.(¢).

Proposition 5.10. Let G' ~ G'H.(¢) be self-fulfilling SCS such that

• there exists a fulfilling prefix of G' starting at an initial atom A with (¢, 2, 8) E
DA suchthatl'H.(QA) = 0;

• foraliFE:F'H.:Fn{q/(q,D,k)EG'}f'0;

Then there exists a path 1r in G'H. (¢) that fulfils ¢and such that Inf (1r) = G'.

446

Finally, we present the main result of the paper:

Theorem 5.11. For any HABA 1-l and formula ¢, it is decidable whether or not 4> is
1-l-satisfiable.

The complexity of the algorithm is double exponential in I ¢1, polynomial in I Q nd
(conjecture) and in the largest number of entities (in a state). A detailed analysis can
be found in [9].

6. Related and future work
History-dependent automata. History-dependent (HD) automata [16] are the

main inspiration for HABAs. An HD-automaton is an automaton where states, transi­
tions and labels are equipped with a set of local names that can be created dynamically.
HD-automata represent an adequate model for history-dependent formalisms such as
the 1r-calculus. Reallocation of entities in HABA resembles the reallocation of names
in HD-automata. The novelty introduced in HABAs is the black hole abstraction. This
key feature allows us to deal with a possibly unbounded number of entities.

Spatial logic. Related to AUTL, concerning properties of freshness, is the Spatial
Logic (SL) [4, 3]. SL is defined for the Ambient Calculus and has modalities that refer
to space as well as time. Freshness can be identified in SL using a special quantifier,
and has a somewhat different interpretation than in AUTL. In SL "fresh" means dis­
tinct from any name used in the formula and in the model satisfying it. If there is a
fresh name, there are infinitely many of them. In contrast, in AUTL, if an entity is
fresh it means that the entity is used in the current state and did not appear previously.
This conceptual difference has several consequences. For instance, there exist non­
contradictory AUTL-formulae where more than one distinct fresh entity is identified
in the same state. Another difference between SL and AUI'L concerns quantifica­
tion. In SL, quantification is over a fixed (countable) set of names, whereas in AUTL,
quantification ranges over entities that are alive in the current state. This set is not
fixed from state to state. Therefore, e.g., Vx.X¢ is not equivalent to X'Vx.cf>.

Tableau-based methods. There are basically two approaches to model-checking
temporal logics: the automata-theoretic approach (for LTL [19] and CTL [10, 13]) and
the tableau method. Tableaux are typically used for the solution of more general prob­
lems, like satisfiability. For model checking, the tableau approach was first developed
for CTL [6, 2]. Our algorithm is based on the tableau method for LTL reported in [14].

Model-checking and logics for object-oriented systems. Model-checking tools
for object-oriented systems are becoming more and more popular, but the property
specification formalisms are not tailored towards properties over objects (such as allo­
cation and de-allocation). Bandera [7] is a model checker for Java that uses abstract in­
terpretation and program slicing to yield compact state spaces. Another model checker
for Java is Java PathFinder [12]. JPF employs garbage collection in order to obtain a
fini.te state space. Dynamic creation of objects is only supported to a limited extent (the
number of created objects must be bounded). The verification of (only) safety prop­
erties for systems with an unbounded number of objects is recently reported in [20].
Opposed to our approach which always provides correct answers, this approach may
report false negatives. Apart from these tool-oriented approaches, several temporal

Model Checking Birth and Death 447

logics for object-oriented systems have been defined [18, 11, 8], that, however, do not
support primitives for the birth and death of objects.

Future work. In the future we plan to investigate the use ofHABA-like models for
the definition of the semantics of more realistic OOP languages. The first step would
be the definition of automata where entities can reference each other. Another (long
term) open research question that needs further investigation is satisfiability of Aet'TL.
Similarly, it would be interesting to develop a proof theory for Aet'TL, as well as, to
explore a possible embedding of LTL in Aet'TL.

References
[I] M. Abadi, A. Gordon. A calculus for cryptographic protocols: The spi calculus. lnf & Comp. 148(1):

1-70, 1999.

[2) M. Ben-Ari, A. Pnueli, Z. Manna. The temporal logic of branching time. Acta lnf 20(3):207-
226,1983.

[3) L. Caires, L. Cardelli. A spatial logic for concurrency (part I). In TACS'OJ, LNCS 2255:1-37,
Springer, 200 I.

(4] L. Cardelli, A. Gordon. Logical properties of name restriction. In TLCA 'OJ, LNCS 2044:46-60,
Springer, 200 I.

[5) L. Cardelli, A. Gordon. Mobile ambients. In FoSSaCS'98, LNCS 1378:140-155, Springer, 1998.

[6) E. Clarke, E. Emerson. Design and synthesis of synchronization skeletons using branching time
temporal logic. In Workshop on Logics of Programs, LNCS 131:52-71, Springer, 1981.

[7) J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubach, H. Zheng. Bandera: Extracting
finite-state models from Java source code. In ICSE'OO pp. 439-448, IEEE CS Press, 2000.

[8) D. Distefano, J.-P. Katoen, A. Rensink. On a temporal logic for object-based systems. In
FMOODS'OO, pp. 305-326, Kluwer, 2000.

[9) D. Distefano, A. Rensink J.-P. Katoen. Model checking dynamic allocation and deal-
location. Technical report TR-01-40, University of Twente, 2002. Available on line at
http://fmt.cs.utwente.nl/-ddino/papers/DSRKOl-report.ps.gz

[10) E. A. Emerson. Automata, tableaux and temporal logics. In Logic of Programs, LNCS 193:79-88,
Springer, 1985.

[II) J. Fiadeiro, T. Maibaum. Verifying for reuse: foundations of object-oriented system verification. In
Theory and Formal Methods, pp. 235-257, 1995.

[12) K. Havelund, T. Pressburger. Model checking Java programs using Java PathFinder. Int. J. on
Software Tools for Technology Transfer, 2(4):366-381, 2000.

[13) 0. Kupferman, M. Y. Vardi, P. Wolper. An automata-theoretic approach to branching-time model
checking. J. of the ACM, 47(2):312-360, 2000.

[14) 0. Lichtenstein, A. Pnueli. Checking that finite state concurrent programs satisfy their linear speci­
fication. In POPL'85, pp. 97-107, ACM Press, 1985.

[15] R. Milner, J. Parrow, D. Walker. A calculus of mobile processes. lnf & Camp. 100(1):1-77, 1992.

[16] U. Montanari, M. Pistore. An introduction to history-dependent automata. Electr. Notes in Th. Comp.
Sci., 10, 1998.

[17] A. Pnueli. The temporal logic of programs. In FOCS'77, pp. 46-57, IEEE CS Press, 1977.

[18] A. Sernadas, C. Sernadas, J.F. Costa. Object specification logic. J. of Logic & Computation,
5(5):603-630, 1995.

[19) M. Y. Vardi, P. Wolper. An automata-theoretic approach to automatic program verification. In
UCS'86, pp. 332-344, IEEE CS Press, 1986.

[20) E. Yahav. Verifying safety properties of concurrent Java programs using 3-valued logic. In POPL
2001, pp. 27-40 ACM Press, 2001.

