
PHANTOM TYPES AND SUBTYPING

Matthew Fluet and Riccardo Pucella
Department of Computer Science
Cornell University
{ fluet,riccardo}@cs.cornell.edu

Abstract We investigate a technique from the literature, called the phantom types tech­
nique, that uses parametric polymorphism, type constraints, and unification of
polymorphic types to model a subtyping hierarchy. Hindley-Milner type systems,
such as the one found in ML, can be used to enforce the subtyping relation. We
show that this technique can be used to encode any finite subtyping hierarchy
(including hierarchies arising from multiple interface inheritance). We then for­
mally demonstrate the suitability of the phantom types technique for capturing
subtyping by exhibiting a type-preserving translation from a simple calculus with
bounded polymorphism to a calculus embodying the type system of ML.

1. Introduction
It is well known that traditional type systems, such as the one found in Standard ML

[10], with parametric polymorphism and type constructors can be used to capture pro­
gram properties beyond those naturally associated with a Hindley-Milner type system
[9]. For concreteness, let us review a simple example, due to Leijen and Meijer [8].
Consider a type of atoms, either booleans or integers, that can be easily represented as
an algebraic datatype:

datatype atom = I of int I B of bool

There are a number of operations that we may perform on such atoms (see Figure 1 (a)).
When the domain of an operation is restricted to only one kind of atom, as with conj
and double, a run-time check must be made and an error or exception reported if the
check fails.

One aim of static type checking is to reduce the number of run-time checks by
catching type errors at compile time. Of course, in the example above, the ML type
system does not consider conj (mki 3, mkB true) to be ill-typed; evaluating this
expression will simply raise a run-time exception.

If we were working in a language with subtyping, we would like to consider integer
atoms and boolean atoms as distinct subtypes of the general type of atoms and use
these subtypes to refine the types of the operations. Then the type system would report
a type error in the expression double (mkB false) at compile time. Fortunately, we
can write the operations in a way that utilizes the ML type system to do just this. We

R. Baeza-Yates et al. (eds.), Foundations of Information Technology in the Era of Network
 and Mobile Computing © Springer Science+Business Media New York 2002

Phantom Types and Subtyping

fun mki (i:int) :atom • I (i)
fun mkB (b:bool) :atom • B (b)

fun toString (v:atom) :string=
(case v

of I (i) •> Int.toString (i)
I B (b) •> Bool. toString (b))

tun double (v:atcm) :atom •
(case v

of I (i) •> I (i • 2)
I _ •> raise Fail "type mismatch 11)

fun conj (vl:atom,
v2:atom) :atom=

(case (vl, v2)

fun mki (i: int): int atom • I (i)
fun mkB (b:bool) :bool atom • B (b)

fun toString (v: •a atom) :string •
(case v

of I (i) •> Int.toString (i)
I B (b) •> Bool. toString (b))

fun double (v:int atom) :int atom •
(case v

of I (i) •> I (i • 2)
I _ •> raise Fail 11 type mismatch 11)

fun conj (vl:bool atom,
v2:bool atom) :bool atom =

(case (vl, v2)

449

of (8 (bl), B (b2)) •> B (bl andalso b2)
I - •> raise Fail "type mismatch")

of (B (bl), B (b2)) •> B (bl andalso b2)
I - •> raise Fail "type mismatch 11)

(a) Unsafe operations (b) Safe operations

Figure 1

change the definition of the datatype to the following:

datatype 'a atom = I of int I B of bool

and constrain the types of the operations (see Figure 1(b}). We use the superfluous
type variable in the datatype definition to encode information about the kind of atom.
(Because instantiations of this type variable do not contribute to the run-time repre­
sentation of atoms, it is called a phantom type.) The type int atom is used to represent
integer atoms and bool atom is used to represent boolean atoms. Now, the expression
conj (mki 3, mkB true) results in a compile-time type error, because the types int
atom and bool atom do not unify. (Observe that our use of int and bool as phantom
types is arbitrary; we could have used any two types that do not unify to make the
integer versus boolean distinction.) On the other hand, both toString (mki 3) and
toString (mkB true) are well-typed; toString can be used on any atom. This
is the essence of the technique explored in this paper: using a free type variable to
encode subtyping information and using an ML-like type system to enforce the sub­
typing. This "phantom types" technique, where user-defined restrictions are reflected
in the constrained types of values and functions, underlies many interesting uses of
type systems [14, 12, 2, 13, 6, 8, 5, 11, 1].

The main contributions of this paper are to exhibit a general encoding of subtyping
hierarchies and to give one formalization of the use of the phantom types technique.
We present a type-preserving translation from a calculus with subtyping to a calculus
with let-bounded polymorphism. The kind of subtyping that can be captured turns
out to be an interesting variant of bounded polymorphism [3], with a very restricted
subsumption rule.

This paper is structured as follows. In the next section, we describe a simple recipe
for deriving an interface enforcing a given sub typing hierarchy. The interface is param­
eterized by an encoding, via phantom types, of the subtyping hierarchy. In Section 3,
we focus on a simple encoding for hierarchies. In Section 4, we extend the recipe to
capture a limited form of bounded polymorphism. In Section 5, we formally define the

450

kind of subtyping captured by our encodings by giving a simple calculus with subtyp­
ing and showing that our encodings provide a type-preserving translation to a variant
of the Damas-Milner calculus, embodying the essence of the ML type system. We
conclude with some problems inherent to the approach and a consideration of future
work. Due to space considerations, proofs of our results, a more involved discussion
of the encodings in Section 3, as well as the full typing rules for the formalization in
Section 5 have been deferred to the full paper.

2. From subtyping to polymorphism
top..atom The example in the introduction has the following

/ '\. features: an underlying primitive type of values (the
'\. original type atom), a set of operations, and "implicit"

int..atom bool..atom subtypes that correspond to the sensible domains of the

Figure2 operations. The subtyping hierarchy corresponding to
the example is given in Figure 2. The subtyping hier­

archy is modeled by assigning a type to every implicit subtype in the hierarchy. For
instance, integer atoms with implicit subtype int..atom are encoded by the ML type int
atom. The appropriate use of polymorphic type variables in the type of an operation
indicates the maximal type in the domain of the operation. For instance, the operation
toString has the conceptual type top..atom -t string which is encoded by the ML
type 'a atom -t string. The key observation is the use of type unification to enforce
the subtyping hierarchy: an int atom can be passed to a function expecting an 'a atom,
because these types unify.

We consider the following problem. Given an abstract type Tp, a subtyping hierarchy,
and an implementation of Tp and its operations, we wish to derive a "safe" ML signature
which uses phantom types to encode the subtyping and a "safe" implementation from
the "unsafe" implementation. We will call the elements of the subtyping hierarchy
implicit types and talk about implicit subtyping in the hierarchy. All values share the
same underlying representation and each operation has a single implementation that
acts on this underlying representation. The imposed subtyping captures restrictions
that arise because of some external knowledge about the semantics of the operations;
intuitively, it captures a "real" subtyping relationship that is not exposed by the abstract
type.

We first consider deriving the safe interface. The new interface defines a type a r
corresponding to the abstract type Tp. The type variable a will be used to encode
implicit subtype information. We require an encoding (u) of each implicit type u in
the hierarchy; this encoding should yield a type in the underlying ML type system, with
the property that (u1) unifies with (u2) if and only if u1 is an implicit subtype of u2.

An obvious issue is that we want to use unification (a symmetric relation) to capture
subtyping (an asymmetric relation). The simplest approach is to use two encodings
(·)c and (·)A defined over all the implicit types in the hierarchy. A value of implicit
type u will be assigned a type (u)c r. We call (u)c the concrete subtype encoding
of u, and we assume that it uses only ground types (i.e., no type variables). In order
to restrict the domain of an operation to the set of values in any implicit subtype of
u, we use (u)A. the abstract subtype encoding of u. In order for the underlying type
system to enforce the subtype hierarchy, we require the encodings Oc and (·)A to be

Phantom Types and Subtyping

signature ATOM • aig
typo atom
val int : int -> atom
val bool : bool -> atom
val toString : atom -> string
val double : atom -> atom

signature SAFE..ATOM • aig
type 'a atom
val int : int -> (int)c atom
val bool : bool -> {bool)c atom
val toString : (top)A atom -> string
val double : {int) A atom -> (int)c atom

451

val conj : atom • atom -> atom
end

val conj (boo!) A atom * {boo!) A atom -> {boo!) c atom
end

(a) Unsafe signature (b) Safe signature

Figure 3

respectful by satisfying the following property:

for all u1 and u2, (ut)c matches (u2)A iff 0'1 ~ u2.

For example, the encodings used in the introduction are respectful:

(top ..atom) A
(int_atom) A

(booLatom) A

= 'a atom (top..atom)c = unit atom
= int atom (int_atom)c = int atom

bool atom (bool_atom)c bool atom

The utility of the phantom types technique relies on being able to find respectful en­
codings for subtyping hierarchies of interest.

To allow for matching, the abstract subtype encoding will introduce free type vari­
ables. Since in a Hindley-Milner type system, a type cannot contain free type variables,
the abstract encoding will be part of the larger type scheme of some polymorphic func­
tion operating on the value of implicit subtypes. This leads to some restrictions on
when we should constrain values by concrete or abstract encodings. We will restrict
ourselves to using concrete encodings in all covariant type positions, and using abstract
encodings in most contravariant type positions. We will return to this issue in Section 5.

Consider again the example from the introduction. Assume we have encodings (·)c
and (·)A for the hierarchy and a structure A tom implementing the "unsafe" operations,
with the signature given in Figure 3(a). Deriving an interface using the recipe above,
we get the safe signature given in Figure 3(b).

We must now derive a corresponding "safe" implementation. We need a type a r
isomorphic to Tp such that the type system considers r 1 r and r2 r equivalent iff r 1 and

structure SafoAtoml :> SAFE..ATOM • atruct
type 'a atom • Atom.atom
val int • Atom. int
val bool = Atom. bool
val toString • Atom. toString
val double • Atom.doublo
val conj • Atom. conj

end

(a) Opaque signature

structure SafoAtom2 : SAFE.ATOM = struct
datatype 'a atom • C of Atom.atom
fun int (i) • C (Atom.int (i))
fun bool (b) • C (Atom. bool (b))
fun toString (C v) = Atom. toString (v}
fun double (C v) • C (Atom.doublo (v)}
fun conj (C bl, C b2) • C (Atom. conj (bl, b2)}

end

(b) Datatype declaration

Figure4

452

T2 are equivalent. (Note that this requirement precludes the use of type abbreviations
of the form type a T = r11 , which define constant type functions.) We can then
constrain the types of values and operations using (u)c T and (u)A T. In ML, the
easiest way to achieve this is to use an abstract type at the module system level, as
shown in Figure 4(a). The use of an opaque signature is critical to get the required
behavior in terms of type equivalence. The advantage of this method is that there is no
overhead.

In a language without abstract types at the module level, another approach is to wrap
the primitive type Tp using a datatype declaration

datatype 'a T • C of Tp

The type a T behaves as required, because the datatype declaration defines a generative
type operator. However, we must explicitly convert primitive values to and from a T

to witness the isomorphism. This yields the implementation given in Figure 4(b).
We should stress that the "safe" interface must ensure that the type a T is abstract­

either through the use of opaque signature matching, or by hiding the value constructors
of the type. Otherwise, it may be possible to create values that do not respect the
subtyping invariants enforced by the encodings. Similarly, the use of an abstract subtype
encoding in a covariant type position can lead to violations in the subtyping invariants.

We now have a way to derive a safe interface and implementation, by adding type
information to a generic, unsafe implementation. In the next section, we show how to
construct respectful encodings (·)c and (·)A by taking advantage of the structure of
the subtyping hierarchy.

3. Encoding subtyping hierarchies
The framework presented in the previous section relies on having concrete and

abstract encodings of the implicit subtypes in the subtyping hierarchy with the property
that unification of the results of the encoding respects the subtype relation. In this
section, we describe one general construction for such encodings.

We first consider a particular lattice that will be useful in our development. Recall
that a lattice is a hierarchy where every set of elements has both a least upper bound
and a greatest lower bound. Given a finite setS, we let the powerset lattice of S be the
lattice of all subsets of S, ordered by inclusion, written (p(S), ~). We now exhibit an
encoding of powerset lattices.

Let n be the cardinality of S and assume an ordering s1 , ••• , sn on the elements of
S. We encode subset X of S as ann-tuple type, where the ith entry expresses that
Si E X or Si ¢ X. First, we introduce a datatype definition:

datatype 'a z = Z

(The name of the datatype constructor is irrelevant, because we will never construct
values of this type.) The encoding of an arbitrary subset of S is given by:

{X)c

{X) A

= (h, ... ,tn) wheret;={

= (h, ... ,tn) wheret;={

unit ifs; EX
unit z otherwise
a; ifs; EX
a; z otherwise

Phantom Types and Subtyping 453

Note that (·)A requires every type variabe ai to be a fresh type variable, unique in its
context. This ensures that we do not inadvertently refer to any type variable bound in
the context where we are introducing the abstractly encoded type.

As an example, consider the powerset lattice of {1, 2, 3, 4}, which encodes into a
four-tuple. We can verify, for example, that the concrete encoding for {2}, namely
(unit z. unit, unit z. unit z), unifies with the abstract encoding for {1, 2}, namely (at,
a2, a 3 z, a 4 z). On the other hand, the concrete encoding of {1, 2} does not unify with
the abstract encoding of {2, 3}.

The main reason we introduced powerset lattices is the fact that any finite hierarchy
can be embedded in the powerset lattice of a set S. It is a simple matter, given a
hierarchy H' embedded in a hierarchy H, to derive an encoding for H' given an
encoding for H. Let inj(·) be the injection from H' to H witnessing the embedding
and let Oon and 0An be the encodings for the hierarchy H. Deriving an encoding
for H' simply involves defining (u)on, = (inj(u))on and (u)An, = (inj(u))AH'
It is straightforward to verify that if Oon and (·)An are respectful encodings, so are
Oon, and (·)An,. By the result above, this allows us to derive an encoding for an
arbitrary finite hierarchy.

We have presented a strategy for obtaining respectful encodings, which is sufficient
for the remainder of this paper. However, there are encodings for specific hierarchies
that are in general more efficient than their embedding in a powerset lattice, for instance,
the encoding for tree hierarchies found in [6]. We discuss such encodings and address
the issue of encoding extensibility in the full paper.

4. Towards bounded polymorphism
As mentioned in Section 3, the handling of type variables is somewhat delicate. If

we allow common type variables to be used across abstract encodings, then we can
capture a form of bounded polymorphism as in F<: [3]. Bounded polymorphism ala
F <= is a typing discipline which extends both parametric polymorphism and subtyping.
From parametric polymorphism, it borrows type variables and universal quantification;
from subtyping, it allows one to set bounds on quantified type variables. For example,
one can guarantee that the argument and return types of a function are the same and a
subtype of u, as in Va :::; u.a --+ a. Similarly, one can guarantee that two arguments
have the same type that is a subtype of u, as in Va :::; u.(a x a) --+ u. Notice that
neither function can be written in a language that supports only subtyping.

Returning to the example from the introduction, consider adding natural numbers
as a subtype of integers, so that nat...atom is a subtype of int...atom. Using bounded
polymorphism, we can assign to double the reasonable type Va :::; int...atom.a --+ a.
However, bounded polymorphism has its limitations. One reasonable type for a plus
operation is Va :::; int...atom.a x a --+ a where the same kind of atom is required for
both arguments. In order to add an integer and a natural number we need a function
toint (operationally, an identity function) to coerce the type of the natural number to
that of an integer.

We can adapt our "recipe" from Section 2 to types of the form V (3 :::; u 1 . ((3 x u2) --+
(3. Let the "safe" interface use types of the form a r. Since (3 stands for a subtype of
Ut. we Jet 113 = (u1) A, the abstract encoding of the bound. We then translate the type

454

as we did in Section 2, but replace occurrences of the type variable f3 by tP/3 instead
of applying {·}A repeatedly, thereby sharing the type variables introduced by {u1}A.
Hence, we get the type tP/3 r x (u2} A r -t tP/3 r. In fact, we can further simplify the
process by noting that we can "pull out" all the subtyping into bounded polymorphism.
If a function expects an argument of any implicit subtype of u, we can introduce a fresh
type variable for that argument and bound it by u. For example, the type above can be
rewritten as: Vf3 :5 U1,'Y :5 u2.(f3 x 1) -t {3.

Unfortunately, this technique does not generalize to full F<:· For example, we
cannot encode bounded polymorphism where the bound on a type variable uses a type
variable, such as a function f with type Vo. ~ u, f3 :5 o..o. x f3 -t o.. Encoding this
type as tPa r x tP/3 r -t t/Ja r where tPa = (u}A and tP/3 = {a.} A fails, because we
have no definition of (a.} A. Essentially, we need a different encoding of f3 for each
instantiation of o. at each application of f, something that cannot be accommodated by
a single encoding of the type at the definition of f.

Likewise, we cannot encode first-class polymorphism, such as a function g with
type Vo. :5 u1 .o. -t (Vf3 :5 u2.{3 -t {3). Applying the technique yields a type
tPa r -t tP/3 r --+ tP/3 r where tPa and tP/3 contain free type variables. A Hindley-Milner
style type system requires quantification over these variables in prenex position, which
doesn't match the intuition ofthe original type. In fact, because we are translating into
a language with prenex polymorphism, we can only capture bounded polymorphism
that is itself in prenex form.

In other words, we cannot account for the general subsuption rule found inF <:. In­
stead, we require all subtyping to occur at type application. This is the real motivation
for the simplification above which "pulls out" all subtyping into bounded polymor­
phism. By introducing type variables for each argument, we move the resolution of
the subtyping to the point of type application (when we instantiate the type variables).

These two restrictions impose one final restriction on the kind of subtyping we can
encode. Consider a higher-order function h with type o. :5 (u1 -t u2).o. -t u2.
What are the possible encodings of the bound u1 -t u2 that allow subtyping? Clearly
encoding the bound as {ul}c r -t {u2}c r does not allow any subtyping. Encoding
the bound as (u1}A r -t {u2}A r or {u1}A r -t (u2)c r leads to an unsound system.
(Consider applying the argument function to a value of type u0 ;::: u1 , which would type­
check in the encoding, because (uo}c unifies with (u1) A by the definition of a respectful
encoding.) However, we can soundly encode the bound as (u1}c r -t (u2}A r. This
corresponds to a subtyping rule on functional types that asserts r 1 -t r2 :5 r1 -t r2 iff
r2 :5 r2.

Despite these restrictions, the phantom types technique is still a viable method for
encoding subtyping in a language like ML. All of the examples of phantom types found
in the literature satisfy these restrictions. In practice, one rarely needs first-class poly­
morphism or complicated dependencies between the subtypes of function arguments,
particularly when implementing a safe interface to existing library functions.

5. A formalization
There are subtle issues regarding the kind of subtyping that can be captured using

phantom types. In this section, we clarify the picture by exhibiting a typed calculus

Phantom Types and Subtyping 455

with a suitable notion of subtyping that can be faithfully translated into a language
such as ML, via a phantom types encoding. The idea is simple: to see if an interface
can be implemented using phantom types, first express the interface in this calculus in
such a way that the program type-checks. If it is possible to do so, our results show
that a translation using phantom types exists. The target of the translation is a calculus
embodying the essence of ML, essentially the calculus of Damas and Milner [4], a
predicative polymorphic ..\-calculus.

Let us first introduce the source calculus, ..\~~, also a variant of the Damas-Milner
calculus, but with a very restricted notion of subtyping, and allowing multiple types
for constants. We assume a partially ordered set (T, $) of basic types. The types and
prenex quantified type schemes of..\~~ are as follows:

T ::= t I a I n --+ T2

0' ::= Vat<: Tt, .. . , an<: Tn.T

(where t E T). Furthermore, we make a syntactic restriction that precludes the use of
type variables in the bounds of quantified type variables.

An important aspect of our calculus, at least for our purposes, is the constants that
we allow. We distinguish between two types of constants: basic constants and primitive
operations. Basic constants, taken from a set Cb, are constants representing values of
basic types t E T. We suppose a function 7rb : Cb --+ T assigning a basic type to
every basic constant. The primitive operations, taken from a set Cp. are operations
acting on constants and returning constants. 1 Rather than giving primitive operations
polymorphic types, we assume that the operations can have multiple types, which
encode the allowed subtyping. The primitive operation double in our example would
get the types inLvalue --+ inLvalue and nat_ value --+ nat-value. We suppose a function
1fp assigning to every constant c E Cpa set of types 7rp(c), each type a functional type
of the form t --+ t' (fort, t 1 E T).

Our expression language is again typical:

e .. - c I AX: T.e I et e2 I x I p [Tt, ... , Tn]llet x =pine
p .. - xiAat<:TJ, ... ,on<:Tn.e
v .. - c I AX: T.e
E .. - []IEelvEIE[n, ... ,Tn]lletx=Eine

(where c E Cb U Cp)· The operational semantics are given using a standard rewriting
system. The basic reductions are

(>.x:T.e) v -+<, e{v/x}
(Aot <: Tt, ... , On <: Tn.e) [rf, ... , T~] -+<, e{T!/at, ... , T~/on}

letx=vine -+<, e{v/x}
CtC2 -+<, C3 iffo(ct,C2)=C3

where 6 : Cp X cb ->. Cp is a partial function defining the result of applying a primitive
operation to a basic constant. This reduction extends to contexts via the rule:

E[el] -+<, E[e2] iff et -+<, e2

1 For simplicity, we will not deal with higher-order functions here-they would simply complicate the
formalism without bringing any new insight. Likewise, allowing primitive operations to act on and return
tuples of values is a simple extension of the formalism presented here.

456

As previously noted, we only allow primitive operations to be monotyped. However,
we can easily use the fact that they can take on many types to write polymorphic
wrappers. Returning to the double example, we can write a polymorphic wrapper
Ao. <: int_value.>.x: o..double x to capture the expected behavior. We will see shortly
that this function is well-typed.

The typing rules for >.~~ are the standard Damas-Milner typing rules, modified to
account for subtyping. Subtyping is given by a judgment A 1-<• r1 <: r2 , and is
derived from the subtyping on the basic types. The interesting rules are:

f!<t2 ~f-<:T2<:T~
~ f-<: tt <: f2 ~ f-<: Tt-+ T2 <: Tt-+ T2

Notice that subtyping at higher types only involves the result type. The typing rules
are given by judgments A; r 1-<• e : r for monotypes and A; r 1-<• p : u for type
schemes. The rule for primitive operations is interesting:

Vrf <: Tt, ... ,r~ <: Tn r{rUat, ... ,r~/a .. } e 11'p(c)
~.at<: n, ... ,a,.<: r,.;r 1-<, c: r (ce Cp,)

FV(r) =(at, ... ,a,.)

The syntactic restriction on type variable bounds ensures that each 'T& has no type
variables, so each ri <: r1 is well-defined. The rule captures the notion that any
subtyping on a primitive operation through the use of bounded polymorphism is in fact
realized by the "many types" interpretation of the operation.

Subtyping occurs at type application:

~; r 1-<: p: Vat <: Tt, ... ,a,.<: Tn.T ~ 1-<: rf <: Tt . . . ~ 1-<: T~ <: Tn

~; r 1-<: p [rlt ... ,r,.]: r{rt/O.t, ... , r,.fa,.}

As discussed in the previous section, there is no subsumption in the system: subtyping
must be witnessed by type application. Hence, there is a difference between the type
t1 -+ t2 (where tt, t2 E T) and Va <: t1 .a-+ t2; namely, the former does not allow
any subtyping. The restrictions of Section 4 are formalized by prenex quantification
and the syntactic restriction on type variable bounds.

Clearly, type soundness of the above system depends on the definition of 6 over the
constants. We say that 'll'p is sound with respect to 6 if for all c1 E Cp and c2 E Cb,
we have 1-<, Ct c2 : T implies that 6 (Ci> c2) is defined and 71'b (6 (Ct, c2)) = r. This
definition ensures that any application of a primitive operation c1 to a basic constant
c2 yields exactly one value 6(c1 , c2) at exactly one type 11'b(6(ct, c2)) = r. This leads
to the following conditional type soundness result for..\~~:

Theorem 1 lf11'p is sound with respect to 6, 1-<• e: r, and e -t<, e1, then 1-<• e1 : r
and either e' is a value or there exists e11 such that e' -t <, e11•

Our target calculus,)..~M, is meant to capture the appropriate aspects of ML that are
relevant for the phantom types encoding of subtyping. Essentially, it is the Damas­
Milner calculus [4] extended with a single type constructor T. Formally,

T .. - a I T! -+ T2 I T T ll I Tt X T2
u ::= Vat, ... ,a,..r
e ::= c I ~x:r.e I et e2IP[rt, ... ,r,.]l x lletx =pine
v ::= c I ~x:r.e
p .. - xiAat ... ,a,..e
E .. - [JIEelvEIE(rl, ... ,r,.]lletx=Eine

Phantom Types and Subtyping 457

The operational semantics (via a reduction relation ~T) and most typing rules (via
a judgment A; r h e : r) are standard. As before, we assume that we have constants
Cb and Cp and a function 6 providing semantics for primitive applications. Likewise,
we assume that 7rb and 1r P provide types for constants, with the same restrictions.
The typing rule for primitive operations in ..\~M is similar to the corresponding rule
in ..\~~. Given two types r and r' in ..\~M, we define their unification unify(r, r') to
be a sequence of bindings ((o:t, r1), (o:2 , r2), •••) in depth-first, left-to-right order of
appearance of 0:1, ••. , O:n in r, or 0 if r' is not a substitution instance of r. Given a
type r in ..\~M, we define FV (r) to be the sequence of free type variables appearing in
r, in depth-first, left-to-right order.

Vr' E 7rb(Cb) with unijy(r1, r') = ((o:1, r{), ... , (an, r~), ... }
h -+ T2){r{/o:1, ... , r~/o:n} E 7rp(c) (

c E Cp,)
FV(n-+ r2) =

(0:1, · · ·, O:n}

Again, this rule captures our notion of "subtyping through unification" by ensuring that
the operation is defined at every basic type that unifies with its argument type. Our
notion of soundness of 1r P with respect to 6 carries over and we can again establish a
conditional type soundness result:

Theorem 2 lf7rp is sound with respect to 6, 1-1 e : r, and e -tT e', then 1-T e' : r
and either e' is a value or there exists e" such that e' -tT e".

Note that the types T r, 1, and r 1 x r2 have no corresponding introduction and elim­
ination expressions. We include these types for the exclusive purpose of constructing
the phantom types used by the encodings. We could add other types to allow more
encodings, but these suffice for the lattice encodings of Section 3.

Thus far, we have a calculus ..\~~ embodying the notion of subtyping that interests
us and a calculus ..\~M capturing the essence of the ML type system. We now establish
a translation from the first calculus into the second using phantom types to encode
the subtyping, showing that we can indeed capture that particular notion of subtyping
in ML. Moreover, we show that the translation preserves the soundness of the types
assigned to constants, thereby guaranteeing that if the original system was sound, the
system obtained by translation is sound as well.

We first describe how to translate types in ..\~~. Since subtyping is only witnessed
at type abstraction, the type translation realizes the subtyping using the phantom types
encoding of abstract and concrete subtypes. The translation is parameterized by an
environment p associating every (free) type variable with a type in ..\~M representing
the abstract encoding of the bound.

T[o:]p =
T[t]p =

T[n-+ r2)p
T[Val<:rl, ... ,an<:rn.T]p =

p(a)
T (t}c
T[rl]p-+ 'T[r2]p

Van,···, 0!1k1 , .•. , O!nl, ••• , ll!nkn. T[r)p[a; ~ T;A]

whererl = A[r;J andFV(r;A) = (a;1, ... ,a;k,}

If p is empty, we will simple write 'T[r]. To compute the abstract and concrete
encodings of a type, we define:

A(tJ = T (t}A T (t}c
Ah -+ r2] = C[n] -+ Ah] C[n] -+ C[r2]

458

Note that the syntactic restriction on type variable bounds ensures that A and C are
always well-defined, as they will never be applied to type variables. Furthermore,
observe that the above translation depends on the fact that the type encodings (t}o and
(t)A are expressible in the .\~M type system using T, 1, and x.

We extend the type transformation T to type contexts r in the obvious way:

T[x1 : TJ, ... , Xn : Tn)P = X! : T[n]p, ... , Xn : T[rn)P

Finally, if we take the basic constants and the primitive operations in..\~;-' and assume
that 7rp is sound with respect to 8, then the translation can be used to assign types to
the constants and operations such that they are sound in the target calculus. We first
extend the definition of T to 7rb and 1r P in the obvious way:

7[11'b) = 71'/, where 11'/,(c) = 7[11'b(c)]
T['ll'pj = 71'~ where 'll'~(c) = {T[r) IT E 7rp(c)}

We can further show that the translated types do not allow us to "misuse" the constants
in ..X~M:

Theorem 3 If 1rp is sound with respect tobin..\~;-'. then T[1rp] is sound with respect
tobin ..X~M.

We can now define the translation of expressions via a translation of typing derivations,
E, taking care to respect the types given by the above type translation. We note that
the translation below only works if the concrete encodings being used do not contain
free type variables. Again, the translation is parameterized by an environment p, as in
the type translation.

£(D.; r f- <• X : r)p
£[~;r~<= c:r]p =

£[D.; r f-<, >.x:r'.e: r)p
£[D.;rf-<,e1e2:r)p =

£[D.;r f-<, letx =pine: r)p
£(D.;r f-<, p(r,, ... ,rn]: r)p

X

c
>.x: T[r)p.£[e)p
(£[el)p) £(e2]p
let x = £[p)p in £[e)p

(£[p]p)[ru, · · ·, TJk1 , • · • 1 Tnt,···, Tnkn]

where B[p]r = (a1, rf), ... , (an, r:)) and T;A = A[r;8)

andFV(r;8) =(a;,, ... ,a;k,) andr{ = T[r;)p
and unify(r;A 1 rt) = ((a;,, r;t), ... , (a;k., T;k;), .. . }

£(fl;r f-<, X: O"jp = X

£(D.; r f- <• Aa, <: Tj, ... I Cln <: Tn.e: u]p =
Aau, ... , Cl1k 1 , ••• , On!, ... , Clnkn .£[e)p(a; 1-t r,A]

where r;A = A[r;) and FV(r;A) = (a;1, ... ,a;k;)

Again, if pis empty, we simply write t:[e]. The function B returns the bounds of a
type abstraction, using the environment r to resolve variables. It is defined as follows:

B[x]r = ((a,,rt), ... 1 (an,Tn)}
where r(x) = Va, <:r,, ... I Cln <:Tn.T

B{Aa1 <:n, ... , On <:r.,.e]r = ((a1, r,), ... , (an, r.,)}

We use Band unify to perform unification "by hand." In most programming languages,
type inference performs this automatically.

Phantom Types and Subtyping 459

We can verify that this translation is type-preserving:

Theorem 4 If'r- <• e : r, then 'r-T t'['r- <• e : r] : T[r].

Theorem 4 is interesting in that it shows that the translation, in a sense, captures
the right notion of subtyping, particularly when designing an interface. Given a set
of constants making up the interface, suppose we can assign types to those constants
in ,\~~ in a way that gives the desired subtyping; that is, we can write type correct
expressions of the form Aa <: t . .\x: a.c x with type Va <: t.a -+ r. In other words,
the typing 11'p is sound with respect to the semantics of o. By Theorem 1, this means
that ,\~~ with these constants is sound and we can safely use these constants in ,\~~.
In particular, we can write the program:

let f,. = Aa <: t;n .AX: O<.Cn x in
e

By Theorem 4, the translation of the above program executes without run-time errors.
Furthermore, by Theorem 3, the phantom types encoding of the types of these constants
are sound with respect to t5 in ,\~M. Hence, by Theorem 2, ,\~M with these constants
is sound and we can safely use these constants in ,\~M. Therefore, we can replace to
the body of the translated program with an arbitrary ,\~M expression that type-checks
in that context and the resulting program will still execute without run-time errors.
Essentially, the translation of the let bindings corresponds to a "safe" interface to the
primitives; programs that use this interface in a type-safe manner are guaranteed to
execute without run-time errors.

6. Conclusion
Essentially, the phantom types technique uses the definition of type equivalence in

ML to encode information in a free type variable of a type. Unification can then be used
to enforce a particular structure on the information carried by two such types. In this
paper, we have focused on encoding subtyping information. We also showed how to
extend the techniques we developed to encode a form of prenex bounded polymorphism,
with subsumption occuring only at type application. It goes without saying that this
approach to encoding subtyping is not without its problems from a practical point
of view. As the encodings in this paper show, the types involved can become quite
large. Type abbreviations can help simplify the presentation of concrete types, but for
abstract encodings, which require type variables, those type variables must appear in
the interface.

We also note that the source language of Section 5 provides only a lower bound on
the power of phantom types. For example, one can use features of the specific encoding
used to further constrain operations [13]. One can also capture programming invariants
associated with user-defined datatypes [7]. An interesting direction for future work is
formalizing these additional applications of the phantom types technique.

460

Acknowledgments
We have benefitted from discussions with Greg Morrisett and Dave MacQueen.

John Reppy pointed out the work of Burton. Stephanie Weirich, Vicky Weissman, and
Steve Zdancewic provided helpful comments on an early draft of this paper. Thanks
also to the anonymous referees. The second author was partially supported by ONR
grant NOOO 14-00-1-03-41.

References
[1] M. Blume. No-Longer-Foreign: Teaching an ML compiler to speak C "natively". In

Electronic Notes in Theoretical Computer Science, volume 59. Elsevier Science Publishers,
2001.

[2] F. Burton. '!ype extension through polymorphism. ACM Tmnsactions on Progmmming
Languages and Systems, 12(1):135-138, January 1990.

[3] L. Cardelli, S. Martini, J. C. Mitchell, and A. Scedrov. An extension of System F with
subtyping. Information and Computation, 109(1-2):4-56, 1994.

[4] L. Damas and R. Milner. Principal type-schemes for functional programs. In Conference
Record of the Ninth Annual ACM Symposium on Principles of Progmmming lAnguages,
pages 207-212. ACM Press, 1982.

[5] C. Elliott, S. Finne, and 0. de Moor. Compiling embedded languages. In Workshop on
Semantics, Applications, and Implementation of Progmm Generation, 2000.

[6] S. Finne, D. Leijen, E. Meijer, and S. Peyton Jones. Calling hell from heaven and heaven
from hell. In Proceedings of the 1999 ACM SIGPLAN International Conference on Func­
tional Progmmming, pages 114-125. ACM Press, 1999.

[7] S. Kahrs. Red-black trees with types. Journal of Functional Programming, 11 (3):425-432,
2001.

[8] D. Leijen and E. Meijer. Domain specific embedded compilers. In Proceedings of the
Second Conference on Domain-Specific Languages (DSL'99), pages 109-122, 1999.

[9] R. Milner. A theory of type polymorphism in programming. Journal of Computer and
Systems Sciences, 17(3):348-375, 1978.

[10] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML (Re­
vised). The MIT Press, Cambridge, Mass., 1997.

[11] F. Pessaux and X. Leroy. Type-based analysis of uncaught exceptions. In Conference
Record of the TWenty-Sixth Annual ACM Symposium on Principles of Progmmming Lan­
guages, pages 276-290. ACM Press, 1999.

[12] D. Remy. Records and variants as a natural extension of ML. In Conference Record of
the Sixteenth Annual ACM Symposium on Principles of Progmmming Languages, pages
77-88. ACM Press, 1989.

[13] J. H. Reppy. A safe interface to sockets. Technical memorandum, AT&T Bell Laboratories,
1996.

[14] M. Wand. Complete type inference for simple objects. In Proceedings of the 2nd Annual
lEEE Symposium on Logic in Computer Science, 1987.

