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Abstract We investigate a technique from the literature, called the phantom types tech­
nique, that uses parametric polymorphism, type constraints, and unification of 
polymorphic types to model a subtyping hierarchy. Hindley-Milner type systems, 
such as the one found in ML, can be used to enforce the subtyping relation. We 
show that this technique can be used to encode any finite subtyping hierarchy 
(including hierarchies arising from multiple interface inheritance). We then for­
mally demonstrate the suitability of the phantom types technique for capturing 
subtyping by exhibiting a type-preserving translation from a simple calculus with 
bounded polymorphism to a calculus embodying the type system of ML. 

1. Introduction 
It is well known that traditional type systems, such as the one found in Standard ML 

[10], with parametric polymorphism and type constructors can be used to capture pro­
gram properties beyond those naturally associated with a Hindley-Milner type system 
[9]. For concreteness, let us review a simple example, due to Leijen and Meijer [8]. 
Consider a type of atoms, either booleans or integers, that can be easily represented as 
an algebraic datatype: 

datatype atom = I of int I B of bool 

There are a number of operations that we may perform on such atoms (see Figure 1 (a)). 
When the domain of an operation is restricted to only one kind of atom, as with conj 
and double, a run-time check must be made and an error or exception reported if the 
check fails. 

One aim of static type checking is to reduce the number of run-time checks by 
catching type errors at compile time. Of course, in the example above, the ML type 
system does not consider conj (mki 3, mkB true) to be ill-typed; evaluating this 
expression will simply raise a run-time exception. 

If we were working in a language with subtyping, we would like to consider integer 
atoms and boolean atoms as distinct subtypes of the general type of atoms and use 
these subtypes to refine the types of the operations. Then the type system would report 
a type error in the expression double (mkB false) at compile time. Fortunately, we 
can write the operations in a way that utilizes the ML type system to do just this. We 
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fun mki (i:int) :atom • I (i) 
fun mkB (b:bool) :atom • B (b) 

fun toString (v:atom) :string= 
(case v 

of I (i) •> Int.toString (i) 
I B (b) •> Bool. toString (b)) 

tun double (v:atcm) :atom • 
(case v 

of I (i) •> I (i • 2) 
I _ •> raise Fail "type mismatch 11 ) 

fun conj (vl:atom, 
v2:atom) :atom= 

(case (vl, v2) 

fun mki (i: int): int atom • I (i) 
fun mkB (b:bool) :bool atom • B (b) 

fun toString (v: •a atom) :string • 
(case v 

of I (i) •> Int.toString (i) 
I B (b) •> Bool. toString (b)) 

fun double (v:int atom) :int atom • 
(case v 

of I (i) •> I (i • 2) 
I _ •> raise Fail 11 type mismatch 11 ) 

fun conj (vl:bool atom, 
v2:bool atom) :bool atom = 

(case (vl, v2) 
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of (8 (bl), B (b2)) •> B (bl andalso b2) 
I - •> raise Fail "type mismatch") 

of (B (bl), B (b2)) •> B (bl andalso b2) 
I - •> raise Fail "type mismatch 11 ) 

(a) Unsafe operations (b) Safe operations 

Figure 1 

change the definition of the datatype to the following: 

datatype 'a atom = I of int I B of bool 

and constrain the types of the operations (see Figure 1(b}). We use the superfluous 
type variable in the datatype definition to encode information about the kind of atom. 
(Because instantiations of this type variable do not contribute to the run-time repre­
sentation of atoms, it is called a phantom type.) The type int atom is used to represent 
integer atoms and bool atom is used to represent boolean atoms. Now, the expression 
conj (mki 3, mkB true) results in a compile-time type error, because the types int 
atom and bool atom do not unify. (Observe that our use of int and bool as phantom 
types is arbitrary; we could have used any two types that do not unify to make the 
integer versus boolean distinction.) On the other hand, both toString (mki 3) and 
toString (mkB true) are well-typed; toString can be used on any atom. This 
is the essence of the technique explored in this paper: using a free type variable to 
encode subtyping information and using an ML-like type system to enforce the sub­
typing. This "phantom types" technique, where user-defined restrictions are reflected 
in the constrained types of values and functions, underlies many interesting uses of 
type systems [14, 12, 2, 13, 6, 8, 5, 11, 1]. 

The main contributions of this paper are to exhibit a general encoding of subtyping 
hierarchies and to give one formalization of the use of the phantom types technique. 
We present a type-preserving translation from a calculus with subtyping to a calculus 
with let-bounded polymorphism. The kind of subtyping that can be captured turns 
out to be an interesting variant of bounded polymorphism [3], with a very restricted 
subsumption rule. 

This paper is structured as follows. In the next section, we describe a simple recipe 
for deriving an interface enforcing a given sub typing hierarchy. The interface is param­
eterized by an encoding, via phantom types, of the subtyping hierarchy. In Section 3, 
we focus on a simple encoding for hierarchies. In Section 4, we extend the recipe to 
capture a limited form of bounded polymorphism. In Section 5, we formally define the 
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kind of subtyping captured by our encodings by giving a simple calculus with subtyp­
ing and showing that our encodings provide a type-preserving translation to a variant 
of the Damas-Milner calculus, embodying the essence of the ML type system. We 
conclude with some problems inherent to the approach and a consideration of future 
work. Due to space considerations, proofs of our results, a more involved discussion 
of the encodings in Section 3, as well as the full typing rules for the formalization in 
Section 5 have been deferred to the full paper. 

2. From subtyping to polymorphism 
top..atom The example in the introduction has the following 

/ '\. features: an underlying primitive type of values (the 
'\. original type atom), a set of operations, and "implicit" 

int..atom bool..atom subtypes that correspond to the sensible domains of the 

Figure2 operations. The subtyping hierarchy corresponding to 
the example is given in Figure 2. The subtyping hier­

archy is modeled by assigning a type to every implicit subtype in the hierarchy. For 
instance, integer atoms with implicit subtype int..atom are encoded by the ML type int 
atom. The appropriate use of polymorphic type variables in the type of an operation 
indicates the maximal type in the domain of the operation. For instance, the operation 
toString has the conceptual type top..atom -t string which is encoded by the ML 
type 'a atom -t string. The key observation is the use of type unification to enforce 
the subtyping hierarchy: an int atom can be passed to a function expecting an 'a atom, 
because these types unify. 

We consider the following problem. Given an abstract type Tp, a subtyping hierarchy, 
and an implementation of Tp and its operations, we wish to derive a "safe" ML signature 
which uses phantom types to encode the subtyping and a "safe" implementation from 
the "unsafe" implementation. We will call the elements of the subtyping hierarchy 
implicit types and talk about implicit subtyping in the hierarchy. All values share the 
same underlying representation and each operation has a single implementation that 
acts on this underlying representation. The imposed subtyping captures restrictions 
that arise because of some external knowledge about the semantics of the operations; 
intuitively, it captures a "real" subtyping relationship that is not exposed by the abstract 
type. 

We first consider deriving the safe interface. The new interface defines a type a r 
corresponding to the abstract type Tp. The type variable a will be used to encode 
implicit subtype information. We require an encoding (u) of each implicit type u in 
the hierarchy; this encoding should yield a type in the underlying ML type system, with 
the property that (u1) unifies with (u2) if and only if u1 is an implicit subtype of u2. 

An obvious issue is that we want to use unification (a symmetric relation) to capture 
subtyping (an asymmetric relation). The simplest approach is to use two encodings 
( · )c and (·)A defined over all the implicit types in the hierarchy. A value of implicit 
type u will be assigned a type (u)c r. We call (u)c the concrete subtype encoding 
of u, and we assume that it uses only ground types (i.e., no type variables). In order 
to restrict the domain of an operation to the set of values in any implicit subtype of 
u, we use (u)A. the abstract subtype encoding of u. In order for the underlying type 
system to enforce the subtype hierarchy, we require the encodings Oc and (·)A to be 
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signature ATOM • aig 
typo atom 
val int : int -> atom 
val bool : bool -> atom 
val toString : atom -> string 
val double : atom -> atom 

signature SAFE..ATOM • aig 
type 'a atom 
val int : int -> (int)c atom 
val bool : bool -> {bool)c atom 
val toString : (top)A atom -> string 
val double : {int) A atom -> (int)c atom 
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val conj : atom • atom -> atom 
end 

val conj (boo!) A atom * {boo!) A atom -> {boo!) c atom 
end 

(a) Unsafe signature (b) Safe signature 

Figure 3 

respectful by satisfying the following property: 

for all u1 and u2, (ut)c matches (u2)A iff 0'1 ~ u2. 

For example, the encodings used in the introduction are respectful: 

(top ..atom) A 
(int_atom) A 

(booLatom) A 

= 'a atom (top..atom)c = unit atom 
= int atom (int_atom)c = int atom 

bool atom (bool_atom)c bool atom 

The utility of the phantom types technique relies on being able to find respectful en­
codings for subtyping hierarchies of interest. 

To allow for matching, the abstract subtype encoding will introduce free type vari­
ables. Since in a Hindley-Milner type system, a type cannot contain free type variables, 
the abstract encoding will be part of the larger type scheme of some polymorphic func­
tion operating on the value of implicit subtypes. This leads to some restrictions on 
when we should constrain values by concrete or abstract encodings. We will restrict 
ourselves to using concrete encodings in all covariant type positions, and using abstract 
encodings in most contravariant type positions. We will return to this issue in Section 5. 

Consider again the example from the introduction. Assume we have encodings ( · )c 
and (·)A for the hierarchy and a structure A tom implementing the "unsafe" operations, 
with the signature given in Figure 3(a). Deriving an interface using the recipe above, 
we get the safe signature given in Figure 3(b). 

We must now derive a corresponding "safe" implementation. We need a type a r 
isomorphic to Tp such that the type system considers r 1 r and r2 r equivalent iff r 1 and 

structure SafoAtoml :> SAFE..ATOM • atruct 
type 'a atom • Atom.atom 
val int • Atom. int 
val bool = Atom. bool 
val toString • Atom. toString 
val double • Atom.doublo 
val conj • Atom. conj 

end 

(a) Opaque signature 

structure SafoAtom2 : SAFE.ATOM = struct 
datatype 'a atom • C of Atom.atom 
fun int (i) • C (Atom.int (i)) 
fun bool (b) • C (Atom. bool (b)) 
fun toString (C v) = Atom. toString (v} 
fun double (C v) • C (Atom.doublo (v)} 
fun conj (C bl, C b2) • C (Atom. conj (bl, b2)} 

end 

(b) Datatype declaration 

Figure4 
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T2 are equivalent. (Note that this requirement precludes the use of type abbreviations 
of the form type a T = r11 , which define constant type functions.) We can then 
constrain the types of values and operations using (u)c T and (u)A T. In ML, the 
easiest way to achieve this is to use an abstract type at the module system level, as 
shown in Figure 4(a). The use of an opaque signature is critical to get the required 
behavior in terms of type equivalence. The advantage of this method is that there is no 
overhead. 

In a language without abstract types at the module level, another approach is to wrap 
the primitive type Tp using a datatype declaration 

datatype 'a T • C of Tp 

The type a T behaves as required, because the datatype declaration defines a generative 
type operator. However, we must explicitly convert primitive values to and from a T 

to witness the isomorphism. This yields the implementation given in Figure 4(b). 
We should stress that the "safe" interface must ensure that the type a T is abstract­

either through the use of opaque signature matching, or by hiding the value constructors 
of the type. Otherwise, it may be possible to create values that do not respect the 
subtyping invariants enforced by the encodings. Similarly, the use of an abstract subtype 
encoding in a covariant type position can lead to violations in the subtyping invariants. 

We now have a way to derive a safe interface and implementation, by adding type 
information to a generic, unsafe implementation. In the next section, we show how to 
construct respectful encodings ( · )c and (·)A by taking advantage of the structure of 
the subtyping hierarchy. 

3. Encoding subtyping hierarchies 
The framework presented in the previous section relies on having concrete and 

abstract encodings of the implicit subtypes in the subtyping hierarchy with the property 
that unification of the results of the encoding respects the subtype relation. In this 
section, we describe one general construction for such encodings. 

We first consider a particular lattice that will be useful in our development. Recall 
that a lattice is a hierarchy where every set of elements has both a least upper bound 
and a greatest lower bound. Given a finite setS, we let the powerset lattice of S be the 
lattice of all subsets of S, ordered by inclusion, written (p(S), ~). We now exhibit an 
encoding of powerset lattices. 

Let n be the cardinality of S and assume an ordering s1 , ••• , sn on the elements of 
S. We encode subset X of S as ann-tuple type, where the ith entry expresses that 
Si E X or Si ¢ X. First, we introduce a datatype definition: 

datatype 'a z = Z 

(The name of the datatype constructor is irrelevant, because we will never construct 
values of this type.) The encoding of an arbitrary subset of S is given by: 

{X)c 

{X) A 

= (h, ... ,tn) wheret;={ 

= (h, ... ,tn) wheret;={ 

unit ifs; EX 
unit z otherwise 
a; ifs; EX 
a; z otherwise 



Phantom Types and Subtyping 453 

Note that (·)A requires every type variabe ai to be a fresh type variable, unique in its 
context. This ensures that we do not inadvertently refer to any type variable bound in 
the context where we are introducing the abstractly encoded type. 

As an example, consider the powerset lattice of {1, 2, 3, 4}, which encodes into a 
four-tuple. We can verify, for example, that the concrete encoding for {2}, namely 
(unit z. unit, unit z. unit z), unifies with the abstract encoding for {1, 2}, namely (at, 
a2, a 3 z, a 4 z). On the other hand, the concrete encoding of {1, 2} does not unify with 
the abstract encoding of {2, 3}. 

The main reason we introduced powerset lattices is the fact that any finite hierarchy 
can be embedded in the powerset lattice of a set S. It is a simple matter, given a 
hierarchy H' embedded in a hierarchy H, to derive an encoding for H' given an 
encoding for H. Let inj(·) be the injection from H' to H witnessing the embedding 
and let Oon and 0An be the encodings for the hierarchy H. Deriving an encoding 
for H' simply involves defining (u)on, = (inj(u))on and (u)An, = (inj(u))AH' 
It is straightforward to verify that if Oon and (·)An are respectful encodings, so are 
Oon, and (·)An,. By the result above, this allows us to derive an encoding for an 
arbitrary finite hierarchy. 

We have presented a strategy for obtaining respectful encodings, which is sufficient 
for the remainder of this paper. However, there are encodings for specific hierarchies 
that are in general more efficient than their embedding in a powerset lattice, for instance, 
the encoding for tree hierarchies found in [6]. We discuss such encodings and address 
the issue of encoding extensibility in the full paper. 

4. Towards bounded polymorphism 
As mentioned in Section 3, the handling of type variables is somewhat delicate. If 

we allow common type variables to be used across abstract encodings, then we can 
capture a form of bounded polymorphism as in F<: [3]. Bounded polymorphism ala 
F <= is a typing discipline which extends both parametric polymorphism and subtyping. 
From parametric polymorphism, it borrows type variables and universal quantification; 
from subtyping, it allows one to set bounds on quantified type variables. For example, 
one can guarantee that the argument and return types of a function are the same and a 
subtype of u, as in Va :::; u.a --+ a. Similarly, one can guarantee that two arguments 
have the same type that is a subtype of u, as in Va :::; u.(a x a) --+ u. Notice that 
neither function can be written in a language that supports only subtyping. 

Returning to the example from the introduction, consider adding natural numbers 
as a subtype of integers, so that nat...atom is a subtype of int...atom. Using bounded 
polymorphism, we can assign to double the reasonable type Va :::; int...atom.a --+ a. 
However, bounded polymorphism has its limitations. One reasonable type for a plus 
operation is Va :::; int...atom.a x a --+ a where the same kind of atom is required for 
both arguments. In order to add an integer and a natural number we need a function 
toint (operationally, an identity function) to coerce the type of the natural number to 
that of an integer. 

We can adapt our "recipe" from Section 2 to types of the form V (3 :::; u 1 . ((3 x u2 ) --+ 
(3. Let the "safe" interface use types of the form a r. Since (3 stands for a subtype of 
Ut. we Jet 113 = (u1) A, the abstract encoding of the bound. We then translate the type 



454 

as we did in Section 2, but replace occurrences of the type variable f3 by tP/3 instead 
of applying {·}A repeatedly, thereby sharing the type variables introduced by {u1}A. 
Hence, we get the type tP/3 r x (u2} A r -t tP/3 r. In fact, we can further simplify the 
process by noting that we can "pull out" all the subtyping into bounded polymorphism. 
If a function expects an argument of any implicit subtype of u, we can introduce a fresh 
type variable for that argument and bound it by u. For example, the type above can be 
rewritten as: Vf3 :5 U1,'Y :5 u2.(f3 x 1) -t {3. 

Unfortunately, this technique does not generalize to full F<:· For example, we 
cannot encode bounded polymorphism where the bound on a type variable uses a type 
variable, such as a function f with type Vo. ~ u, f3 :5 o..o. x f3 -t o.. Encoding this 
type as tPa r x tP/3 r -t t/Ja r where tPa = (u}A and tP/3 = {a.} A fails, because we 
have no definition of (a.} A. Essentially, we need a different encoding of f3 for each 
instantiation of o. at each application of f, something that cannot be accommodated by 
a single encoding of the type at the definition of f. 

Likewise, we cannot encode first-class polymorphism, such as a function g with 
type Vo. :5 u1 .o. -t (Vf3 :5 u2.{3 -t {3). Applying the technique yields a type 
tPa r -t tP/3 r --+ tP/3 r where tPa and tP/3 contain free type variables. A Hindley-Milner 
style type system requires quantification over these variables in prenex position, which 
doesn't match the intuition ofthe original type. In fact, because we are translating into 
a language with prenex polymorphism, we can only capture bounded polymorphism 
that is itself in prenex form. 

In other words, we cannot account for the general subsuption rule found inF <:. In­
stead, we require all subtyping to occur at type application. This is the real motivation 
for the simplification above which "pulls out" all subtyping into bounded polymor­
phism. By introducing type variables for each argument, we move the resolution of 
the subtyping to the point of type application (when we instantiate the type variables). 

These two restrictions impose one final restriction on the kind of subtyping we can 
encode. Consider a higher-order function h with type o. :5 (u1 -t u2).o. -t u2. 
What are the possible encodings of the bound u1 -t u2 that allow subtyping? Clearly 
encoding the bound as {ul}c r -t {u2}c r does not allow any subtyping. Encoding 
the bound as (u1}A r -t {u2}A r or {u1}A r -t (u2)c r leads to an unsound system. 
(Consider applying the argument function to a value of type u0 ;::: u1 , which would type­
check in the encoding, because (uo}c unifies with (u1) A by the definition of a respectful 
encoding.) However, we can soundly encode the bound as (u1}c r -t (u2}A r. This 
corresponds to a subtyping rule on functional types that asserts r 1 -t r2 :5 r1 -t r2 iff 
r2 :5 r2. 

Despite these restrictions, the phantom types technique is still a viable method for 
encoding subtyping in a language like ML. All of the examples of phantom types found 
in the literature satisfy these restrictions. In practice, one rarely needs first-class poly­
morphism or complicated dependencies between the subtypes of function arguments, 
particularly when implementing a safe interface to existing library functions. 

5. A formalization 
There are subtle issues regarding the kind of subtyping that can be captured using 

phantom types. In this section, we clarify the picture by exhibiting a typed calculus 
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with a suitable notion of subtyping that can be faithfully translated into a language 
such as ML, via a phantom types encoding. The idea is simple: to see if an interface 
can be implemented using phantom types, first express the interface in this calculus in 
such a way that the program type-checks. If it is possible to do so, our results show 
that a translation using phantom types exists. The target of the translation is a calculus 
embodying the essence of ML, essentially the calculus of Damas and Milner [4], a 
predicative polymorphic ..\-calculus. 

Let us first introduce the source calculus, ..\~~, also a variant of the Damas-Milner 
calculus, but with a very restricted notion of subtyping, and allowing multiple types 
for constants. We assume a partially ordered set (T, $) of basic types. The types and 
prenex quantified type schemes of..\~~ are as follows: 

T ::= t I a I n --+ T2 

0' ::= Vat<: Tt, .. . , an<: Tn.T 

(where t E T). Furthermore, we make a syntactic restriction that precludes the use of 
type variables in the bounds of quantified type variables. 

An important aspect of our calculus, at least for our purposes, is the constants that 
we allow. We distinguish between two types of constants: basic constants and primitive 
operations. Basic constants, taken from a set Cb, are constants representing values of 
basic types t E T. We suppose a function 7rb : Cb --+ T assigning a basic type to 
every basic constant. The primitive operations, taken from a set Cp. are operations 
acting on constants and returning constants. 1 Rather than giving primitive operations 
polymorphic types, we assume that the operations can have multiple types, which 
encode the allowed subtyping. The primitive operation double in our example would 
get the types inLvalue --+ inLvalue and nat_ value --+ nat-value. We suppose a function 
1fp assigning to every constant c E Cpa set of types 7rp(c), each type a functional type 
of the form t --+ t' (fort, t 1 E T). 

Our expression language is again typical: 

e .. - c I AX: T.e I et e2 I x I p [Tt, ... , Tn]llet x =pine 
p .. - xiAat<:TJ, ... ,on<:Tn.e 
v .. - c I AX: T.e 
E .. - []IEelvEIE[n, ... ,Tn]lletx=Eine 

(where c E Cb U Cp)· The operational semantics are given using a standard rewriting 
system. The basic reductions are 

(>.x:T.e) v -+<, e{v/x} 
(Aot <: Tt, ... , On <: Tn.e) [rf, ... , T~] -+<, e{T!/at, ... , T~/on} 

letx=vine -+<, e{v/x} 
CtC2 -+<, C3 iffo(ct,C2)=C3 

where 6 : Cp X cb ->. Cp is a partial function defining the result of applying a primitive 
operation to a basic constant. This reduction extends to contexts via the rule: 

E[el] -+<, E[e2] iff et -+<, e2 

1 For simplicity, we will not deal with higher-order functions here-they would simply complicate the 
formalism without bringing any new insight. Likewise, allowing primitive operations to act on and return 
tuples of values is a simple extension of the formalism presented here. 
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As previously noted, we only allow primitive operations to be monotyped. However, 
we can easily use the fact that they can take on many types to write polymorphic 
wrappers. Returning to the double example, we can write a polymorphic wrapper 
Ao. <: int_value.>.x: o..double x to capture the expected behavior. We will see shortly 
that this function is well-typed. 

The typing rules for >.~~ are the standard Damas-Milner typing rules, modified to 
account for subtyping. Subtyping is given by a judgment A 1-<• r1 <: r2 , and is 
derived from the subtyping on the basic types. The interesting rules are: 

f!<t2 ~f-<:T2<:T~ 
~ f-<: tt <: f2 ~ f-<: Tt-+ T2 <: Tt-+ T2 

Notice that subtyping at higher types only involves the result type. The typing rules 
are given by judgments A; r 1-<• e : r for monotypes and A; r 1-<• p : u for type 
schemes. The rule for primitive operations is interesting: 

Vrf <: Tt, ... ,r~ <: Tn r{rUat, ... ,r~/a .. } e 11'p(c) 
~.at<: n, ... ,a,.<: r,.;r 1-<, c: r ( ce Cp, ) 

FV(r) =(at, ... ,a,.) 

The syntactic restriction on type variable bounds ensures that each 'T& has no type 
variables, so each ri <: r1 is well-defined. The rule captures the notion that any 
subtyping on a primitive operation through the use of bounded polymorphism is in fact 
realized by the "many types" interpretation of the operation. 

Subtyping occurs at type application: 

~; r 1-<: p: Vat <: Tt, ... ,a,.<: Tn.T ~ 1-<: rf <: Tt . . . ~ 1-<: T~ <: Tn 

~; r 1-<: p [rlt ... ,r,.]: r{rt/O.t, ... , r,.fa,.} 

As discussed in the previous section, there is no subsumption in the system: subtyping 
must be witnessed by type application. Hence, there is a difference between the type 
t1 -+ t2 (where tt, t2 E T) and Va <: t1 .a-+ t2; namely, the former does not allow 
any subtyping. The restrictions of Section 4 are formalized by prenex quantification 
and the syntactic restriction on type variable bounds. 

Clearly, type soundness of the above system depends on the definition of 6 over the 
constants. We say that 'll'p is sound with respect to 6 if for all c1 E Cp and c2 E Cb, 
we have 1-<, Ct c2 : T implies that 6 ( Ci> c2) is defined and 71'b ( 6 ( Ct, c2)) = r. This 
definition ensures that any application of a primitive operation c1 to a basic constant 
c2 yields exactly one value 6(c1 , c2) at exactly one type 11'b(6(ct, c2)) = r. This leads 
to the following conditional type soundness result for..\~~: 

Theorem 1 lf11'p is sound with respect to 6, 1-<• e: r, and e -t<, e1, then 1-<• e1 : r 
and either e' is a value or there exists e11 such that e' -t <, e11• 

Our target calculus, )..~M, is meant to capture the appropriate aspects of ML that are 
relevant for the phantom types encoding of subtyping. Essentially, it is the Damas­
Milner calculus [4] extended with a single type constructor T. Formally, 

T .. - a I T! -+ T2 I T T ll I Tt X T2 
u ::= Vat, ... ,a,..r 
e ::= c I ~x:r.e I et e2IP[rt, ... ,r,.]l x lletx =pine 
v ::= c I ~x:r.e 
p .. - xiAat ... ,a,..e 
E .. - [JIEelvEIE(rl, ... ,r,.]lletx=Eine 
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The operational semantics (via a reduction relation ~T) and most typing rules (via 
a judgment A; r h e : r) are standard. As before, we assume that we have constants 
Cb and Cp and a function 6 providing semantics for primitive applications. Likewise, 
we assume that 7rb and 1r P provide types for constants, with the same restrictions. 
The typing rule for primitive operations in ..\~M is similar to the corresponding rule 
in ..\~~. Given two types r and r' in ..\~M, we define their unification unify( r, r') to 
be a sequence of bindings ((o:t, r1), (o:2 , r2), ••• ) in depth-first, left-to-right order of 
appearance of 0:1, ••. , O:n in r, or 0 if r' is not a substitution instance of r. Given a 
type r in ..\~M, we define FV ( r) to be the sequence of free type variables appearing in 
r, in depth-first, left-to-right order. 

Vr' E 7rb(Cb) with unijy(r1, r') = ((o:1, r{), ... , (an, r~), ... } 
h -+ T2){r{/o:1, ... , r~/o:n} E 7rp(c) ( 

c E Cp, ) 
FV(n-+ r2) = 

(0:1, · · ·, O:n} 

Again, this rule captures our notion of "subtyping through unification" by ensuring that 
the operation is defined at every basic type that unifies with its argument type. Our 
notion of soundness of 1r P with respect to 6 carries over and we can again establish a 
conditional type soundness result: 

Theorem 2 lf7rp is sound with respect to 6, 1-1 e : r, and e -tT e', then 1-T e' : r 
and either e' is a value or there exists e" such that e' -tT e". 

Note that the types T r, 1, and r 1 x r2 have no corresponding introduction and elim­
ination expressions. We include these types for the exclusive purpose of constructing 
the phantom types used by the encodings. We could add other types to allow more 
encodings, but these suffice for the lattice encodings of Section 3. 

Thus far, we have a calculus ..\~~ embodying the notion of subtyping that interests 
us and a calculus ..\~M capturing the essence of the ML type system. We now establish 
a translation from the first calculus into the second using phantom types to encode 
the subtyping, showing that we can indeed capture that particular notion of subtyping 
in ML. Moreover, we show that the translation preserves the soundness of the types 
assigned to constants, thereby guaranteeing that if the original system was sound, the 
system obtained by translation is sound as well. 

We first describe how to translate types in ..\~~. Since subtyping is only witnessed 
at type abstraction, the type translation realizes the subtyping using the phantom types 
encoding of abstract and concrete subtypes. The translation is parameterized by an 
environment p associating every (free) type variable with a type in ..\~M representing 
the abstract encoding of the bound. 

T[o:]p = 
T[t]p = 

T[n-+ r2)p 
T[Val<:rl, ... ,an<:rn.T]p = 

p(a) 
T (t}c 
T[rl]p-+ 'T[r2]p 

Van,···, 0!1k1 , .•. , O!nl, ••• , ll!nkn. T[r)p[a; ~ T;A] 

whererl = A[r;J andFV(r;A) = (a;1, ... ,a;k,} 

If p is empty, we will simple write 'T[r]. To compute the abstract and concrete 
encodings of a type, we define: 

A(tJ = T (t}A T (t}c 
Ah -+ r2] = C[n] -+ Ah] C[n] -+ C[r2] 



458 

Note that the syntactic restriction on type variable bounds ensures that A and C are 
always well-defined, as they will never be applied to type variables. Furthermore, 
observe that the above translation depends on the fact that the type encodings (t}o and 
(t)A are expressible in the .\~M type system using T, 1, and x. 

We extend the type transformation T to type contexts r in the obvious way: 

T[x1 : TJ, ... , Xn : Tn)P = X! : T[n]p, ... , Xn : T[rn)P 

Finally, if we take the basic constants and the primitive operations in..\~;-' and assume 
that 7rp is sound with respect to 8, then the translation can be used to assign types to 
the constants and operations such that they are sound in the target calculus. We first 
extend the definition of T to 7rb and 1r P in the obvious way: 

7[11'b) = 71'/, where 11'/,(c) = 7[11'b(c)] 
T['ll'pj = 71'~ where 'll'~(c) = {T[r) IT E 7rp(c)} 

We can further show that the translated types do not allow us to "misuse" the constants 
in ..X~M: 

Theorem 3 If 1rp is sound with respect tobin..\~;-'. then T[1rp] is sound with respect 
tobin ..X~M. 

We can now define the translation of expressions via a translation of typing derivations, 
E, taking care to respect the types given by the above type translation. We note that 
the translation below only works if the concrete encodings being used do not contain 
free type variables. Again, the translation is parameterized by an environment p, as in 
the type translation. 

£(D.; r f- <• X : r)p 
£[~;r~<= c:r]p = 

£[D.; r f-<, >.x:r'.e: r)p 
£[D.;rf-<,e1e2:r)p = 

£[D.;r f-<, letx =pine: r)p 
£(D.;r f-<, p(r,, ... ,rn]: r)p 

X 

c 
>.x: T[r)p.£[e)p 
(£[el)p) £(e2]p 
let x = £[p)p in £[e)p 

(£[p]p)[ru, · · ·, TJk1 , • · • 1 Tnt,···, Tnkn] 

where B[p]r = (a1, rf), ... , (an, r:)) and T;A = A[r;8 ) 

andFV(r;8 ) =(a;,, ... ,a;k,) andr{ = T[r;)p 
and unify(r;A 1 rt) = ((a;,, r;t), ... , (a;k., T;k;), .. . } 

£(fl;r f-<, X: O"jp = X 

£(D.; r f- <• Aa, <: Tj, ... I Cln <: Tn.e: u]p = 
Aau, ... , Cl1k 1 , ••• , On!, ... , Clnkn .£[e)p(a; 1-t r,A] 

where r;A = A[r;) and FV(r;A) = (a;1, ... ,a;k;) 

Again, if pis empty, we simply write t:[e]. The function B returns the bounds of a 
type abstraction, using the environment r to resolve variables. It is defined as follows: 

B[x]r = ((a,,rt), ... 1 (an,Tn)} 
where r(x) = Va, <:r,, ... I Cln <:Tn.T 

B{Aa1 <:n, ... , On <:r.,.e]r = ((a1, r,), ... , (an, r.,)} 

We use Band unify to perform unification "by hand." In most programming languages, 
type inference performs this automatically. 
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We can verify that this translation is type-preserving: 

Theorem 4 If'r- <• e : r, then 'r-T t'['r- <• e : r] : T[r]. 

Theorem 4 is interesting in that it shows that the translation, in a sense, captures 
the right notion of subtyping, particularly when designing an interface. Given a set 
of constants making up the interface, suppose we can assign types to those constants 
in ,\~~ in a way that gives the desired subtyping; that is, we can write type correct 
expressions of the form Aa <: t . .\x: a.c x with type Va <: t.a -+ r. In other words, 
the typing 11'p is sound with respect to the semantics of o. By Theorem 1, this means 
that ,\~~ with these constants is sound and we can safely use these constants in ,\~~. 
In particular, we can write the program: 

let f,. = Aa <: t;n .AX: O<.Cn x in 
e 

By Theorem 4, the translation of the above program executes without run-time errors. 
Furthermore, by Theorem 3, the phantom types encoding of the types of these constants 
are sound with respect to t5 in ,\~M. Hence, by Theorem 2, ,\~M with these constants 
is sound and we can safely use these constants in ,\~M. Therefore, we can replace to 
the body of the translated program with an arbitrary ,\~M expression that type-checks 
in that context and the resulting program will still execute without run-time errors. 
Essentially, the translation of the let bindings corresponds to a "safe" interface to the 
primitives; programs that use this interface in a type-safe manner are guaranteed to 
execute without run-time errors. 

6. Conclusion 
Essentially, the phantom types technique uses the definition of type equivalence in 

ML to encode information in a free type variable of a type. Unification can then be used 
to enforce a particular structure on the information carried by two such types. In this 
paper, we have focused on encoding subtyping information. We also showed how to 
extend the techniques we developed to encode a form of prenex bounded polymorphism, 
with subsumption occuring only at type application. It goes without saying that this 
approach to encoding subtyping is not without its problems from a practical point 
of view. As the encodings in this paper show, the types involved can become quite 
large. Type abbreviations can help simplify the presentation of concrete types, but for 
abstract encodings, which require type variables, those type variables must appear in 
the interface. 

We also note that the source language of Section 5 provides only a lower bound on 
the power of phantom types. For example, one can use features of the specific encoding 
used to further constrain operations [ 13]. One can also capture programming invariants 
associated with user-defined datatypes [7]. An interesting direction for future work is 
formalizing these additional applications of the phantom types technique. 
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