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Abstract We seek a unified account of modularity for computational effects, using 
the notion of enriched Lawvere theory, together with its relationship 
with strong monads, to reformulate Maggi's paradigm for modelling 
computational effects. Effects qua theories are then combined by ap­
propriate bifunctors (on the category of theories). We give a theory 
of the commutative combination of effects, which in particular yields 
Maggi's side-effects monad transformer. And we give a theory for the 
sum of computational effects, which in particular yields Maggi's excep­
tions monad transformer. 

Keywords: Computational effects, enriched Lawvere theories, commutative combi­
nation, sum. 

Introduction 
We seek a unified account of modularity for computational effects. More 

precisely, we seek a mathematical theory that supports the combining of com­
putational effects such as nondeterminism, probabilistic nondeterminism, side­
effects, exceptions, interactive input/output, and continuations. Ideally, we 
should like to develop mathematical operations, together with associated rei-
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evant theory. There is more than one such operation as, for example, the 
combination of side-effects and nondeterminism is of a different nature to the 
combination of side-effects and exceptions, and, further, as one is sometimes 
interested in different ways to combine even the same pair of effects. So we 
seek to find and develop what we expect will be a small number of compu­
tationally and mathematically natural such combining operations. We do not 
address continuations at all in this paper. But, with that caveat, the paper is 
devoted to two such ways of combining effects: that of combining them com­
mutatively, as we shall see holds for combining side-effects with all effects we 
know other than exceptions; and that of taking their sum, as we shall see holds 
for combining exceptions with all other effects. 

In order to give such operations, we first need a unified way to model the var­
ious computational effects individually. In this, we start by following Eugenio 
Moggi, who, in (15, 17], gave a unified category theoretic account of computa­
tional effects, which he called notions of computation. He modelled each effect 
by means of a strong monad T on a base category C with finite products. 
The monads corresponding to the effects listed above are given by a power­
domain (18], a probabilistic powerdomain (9, 10], and the monads (S x - )8 , 
-+E, TX = J.tY.(OxY +Y1 +X), and RR- respectively (15, 16, 17], assuming 
C has appropriate additional structure; the set S of states is typically analysed 
as VLoc where Vis a set of values and Loc is a set of locations. Moggi's unified 
approach has proved useful, especially in functional programming (2]. 

Strong monads in hand, we first seek a binary operation that, to each pair of 
strong monads (T, T'), yields a new strong monad T ® T', such that, in the case 
where T' = (S x - )8 , the monad T ® T' is T(S x - )8 , which computational 
experience tells us is the natural combination of side-effects with all effects we 
know other than exceptions. So we ask: can we give a mathematical theory 
yielding such an operation on a pair of strong monads? Modulo a few side 
conditions, the answer is yes; we make fundamental use of the correspondence 
between strong monads and a generalised notion of Lawvere theory in order to 
provide it (23]. That correspondence is computationally natural and is already 
implicit in our previous work on computational effects (20, 21, 22]. We are 
unaware of any direct justification for the existence of T ® T'. 

Here, we are following an algebraic programme that shifts focus away from 
monads to the study of natural operations that yield the required effects (see (20, 
21] for other recent work along these lines), with the monads then corresponding 
to natural theories for these operations (22]. For instance, rather than empha­
sise the side-effects monad (S x - )8 , we emphasise the operations lookup and 
update associated with side-effects, and the equations that relate them (22]. In 
the case where S = vLoc, lookup can be considered as a Loc-indexed family 
of V-ary operations, and update as a Loc x V-indexed family; the idea is that 
lookup,(x) proceeds with xv if the contents of lis v and update{l,v)(Y) proceeds 
with y, having updated l with v. Again, rather than emphasise the power­
domain P, we emphasise the operation of nondeterministic choice V with its 
equations for associativity, symmetry, and idempotence (7, 19]. 



476 

This change in emphasis, supported by the correspondence between strong 
monads and enriched Lawvere theories in [23] (and see the expository [25]), 
is computationally natural for all the examples of computational effects listed 
above except for continuations [22]; in that case one can still make a formal 
change in emphasis, but it seems computationally unnatural, and we believe 
continuations should be treated separately. 

Having reformulated our account of computational effects in terms of en­
riched Lawvere theories, we can reformulate our question to read: is there a 
mathematical theory yielding an operation that to each pair (L, L') of enriched 
Lawvere theories, gives a new enriched Lawvere theory L®L', such that, if L' is 
the enriched Lawvere theory associated with side-effects, the new enriched Law­
vera theory corresponds to T(S x - )5 , where L corresponds to T? The answer 
is yes, it is remarkably natural, and, in various guises, forms of it have existed 
since the 1960's [4, 13]. It is known as the tensor product of theories and simply 
amounts to taking the operations of both theories and demanding that they 
commute with each other, while retaining the equations of both. For instance, 
in the case where S ::::: V Lac, combining side-effects with nondeterminism, if 
there were three values, one would have the equation 

lookup,(xl Vy1, X2 Vy2, xs Vys)::::: lookup,(xl,x2,xs) V lookup,(yl, Y2.Ys) 

In a functional language with references and nondeterminism this would induce 
the program equivalence: 

let x be !y in (M or N) :.::: (let x be !y in M) or (let x be !y in N) 

where !M is the dereferencing operator and M or N is non-deterministic choice. 
There is a similar commutation equation for update and V, with a corresponding 
induced program equivalence. A recent reference for mathematical theory that 
supports this construction is [8], for which this is a leading example. 

Having studied the commutative combination of effects, we turn to their sum. 
The natural combination of side-effects with exceptions is not their commuta­
tive combination. Exceptions combines with all other computational effects by 
taking the sum of the two theories: one has the operations for exceptions to­
gether with all operations for the other effect subject to all its equations, with 
no further equations. We shall show that the sum of theories yields Moggi 's 
exceptions monad transformer, taking a monad T to the monad T(- +E). 

Of course, one typically combines more than two effects, so the operations 
we define may be used several times. For instance, to combine partiality, side­
effects and nondeterminism, one can first combine partiality and semilattices 
by sum, then combine the result with side-effects by commutativity; similarly 
for partiality, side-effects and interactive input/output. 

The published work most closely related to ours is that of Moggi and Cen­
ciarelli on monad transformers. They defined a monad transformer to be a 
function from the set of strong monads on a category C with finite products 
to itself [2, 3]. The monad transformer for side-effects takes a monad T to 
the monad T(S x - )5 , assuming C is cartesian closed. To model the com­
bination of nondeterminism with side-effects, one would apply the side-effects 
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monad transformer to a powerdomain P, yielding the monad P(S x-)8 • So the 
resulting monad agrees with ours, as it must, but we have an associated math­
ematical theory: the question we pose could equally be posed to ask how one 
might derive the side-effects monad transformer from the side-effects monad qua 
monad, but the work on monad transformers to date has not answered that. 
Moreover, our work involves no asymmetry: there seems no a priori reason 
why the combination of side-effects with nondeterminism should be achieved 
by applying the side-effects monad transformer to the nondeterminism monad 
rather than vice-versa. And in the case of exceptions, the side-effects monad 
transformer does not even give the required result for the usual interpretation 
of the combination. 

There is also relevant unpublished work by Paul Levy. He has observed that 
the sum of any monad T with that for exceptions - + E is given by T(- +E). 
He has also defined a notion of commutative combination of monads and shown 
that T(S x - )8 is the commutative combination ofT and (S x - )8 with that 
definition. His construction does not exist for all pairs of monads, and he 
has not developed accompanying theory; but when the monads have rank, his 
definition agrees with ours. 

Other than the work on monad transformers, the other main attempt we 
know to account for the combination of side-effects with other computational 
effects has been the development of dyads [24] which amount to a decomposition 
of the side-effects monad into strictly more primitive structure. Dyads come 
equipped with a notion of Kleisli category, in which one may model the com­
putational A-calculus, and have been integrated with Freyd-structure, which 
models a delicate feature of contexts arising with side-effects or exceptions, 
where the order of evaluation is crucial. The relationship between the two 
notions remains to be investigated. 

The paper is organised as follows. We do not have space here to explain 
the general enriched setting. So in each section we investigate the unenriched 
case, which largely amounts to the situation where computational effects are 
modelled in Set, then we briefly remark on its enrichment, especially to wCpo 
{whose objects are w-cpos, partial orders with least upper bounds of increasing 
w-chains, and whose morphisms are continuous functions, i.e., maps of partial 
orders that preserve the least upper bounds). In Section 1, we describe the 
relationship between monads and Lawvere theories, and explain how the latter 
appear in our leading examples. In Section 2, we explore the commutative 
combination of Lawvere theories. In Section 3, we show that the commutative 
combination of side-effects with any other Lawvere theory gives the outcome 
we seek. And in Section 4, we develop a theory for the sum of Lawvere theories 
and explain how this gives rise to the exceptions monad transformer. 

A clear omission from this paper is the study of distributivity: this seems 
to be the main other way in which computational effects combine. One has 
distributivity of one set of operations over the other in combining nondeter­
minism with probabilistic nondeterminism [14], and one has distributivity of 
each set of operations over the other in combining internal and external nonde-
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terminism [6]. Another important question concerns the combination of effects 
with local state [22] (this paper only concerns global state). In [22]local state 
is specified using an additional operation block together with additional equa­
tions. But it is unclear yet how best to integrate it with enriched Lawvere 
theories, let alone consider combinations with other effects. We have also not 
considered the combination of interactive input/output with other effects in 
this paper, but we believe that sum is the operation of primary interest there. 
Finally, we have not considered the relationship of all these effects with that of 
continuations; this will be substantially different as the continuations monad 
does not have a rank. 

1. Monads and Lawvere theories 
For simplicity of exposition, we start by restricting our attention to the base 

category Set. The side-effects monad is then the monad (S x - )8 for a set of 
states S. We impose the natural restriction that S is a countable set, and in 
caseS= vLoc restrict V to be countable and Loc to be finite (when dealing 
with local state with its need for unboundedly many locations, one can use a 
presheaf semantics [22]). 

The side-effects monad is then of countable rank, which means that, in a 
precise sense, it is of bounded size [11]. The category of monads with count­
able rank is equivalent to the category of countable Lawvere theories as we 
shall outline. So, in principle, the side-effects monad can equally be seen as a 
countable Lawvere theory, and that turns out to be a computationally natural 
way in which to see it. All our mathematics generalises to arbitrary rank, but, 
as all our examples are of countable rank, we naturally restrict our exposition 
to that case. 

Let t•h denote a skeleton of the category of countable sets and all functions 
between them. So N1 has an object for each natural number n and an object 
for N0 • Up to equivalence, N1 is the free category with countable coproducts 
on 1. So, in referring to Nt, we implicitly make a choice of the structure of its 
countable coproducts. 

Definition 1 A countable Lawvere theory consists of a small category L with 
countable products and a strict countable-product preserving identity-on-objects 
functor I : N~P --t L. A model of a countable Lawvere theory L in any 
category C with countable products is a countable-product preserving functor 
M: L --t C. 

For any countable Lawvere theory L and any category with countable products 
C, we thus have the category Mod(L,C) of models of Lin C. There is a 
canonical forgetful functor U : Mod(L,C) --t C, and, when C =Set, this 
forgetful functor has a left adjoint, exhibiting M od(L, Set) as equivalent to the 
category TL-Alg for the induced monad TL on Set. 

Conversely, given a monad T with countable rank on Set, the category 
Kl(T)~~ determined by restricting Kl(T) to the objects of N1 is a countable 
Lawvere theory LT, and the functor from T-Alg to Mod(LT,Set) induced by 
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the restriction is an equivalence of categories. The following theorem appears 
in enriched form, as we ultimately require it, in [23]. 

Theorem 1 The construction sending a countable Lawvere theory L to TL 
together with that sending a monad T with countable rank to Lr induce an 
equivalence of categories between the category of countable Lawvere theories and 
the category of monads with countable rank on Set. Moreover, the comparison 
functor exhibits an equivalence of the categories M od(L, Set) and TL -Alg. 

So, in principle, the side-effects monad can be described as a countable Lawvere 
theory. The usual way in which to define countable Lawvere theories is by 
means of sketches, with the Lawvere theory given freely on the sketch. To give 
a sketch amounts to giving operations and equations, here the operations being 
allowed to be of countable arity: Barr and Wells' book (1) treats sketches in 
loving detail. A sketch, and hence the countable Lawvere theory, corresponding 
to the side-effects monad is essentially given in (22J and is easy to describe: 

Example 1 The countable Lawvere theory Ls for side-effects (when S = V Loc) 
is the free countable Lawvere theory generated by operations lookup : V --t Loc 
and update : 1 --t Loc x V subject to the seven natural equations listed in [22}, 
four of them specifying interaction equations for lookup and update and three 
of them specifying commutation equations. Note the use of the targets Loc and 
Loc x V to handle indexing at the Lawvere theory level. 

Proposition 1 {22} For any category C with countable products and countable 
coproducts, the canonical comparison functor from M od(Ls, C) toT -Alg is an 
equivalence of categories, where T is the monad on C defined by T X = (EsX) 5 . 

Example 2 Ignoring partiality, the countable Lawvere theory LN for (binary) 
nondeterminism is the countable Lawvere theory freely generated by a binary 
operation V : 2 --t 1 subject to equations for associativity, commutativity and 
idempotence, i.e., the countable Lawvere theory for a semilattice. 

Example 3 The countable Lawvere theory Lp for {binary) probabilistic nonde­
terminism is that freely generated by [0, !]-many binary operations +r : 2 --t 1 
subject to the equations for associativity, commutativity and idempotence in [5}. 

Example 4 The countable Lawvere theory L1;o for interactive input/output 
is the free countable Lawvere theory generated by operations read : I --t 1 
and write : 1 --t 0, where I is a countable set of inputs and 0 of outputs. 
So, interactive input/output is more directly modelled by the countable Lawvere 
theory than by the corresponding monad T X = J.L Y. ( 0 x Y + Y 1 + X). 

Example 5 The countable Lawvere theory LEfor exceptions is the free count­
able Lawvere theory generated by the operation raise : 0 --t E, where E is a 
countable set of exceptions. 

Of course, Set is not the category of primary interest in denotational se­
mantics. One is more interested in wCpo, and variants, in order to model 
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recursion. The relationship between countable Lawvere theories and count­
able monads extends without fuss to one between countable enriched Lawvere 
theories and countable strong monads on such categories (23]. 

Example 6 The countable Lawvere wCpo-theory L1. for partiality is the theory 
freely generated by a nullary operation .L: 0 ~ 1 subject to the condition that 
there is an inequality 

1 0 

~~~ 
1 

where the unlabelled map is the unique map determined because 0 is the terminal 
object of v:~. A model of L1. in wCpo is exactly an w-cpo with least element. 

We have already introduced a countable Lawvere theory Lp corresponding to a 
powerdomain: it is the countable Lawvere theory for a semilattice. We overload 
notation a little here by also using the notation Lp to denote the countable 
Lawvere wCpo-theory for a semilattice: the generators and equations are the 
same, but the wCpo-theory has more objects as there are countably presentable 
w-cpos other than flat ones, and these additional objects generate additional 
maps. But the countable Lawvere wCpo-theory for a semilattice is still just 
the free countable Lawvere wCpo-theory on the countable Lawvere theory for 
a semilattice. 

This definition allows us to make immediate reference to the sum of effects 
that we shall define later. Using the terminology we shall define, we can there­
fore describe the countable Lawvere wCpo-theory for nondeterminism. 

Example 7 The countable Lawvere wCpo-theory for nondeterminism is given 
by the sum of the countable Lawvere wCpo-theories LN for a semilattice and 
L1. for partiality. 

The combination of partiality with other effects is typically given by sum. But 
that is not always the case: the combination with side-effects is given by taking 
the commutative combination, which we define in the next section. 

Another non-trivial example of a computationally natural countable Law­
vere wCpo-theory is given by probabilistic nondeterminism [5, 9, 10, 22]. This 
includes Lp and L1. as well as an infinitary axiom. 

2. The commutative combination of effects 
In this section, we define the commutative combination L ® L' of countable 

Lawvere theories L and L' and develop mathematical theory in support of the 
definition of this tensor product. 

The category N1 not only has countable coproducts, but also has finite prod­
ucts, which we denote by A x A'. The object A x A' may also be seen as the 
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coproduct of A copies of A', so, given an arbitrary map f' : A' --4 B' in a 
countable Lawvere theory, it is immediately clear what we mean by the mor­
phism A x f' : A x A' --4 A x B'. We define f x A' by conjugation, and, in 
the following, we suppress the canonical isomorphisms. 

Definition 2 Given countable Lawvere theories L and L', the countable Law­
vere theory L@ L' is defined by the universal property of having maps of count­
able Lawvere theories from L and L' to L @ L', with commutativity of all op­
erations of L with respect to all operations of L', i.e., given f: A --4 B in L 
and f' : A' --4 B' in L', we demand commutativity of the diagram 

A X A' ..!....:5L A X B' 

f x A' j 
BxA'-BxB' 

B X!' 
Theorem 2 The construction @ extends canonically to a symmetric monoidal 
structure on the category of countable Lawvere theories. Moreover, for any 
small category C with countable products, there is a coherent equivalence of 
categories between Mod(L@ L',C) and Mod(L, Mod(L',C)). 

Example 8 Letting Ls be the countable Lawvere theory for side-effects, if C 
has countable products and countable coproducts, we have seen that M od(Ls, C) 
is equivalent to the category T-Alg for the monad TX = (EsX) 8 on C. For 
any countable Lawvere theory L, the category Mod( L, Set) is always complete 
and cocomplete, so has countable products and countable coproducts. So, by the 
theorem, M od(Ls@ L, Set) is equivalent toT -Alg forT X = (EsX) 8 taken as 
a monad on Mod(L,Set). 

3. The commutative combination of side-effects 
with other effects 

Here, we study the commutative combination of side-effects with other com­
putational effects in more detail. Our central result is as follows. 

Theorem 3 Let Ls denote the countable Lawvere theory for side-effects (where 
S = VLoc) and let L denote any countable Lawvere theory. Then the monad 
TLs®L is isomorphic to TL(S x - )8 . 

Proof 1 We have seen in preceding sections that Mod(Ls,Mod(L,Set)) is 
equivalent to T-Alg, where Tis the monad on Mod(L,Set) given by 
TX = (EsX) 8 . The category Mod(L,Set) is equivalent to TL-Alg. So we 
denote the canonical adjunction by FL -1 UL : M od(L, Set) --4 Set. Right 
adjoints preserve products, left adjoints preserve coproducts, and a coproduct 



482 

:Ey X in Set is given by Y X X. So the monad TLs®L• which, by our main the­
orem, is the monad determined by the composite forgetful functor from T -Alg 
to Set, must be given by TLs®LX = UL('EsFLX)5 = TL(S x X) 5 as required. 

We do not require rank, in particular countability, for this result. We could 
define a notion of theory that does not involve a rank, retain a correspondence 
with strong monads, and make the commutative combination of the theorem, 
but the general theory becomes more complicated because commutative com­
binitions of such theories do not always exist. 

This result shows that, under the hypotheses of the theorem, our theory 
of the commutative combination of computational effects agrees with Moggi's 
definition of the side-effects monad transformer. In particular, this accounts for 
the interaction between side-effects and nondeterminism, and in doing so, the 
theory yields not just an object of values for the combination but a description 
of natural operations and the way in which they interact with each other, and 
it follows immediately from the definition of ® that one does not lose any of 
the equations for either nondeterminism or side-effects with which one began. 
It is also interesting to note that the side-effects theory for S = VLoc is the 
Loc-fold tensor product of the side-effects theory for S = V. 

4. The sum of effects 
Finally, we turn to the sum of effects, our leading example being given by 

the combination of exceptions with all other computational effects we have 
considered, such as side-effects, nondeterminism, and interactive input/output. 

Theorem 4 [12, 23} The category of countable Lawvere theories is cocomplete. 

Theorem 5 Given a set E, if LE is the countable Lawvere theory forE nullary 
operations, and if L is any countable Lawvere theory, then TL 8 +L is given by 
the theory TL(- +E). 

Proof 2 The category TL(- + E)-Alg is isomorphic to Ti -Alg, where Ti is 
the monad on (- + E)-Alg determined by lifting TL, using the canonical dis­
tributive law of-+ E over TL. By direct calculation, one can see that the latter 
category is in tum isomorphic to (TL + (- + E))-Alg: a Ti -algebra consists 
of a set X together withE elements of X and a TL·structure on X, i.e., a 
(TL + {- + E))-algebra. 

This result explains how the exceptions monad transformer, sending a monad 
T to the composite T(- +E), arises: take the disjoint union of the two sets 
of operations and retain the equations for T. And it provides our usual theory 
of coproducts, such as its associativity and commutativity, and its interaction 
with other operations. 

Definition 3 Given a countable Lawvere theory L and a category C with 
countable products, denote by Mod* (L, C) the identity-on-objects/fully faith­
ful factorisation of the forgetful functor U: Mod(L,C) ~C. 
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Theorem 6 There is a natural equivalence between Mod* ( L + L', C) and 
Mod*(L,Mod*(L', C)). 
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As in previous sections, the analysis of this section all enriches without fuss, 
with the sum again being the correct operation in the enriched setting. 
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