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Abstract We set up a logical framework for the compositional analysis of finite 71'­
calculus processes. In particular, we extend the partial model checking 
techniques developed for value passing process algebras to a nominal 
calculus, i.e. the 71'--calculus. The logic considered is an adaptation of 
the ambient logic to the 71'--calculus. As one of the possible applications, 
we show that our techniques may be used to study interesting security 
properties as confidentiality for (finite) 71'--calculus processes. 

Keywords: 71'-calculus, partial model checking, ambient logic, confidentiality. 

1. Introduction 
The 71'-calculus (Milner et al., 1992) is a compact and expressive language for 

describing concurrent systems. This calculus is suitable for describing processes 
whose communication topology may change during the computation. Processes 
communicate by performing sending or receiving actions on channels. Actions 
may be performed only on channels whose name is known by the process. Thus, 
the notion of name plays a central role in this calculus. Processes can send and 
receive names. So, if P sends the name n to Q then also Q can communicate 
on the channel n. Consider the following two terms: 

P - c(n) 
Q - c(y).y(m) 

denoting two 71'-calculus processes. The process P emits on the channel c the 
name n {although note that both c and n are names in the 71'-calculus). The 
process Q is willing to receive a name on the channel c and after it emits the 
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name m on that channel. The parallel composition of P and Q, i.e. PI Q, 
evolves in the process n(m) through a reduction, i.e. an internal communica­
tion, between P and Q. This fact is represented asP I Q-+ n(m). Thus, the 
process Q now is able to communicate on the channel n. Another interesting 
feature is the possibility for processes to create new local names, i.e. names 
which no other process can refer to. Consider the process P' defined as 

P' = vn(c(n) I n(y)) 

The idea is that n is a name different from all the others outside the restriction 
v. Note that also restricted (or private) names can be communicated. When 
this happens, the scope of the restriction changes (scope extrusion) by including 
also the receiving process, e.g.: 

P' I Q = vn(c(n) I n(y)) I Q -+ vn(n(y) I n(m)) 

This models n is a private name of P' and Q after the reduction. 
In this paper, we are interested in extending the compositional analysis 

techniques called partial model checking (e.g., see Andersen, 1995; Larsen and 
Xinxin, 1991) to the 1r-calculus. Basically, suppose we want to verify that a 
system P I Q enjoys a property expressed by a formula A of a certain logic. 
Then, we can simply study if one of the two components, say Q, satisfies a 
property A' which encodes the necessary and sufficient conditions on Q s.t. 
PI Q enjoys A. 

There are several verification problems where the compositional analysis 
provided by partial model checking is particularly useful. In particular, we 
consider here the analysis of security protocols. The verification scenario for 
such protocols is to check whether the protocol participants are able to success­
fully complete their assigned roles even in the presence of an enemy which tries 
to interfere with the execution (e.g., see Focardi et a!., 2000). Let P be the 
process describing the behavior of honest agents of the protocol. The enemy 
could be whatever process one may specify in a given language, say X, possibly 
enjoying certain initial assumptions (e.g., the set of messages it knows). Thus, 
by following (Martinelli, b), we can state security properties as: 

vx PIXI=A 

and then apply partial model checking techniques to reduce such a verification 
problem to a validity one, i.e.: 

VX X I= A' 

which may be faced by using standard results of logic. So far, this idea has 
been applied to the analysis of several security properties for systems which 
may be described through variants of the CCS process algebra, and properties 
expressed with modal logics as the Hennessy-Milner one or the ~t-calculus. 

In this paper, as logic for describing the process properties, we adopt a re­
striction of the ambient logic developed in (Cardelli and Gordon, 2000; Cardelli 
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and Gordon, 2001) to the 1r-calculus. The reason is that this logic is suitable for 
reasoning about free and restricted names. Furthermore, this logic is defined 
in terms of structural congruence between processes. This equivalence relation 
takes into account the spatial structure of processes, e.g. how many parallel 
processes are running and how these are related by the scope of restriction 
operators. To the best of our knowledge, this is the first attempt to develop 
a partial model checking analysis for a nominal calculus, and moreover, for a 
logic with operators which can express also the spatial structure of processes. 

The techniques we develop here, even though present some restrictions to 
their application, are powerful enough to study interesting properties of the 
1r-calculus. In particular, we obtain an effective method for the verification of 
confidentiality properties for finite 1r-calculus processes, i.e. if a (restricted) 
name is leaked to the external environment. 

Organization of the paper. In Section 2, we briefly recall the asyn­
chronous (finite) 1r-calculus. In Section 3, we introduce the logic we use, i.e. a 
restriction of the ambient logic to the 1r-calculus. Section 4 presents the partial 
model checking techniques. In Section 5 we show how to apply partial model 
checking techniques to study security properties, in particular the so-called 
Dolev-Yao confidentiality. In Section 6, we discuss about some further work. 

2. Asynchronous 1r-calculus 
In this section we briefly recall some basic concepts about the asynchronous 

1r-calculus. 
Given a countable set of names .N (ranged over by a, b, ... , n, m, ... ) the set 

of 1r-calculus processes is defined through the following BN F grammar: 

P,Q ::= 0 I a(n} I a(n).P I vnP I PIQ 

The name n is said bound in the terms (vn)P and a(n).P. The set jn(P) of 
free names of P is defined as usual. 

We give an intuitive explanation of the operators of the calculus: 

• 0 is the stuck process that does nothing. 
• a(n) is the output process. Briefly, it denotes a communication on the 

channel a of the name n. Note that channel names can be communicated. 
• a(n).P is the input construct. A name is received on the channel a and 

its value is substituted to the free occurrences of the name n. 
• (vn)P is the name restriction. The idea is that n is a local name of P. 
• PI Q is the parallel composition of two processes P and Q. 

We also define the structural congruence as follows. Let = be the least congru­
ence relation over processes closed under the following rules: 

1 P = Q, if Pis obtained through a-conversion from Q. 
2 PIO :=P; 
3 PIQ=QIP; 
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4 PI(QIR)::: (PIQ)IR; 
5 vnO = 0; 
6 vnvmP = vmvnP; 
7 vnvn(P) = vn(P); 
8 vn(a(m)) = a(n), if n ¢ {a, m }; 
9 vn(a(m).P) = a(m).vn(P), if n ¢ {a, m }; 

10 vn(P I Q) = P lvnQ if n ¢ fn(P). 
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For convenience, we often write vN(P) for vn1 .. vni(P) whereN = {n1, ..• ,ni}· 
When N is empty, we assume that vN(P) = P. (We do not loose information 
by considering vN(P) instead of vn1 .. vnj(P) because of the rules on structural 
congruence.) 

We give the reduction semantics for the asynchronous 1r-calculus. Processes 
communicate among them by exchanging messages. An internal communica­
tion (or reduction) of the process P is denoted by P --t P'. We have the 
following rules for calculating the reduction relation between processes: 

a(n) J a(m).P --t P[n/m] 
p --t P' 

PIQ--tP'IQ 

p = Q, Q --t Q' Q' = P' 
p --t pi 
p --t P' 

vn(P) --t vn(P1) 

where P[n/m] denotes the process P where all the free occurrences of m are 
replaced with n. 

3. A logic on 7r-calculus 
In this section we describe the logic we use to express properties of 7r­

processes. This is a restriction of the ambient logic of Cardelli and Gordon, 
2000; Cardelli and Gordon, 2001 to 1r-calculus1. The syntax of formulas is as 
follows: 

A ::= T I ·A I At v A2 I7J(7J')A I 7](7J')A I QA I A 'R 7] I 7] 'R A I 
0 I A I B I A I> B I 'v'xA 

where 7J(7J') are variables x E V or names n EN. 
The logic permits us to express both temporal and spatial properties of 

processes; moreover it allows to treat with restricted names in a convenient 
way. The logic, besides the usual constants and operators of propositional 
logic, has three modalities for expressing the temporal behavior of processes: 

• 7J(7J')A (output). This formula expresses a process may send the name 7]1 

on the channel 7] and then it satisfies A. 

1 Recently in (Caires and Cardelli, 2001), Cardelli and Caires adapted several concepts of 
the ambient logic to the 11'-calculus by adding also recursion. Clearly, the logic we use here 
is also a restriction of the one of Cardelli and Caires (although we adopt slightly different 
input/output modalities). 
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• 71(17')A (input). This formula expresses that a process may receive the 
name 7}1 on the channel 7J and then it satisfies A. 

• OA (reduction). This formula expresses that a process performs a re­
duction (an internal communication) and then it satisfies A2 • 

Moreover, the logic permits us to represent the spatial structure of processes, 
in particular: 

• 0 (zero). This formula requires that the process is structurally equivalent 
to 0. 

• A I B (composition). This formula expresses that the process is (or better 
is structurally equivalent to) a composition of two processes. One of them 
satisfies A, while the other satisfies B. 

• A!> B (adjunct of the composition). This formula expresses that the 
composition of the process with whatever process satisfying A enjoys the 
formula B. 

But, the main feature of this logic is its treatment of the (restricted) names. 
The logic uses two operators for managing names. 

• A·Rn (hiding). This formula expresses that a process, after the restriction 
of the name n enjoys A. 

• n 'R A (revelation). This formula expresses that a process is equivalent 
to another one under the restriction of n. After that the restriction is 
removed, the resulting process enjoys A. 

We have also a universal quantifier 'v'xA, which may be used to state that a 
property A always holds when one substitutes any name for the variable x. 

The truth relation f= for the logic is inductively defined in Tab. 1. As usual, 
we define 3xA as -.'v'x-.A, A 1\ B as -.(-.A V -.B), A ::::::} B as -.A VB and 
F = -.T. Let Names(A) be the set of all names appearing in a formula A. 

We give some examples of the usage of the logic for expressing properties of 
1!'-calculus processes. 

Example 1 To express that a process P emits a restricted name, we can check 
whether P f= 3y3x(-.(y 'R T) 1\ x 'R y(x)). The revelation operator picks a 
restricted name of P, if any, call it x and then checks if x is emitted on some 
channel y. Note, that we can reveal a name x only if x is not a free name of 
the process. Indeed, the formula x · R T states that x is not free in a process 
(and thus it can be revealed). Similarly, if we are not able to reveal y, it means 
that y is free in P. • 

2 In (Cardelli and Gordon, 2001), a different operator is used, namely 0, whose semantics is 
similar to OA where the reduction relation is replaced with its reflexive and transitive closure. 
Thus, all the reachable processes through finite sequences of reductions are inspected instead 
of the ones reachable with only one reduction step. However, when dealing with finite 7r­

calculus processes, the 0 modality may often be equivalently expressed through the 0 one 
plus the disjunction operator (e.g., see Section 5). 
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PI=T 
PI=AVB 
pI= -,A 
PI= a(n}A 
PI= a(n)A 

PI=OA 
Pl=n·RA 
PI=A·Rn 
pI= 0 
PI= AlB 
Pf=At>B 
PI= VxA 

For all P 
iff P I= A or P I= B 
iff Not PI= A 
iff P = a(n} I P' and P' I= A 
iff P = vN(a(m).P' I P"), with a, n ¢ N, 

and vN(P'[nfm]l P") F= A 
iff P --+ P' and P' I= A 
iff P = vnP' and P' I= A 
iff vnP f=A 
iff p = 0 
iff P = Q' I Q" and Q' I= A, Q" I= B 
iff V P' f= A we have P I P' F= B 
iff Vn EN we have P f= A[nfx] 

Table 1. Formal semantics of the logic. 
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Example 2 The adjunct of the composition is an interesting operator whose 
definition involves the quantification over processes. It is interesting to note 
that, through this operator, it is possible to encode in the logic, the schema for 
defining the security properties given in the introduction. In particular, we can 
encode: V X P I X f= B as P f= T t> B • 

4. Compositional analysis of processes 
In this section we provide a technique to reason compositionally about the 

satisfaction of the properties of the logic. 
Our aim is to find the necessary and sufficient condition, expressed by a 

formula A', on the process X s.t. 

p I X I= A iff X F A' 

Thus, instead of reasoning about the whole system, we can directly work on 
one (or more) of its (parallel) components. 

Example 3 To show how this works consider, for instance, a process P = 
n(n'} and a formula A = n(n'}T. Then, from the definition of the truth rela­
tion, we have PI X f= A iff there exists P' s.t. PI X= n(n'} I P' and P' f= T. 
Note that PI X = n(n'} I P' iff P' is X, or P' =PI X' and X = n(n'} I X'. 
Thus, the former case imposes no conditions on X, i.e. X could be what­
ever process; the latter one imposes that X I= n(n'}T. By putting together the 
conditions on X we get X I= TV n(n'}T, which is equivalent to require that 
X f= T. Indeed, the process P is enough to satisfy A. The situation slightly 
changes if we take A = n(n"}, with n" =I n'. In this case, the condition on X 
is X f= n(n"}, since P cannot contribute to the satisfaction of the formula A . 

• 
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We must face a specific problem directly related with the restriction operator 
of the 1r-calculus and its scope extrusion mechanism. Indeed, the process P I X 
may perform a reduction which depends on a communication of a private name 
of P (resp. of X) to X (resp. P). Thus, we may have PI X -t vn(P' I X'). 
So, the evaluation context is changed. Note that this situation does not arise 
for CCS-like process algebras (e.g., see Andersen, 1995}, where the channel 
restriction is a static operator, i.e. it does not change its scope, whereas in the 
11'-calculus is dynamic. Thus, we perform the partial model checking of more 
general contexts, as vN(P 1(-)) where N could be possibly empty. 

Another specific problem that we encounter in this study is that the defini­
tion of the semantics of both the 1r-calculus and the logic heavily depend on the 
structural congruence. Instead, the previously defined frameworks for partial 
model checking usually rely on Labeled Transition Systems (LTSs) (e.g., see 
Andersen, 1995; Larsen and Xinxin, 1991). Note that it is possible to give a 
semantics of the 1r-calculus in terms of LTSs, however the spatial operators of 
the logic require the notion of structural congruence (while for the others it 
is possible to give a semantics through a suitable notion of LTSs). Thus, we 
develop the partial model checking techniques in a framework completely based 
on structural congruence. 

We introduce some auxiliary lemmas that show how it is possible to decom­
pose processes in several formats, up to structural equivalence. Most of them 
are straightforwardly derived from the results about structural congruence in 
Engelfriet and Gelsema, 1999. 

Given a name n, we can find only a finite number of processes P', up to 
structural equivalence, such that P is structurally equivalent to the restriction 
of n in P'. 
Lemma 1 Given a process P, we can effectively compute a finite set of pro­
cesses res(P,n) s.t.: 

1 P = vnP' implies that there exists P" E res(P, n) s.t. P" = P'; 
2 P" E res{P,n) implies P = vnP". • 

Given a process a(n), we can find only a finite number of processes P', up to 
structural equivalence, such that P is structurally equivalent to the composition 
of the output process a(n} with P'. This gives us all the possible continuations 
of the process P after an output. 
Lemma 2 Given a process P, we can effectively compute a finite set of pro­
cesses C0 (a(n), P) s.t.: 

1 p = a(n) I P' implies that there exists P" E C0 (a(n), P) s.t. P" = P'; 
2 P" E C0 (a(n}, P) implies p = a(n) I P". • 

Given a process a(n), we can find only a finite number of processes P', up to 
structural equivalence, such that P is structurally equivalent to the composition 
of the output process a(n) with P' under the restriction of n. This gives us 
all the possible continuations of the process P after the output of a restricted 
name. 
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Lemma 3 Given a process P, we can effectively compute a finite set of pro­
cesses cro(a(n),P) s.t.: 

1 p = vn(a(n) I P'), with a =F n, implies that there exists P" E cro(a(n), P) 
s.t. P" =: P'; 

2 P" E cro(a(n), P) implies p = vn(a(n) I P"), with a f: n. • 

A process P after the receiving on a channel a of a name n may be only finitely 
decomposed, up to structural equivalence, as the restriction on a set of channels 
different from a and n of a composition of two processes s.t. one is the residual 
after the communication. This gives us all the possible continuations after the 
reception of the value n. 
Lemma 4 Given a process P, we can effectively compute a finite set of triples 
Ci(a(-),n,P) s.t.: 

1 P = vN(a(m).P'I P"), with a, n f/. N, implies that there exists(Nt, P{, P{~ 
E Ci(a(-),n,P) s.t. N n fn(a(m).P'IP") = N1 ,P'[nfm] = P{ and 
P" =: P{'; 

2 (Nt, P{, P{') E Ci(a(- ), n, P) implies P = vN1 (a(m).P' I P"), with a, n ¢ 
Nt, P{ = P'[nfm] and P{' = P". • 

A process P may be finitely represented as the composition of pairs of processes, 
up to structural equivalence. 
Lemma 5 Given a process P, we can effectively compute a finite set of pairs 
ccomp(P) s.t.: 

1 p = P' I P"' implies that there exists (P{, P{') E ccomp(P) s.t. P' = P{ 
and P" = P{'; 

2 (P{,P{') E ccomp(P) implies p = P{ IP{'. • 

Note that we can study the fact that a process performs a reduction, by con­
sidering its possible decompositions. In particular, the following lemma states 
the possible decompositions on P and Q s.t. vN(P I Q) --+ R. 
Lemma 6 We have that vN(P I Q) --+ R iff one of the following cases holds: 

1 P--+ P' and R = vN(P' I Q); 
2 P = a(n) IP',Q = vN"(a(m).Q' IQ"), witha,n f/. N", andR=: vN(P'I 

vN"(Q'[n/m]l Q")); 
3 P = vn(a(n) IP'),Q = vN"(a(m).Q'IQ"), with a,n f/. N",a =F n,n ¢ 

fn(Q) and R = v(N U {n})(P' I vN"(Q'[n/m]l Q")); 
4 Q--+ Q' and R = vN(P I Q'); 
5 Q = a(n) I Q',P = vN"(a(m).P' IP"), witha,n ¢ N", and R = vN(Q'I 

vN"(P'[n/m]l P")); 
6 Q = vn(a(n)IQ'),P = vN"(a(m).P'IP"), with a,n ¢ N",a =F n,n ¢ 

fn(P) and R = vN U {n}(Q' I vN"(P'[n/m]l P")). • 
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T//P,N,,P 
(A v B)// P,N,,P 
(-.A)// P,N,,P 
(a(n)A)// P,N,,P 

(a(n)A)// P,N,,P 

(QA)//P,N,,P 

(A "R n)//P,N,,P 

(n ·R A)// P,N,,p 

0//P,N,¢> 
A I B//P,N,,P 

(A' t> B)// P,N,</> 

- T 
- A// P,N,¢ v B II P,N,¢ 
- -.(A// P,N,,p) 
- At V A2, where 

At= a(n)(A//P,N,¢) if {a,n}!; rp 
A2 = Vp'EC0 (a(n},P)A//P',N,¢> 

- A1 V A2, where 
A1 = a(n)(A// P,N,¢u{n}) if a E rp 
A2:::: V(N',P',P"}EC'(a(-),n,P)A//vN'(P'IP"},N,¢ 

- Vp•:P---+P'A//P',N,¢ 
V Vae¢ V nE/n(P) V P'EC0 (a(n},P)a(n)(A// P' ,N,¢u{n}) 

V Vae¢ V P'EC"0 (a(n'},P) a(n')(A/1 P' ,Nu{n'},,PU{n'}) 

v O(A// P,N,,p) 
v Va,nE¢ V(N,,P',P")EC'(a(-),n,P) a(n)(Af!vN,(P'JP"),N,¢) 
V Vae¢V(N1 ,P',P")EG'(a(-),n',P) 

n' "R a(n')(AffvN1(P'IP"),Nu{n'},,PU{n'}) 
where n' is s.t. n' ¢ fn(P) U rp UN UN ames(A) 

- (A(n' /n])jj P,NU{n},</> 

where n' is s.t. n' ¢ fn(P) U rp UN U Names(A) 
- At V A2 V A3, where 

A1 :::: n "R TI\(Vn'eN(A[n' /n])// P,N\{n'},,p) ifn¢ fn(P)\N 
A2 = n "R (A// P,N,¢U{n}) if n ¢ fn(P) UN 
Aa:::: n "R T 1\ (Vp•eres(P,n)A//P•,N,¢) if n ¢ fn(P) UN 

- 0 ifP::O 
- V(P' ,P")eaeomp(P),/n(P')nN=0 

(Jn..,(N) 1\ A// P' ,0,¢\N) I (B // P",N,,p)V 
(fn..,(N) 1\ B // P' ,0,¢>\N) I (A// P" ,N,¢>) 
where fn..,({nl, ... ,nk}) = Ate{t, ... ,k}nt "R T 

- A'[> (B//P,N,¢>UN,) 
where A' = A 1\ fnr;(Nl) 

Table 2. Partial model checking function for the context vN(P 1(-)). The "else" 
branch in the definition of auxiliary formulas A;, with i = 1..3, is always -.T. 

We make some assumptions that help us to make more tractable the partial 
model checking problem. In particular, we consider only components X whose 
set of free names is fixed a priori. Moreover, we consider only formulas where 
the adjunct of the composition has the following format A 1\ fnr;(N) [> B, 
where fnr;(N) is a short-cut forVx(x·RTVVneNX = n). Basically, fnr;(N) is 
satisfied by a process P iff fn(P) is contained inN. We also require that the 
quantification is only present within the definition of fnr;(N). Call .Cw such 
sub-logic. 
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We have now the technical notions to state the main result of this paper. 
Proposition 1 Let A be a formula in £\ v. Consider a finite set of names ¢1, a 
context vN(P 1(-)), with Names(A) n N = 0, and process X with fn(X) ~ ifJ. 
Then, we have: 

vN(P I X) f= A iff X f= A// P,N,tf> 

where A// P,N,t/> is the formula defined in Tab. 2. • 
Requiring that the names of the formula A are not in N is not restrictive. 
Indeed, we can simply rename each name of A in N with a fresh one and then 
perform the analysis w.r.t. this new formula (e.g., see Lemma 2.3 of Cardelli 
and Gordon, 2001). 

Remark 1 Note that with the previous proposition we are able to reduce some 
model checking problems for the logic to validity checking problems. For in­
stance, checking that P f= A' [> B holds, where A' is equivalent to require that 
the free names of the process are contained in ¢;, can be reduced to checking 
that A' ==::} B /I P,0,/fo is valid. Indeed, P f= A'[> B iff for all X with fn(X) ~ ifJ 
we have P I X f= B; by partial model checking we obtain that X must satisfy 
B I/ P,0,t/>· On the other hand, note that validity problems may be encoded as 
model checking problems. For instance, in order to establish whether or not A 
is valid, one can simply check if 0 f= T [> A holds. By definition, 0 f= T [> A 
iff 'riP f= T we have 0 I P f= A. So, we have 0 I P f= A iff P f= A. • 

5. An application to confidentiality analysis 
The results of the previous section, even if deal only with a subset of the 

logic, are strong enough to prove interesting properties as the confidentiality 
one. 

Consider a protocol P, which runs in a hostile environment X. We may be 
interested to study whether a name of P remains confined among the agents 
of P or it is leaked to the outside environment. (This form of confidentiality is 
sometimes called Dolev- Yao secrecy.) This leakage may be represented as the 
sending on an open channel, say pub, of the confidential value, say v. 
Definition 1 Given a context vN(P 1-) and a process X, with v E fn(P),pub E 
fn(X) \ N, v ~ fn(X) UN, we say that v is leaked to X, if vN(P I X) --t • 
Q lpub(v). If a name v is not leaked, we say it is confidential (w.r.t. X). • 

Remark 2 Similarly, we could define the leakage of a restricted name n of 
P := vnP', with n E fn(P') to a process X. But, this kind of property may be 
treated as an instance of the previous definition, i.e. as the leakage of the free 
name n of P' to a process X' s.t. n ¢ fn(X'). • 
Note that if it could be possible to fix an upper bound to the number of possible 
interactions between whatever intruder and the system P then it would be 
possible to express in the logic the confidentiality property. For a while, assume 
that such bound is n. Then, the formula 

leaked': = VI$i$n Qi pub(v) 
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may be used to state that vis leaked by P (where pub(v)T is abbreviated as 
pub(v)) and -,leake~ that v is confidential. We can prove that such bound 
actually exists. First, we give an estimation for the maximal length of possible 
interactions of a system P with its environment. Let ml(P) be defined as: 

ml(O) = 0; ml(vnP) = ml(P); ml(a(n)) = 1; ml(a(n).P) = 1 + ml(P); 
ml(P I P') = ml(P) + ml(P') 

Thus, vN(P I X) -+* may consists of at most ml(P) interactions between P 
and X plus the interactions internal to the process X. Consider the situation 
where X does not contribute to the computation with internal actions, so: 

vN(PIX) -+* Qlpub(v) iff 
n' 

vN(P I X) -+ ... -+ Q I pub(v} with n' $ ml(P) iff 
vN(P I X) I= leaked::'l(P) 

It is possible to build a process X' s.t. if vN(P I X) -+ * Q I pub(v} then also 
vN(PI X')-+* Q' lpub(v} but X' does not perform any internal reduction. 

Lemma 7 If vN(P I X) -+* Q lpub(v} then we can find a process X' s.t. 
vN(P I X') -+* Q' lpub(v}, with fn(X) = fn(X') and X' during this compu­
tation does not perform any internal reduction. • 

Note also that we can consider as intruders only processes X s.t. fn(X) ~ 
(fn(P) U {pub})\ {v}. 

Lemma 8 Assume that vN' (PI X) -+ * Q I pub(v}, with pub, v ¢ N' and 
v ¢ fn(X). Then, there exists X', with fn(X') ~ (/n(P) U {pub})\ {v}, s.t.: 

vN'(PIX') -+* Qlpub(v) • 

Moreover, we can restrict ourselves to consider the analysis of the formula 
leaked::''(P) only for contexts vfn(P)(P I X), where fn(X) ~ fn(P) U {pub}. 
Thus, we can study whether the value v E fn(P) is confidential in P, by 
requiring that there is no process X, with fn(X) ~ (fn(P) Upub) \ {v}, s.t.: 

PI X I= leaked::''(P) 

By partial model checking, we can find 

F = leaked::'I(P) II P,0,(/n(P)U{pub})\{t~} 

that is satisfiable by some process (whose set of free names is contained in 
(fn(P)Upub)\ {v}) if and only if v can be leaked. Alternatively, vis confidential 
iff F is not satisfiable. Note that the formula obtained after the partial model 
checking only consists of logical constants, disjunctions, revelations, outputs, 
inputs and reductions. A satisfiability procedure for such formulas exists. 

Lemma 9 Let A be a formula which consists only of logical constants, dis­
junctions, inputs, outputs, revelations and reductions. Then, the problem of 
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establishing whether or not there exists a process X, with fn(X) ~ t/J, s.t. 
X f= A is decidable. • 

Thus, as a simple application of our theory we have that the confidentiality 
analysis for our processes is decidable. 

Proposition 2 The confidentiality analysis for finite 1r-calculus processes is 
decidable. • 

It is worthy noticing that, from results in (Marchignoli and Martinelli, 1999; 
Martinelli, c), several authentication properties can be encoded as properties 
of the intruder knowledge, and ultimately as confidentiality properties. Thus 
our results may be used to deal also with authentication properties of finite 
1r-calculus processes. 
Remark 3 In Remark 1, it has been shown how by using 1> operator one can 
encode validity checking problems as model checking ones. This feature makes 
the model checking problem for the full logic rather difficult. Indeed, in (Chara­
tonik et al., 2001}, where the model checking problem for the ambient logic have 
been studied, no results have been given about fragments with the I> operator. 
By means of partial model checking and by Lemma 9, we are able to give a 
decision procedure for a small class of properties defined in the logic with this 
operator. In particular, we are able to perform the model checking of formulas 
like fnc;. (N) 1> B where N is a finite set of names and B is a formula which con­
sists only of logical constants, disjunctions, inputs, outputs, revelations, hidings 
and reductions. The key point is that the partial model checking of the formula 
B does not introduce other operators (moreover the hidings are removedl. • 

6. Further work 
In this paper, we performed some preliminary steps towards a compositional 

analysis framework for a nominal calculus, i.e. the 1r-calculus. So far, we 
have considered only finite 7!"-calculus processes and a simple logic without 
recursion and without universal quantification. This clearly limits the range of 
application of such techniques. For dealing with universal quantification one 
could try to resort to infinite conjunctions or to a symbolic semantics for the 
1r-calculus. A recent work (Caires and Cardelli, 2001) shows that the interplay 
between new name generation and recursion is rather complex and interesting. 
Whether it is possible to extend the partial model checking techniques to a 
calculus and a logic with some form of recursion deserves further investigation. 
However, we argue that the results in this paper and the semantics of Cardelli 
and Caires for the logic with recursion may be considered as building blocks 
for such a study. In particular, we plan to consider the partial model checking 
problem for finite-control processes which may have infinite behavior but whose 

3 Actually, the partial model checking for revelation introduces some conjunctions with simple 
revelations. However, these can be simply treated by modifying the satisfiability procedure 
defined in the proof of Lemma 9. 
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model checking problem (actually for a different logic) may be solved (see Dam, 
1996). On the other hand, some preliminary investigations show that it is 
possible to extend the same ideas applied in this paper to other nominal calculi 
such as the spi-calculus (Abadi and Gordon, 1999) and ambient calculus ( 
Cardelli and Gordon, 1998). 
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