
ON THE ENUMERABILITY OF
THE DETERMINANT AND THE RANK

Alina Beygelzimer, Mitsunori Ogihara*
Department of Computer Science, University of Rochester, Rochester, NY 14627
{beygel,ogihara}@cs.rochester.edu

Abstract We investigate the complexity of enumerative approximation of two el­
ementary problems in linear algebra, computing the rank and the de­
terminant of a matrix. In particular, we show that if there exists an
enumerator that, given a matrix, outputs a list of constantly many num­
bers, one of which is guaranteed to be the rank of the matrix, then it
can be determined in AC0 (with oracle access to the enumerator) which
of these numbers is the rank. Thus, for example, if the enumerator is
an FL function, then the problem of computing the rank is in FL. The
result holds for matrices over any commutative ring whose size grows
at most polynomially with the size of the matrix. The existence of
such an enumerator also implies a slightly stronger collapse of the exact
counting logspace hierarchy. For the determinant function we establish
the following two results: (1) If the determinant is poly-enumerable in
logspace, then it can be computed exactly in FL. (2) For any prime p, if
computing the determinant modulo pis (p -I)-enumerable in FL, then
computing the determinant modulo p can be done in FL. This gives a
new perspective on the approximability of many elementary linear al­
gebra problems equivalent to computing the rank or the determinant.

Introduction
Valiant (Valiant, 1979) proved that the permanent of integer matrices char­

acterizes #P, the class of functions definable as the number of accepting com­
putations of a nondeterministic polynomial-time Turing machine. A similar
connection has been shown between the complexity of computing the determi­
nant and #L, the logspace analog of #P (Toda, 1991; Valiant, 1992; Vinay,
1991; Damm, 1991). (Since the determinant of integer matrices can take on
negative values, the determinant is in fact complete for GapL, the class of
functions that can be expressed as the difference of two #L functions.) Toda's

*This work is supported in part by NSF grants EIA-0080124 and DUE-9980943, and in part
by NIH grants R01-AG18231 and P30-AG18254.

R. Baeza-Yates et al. (eds.), Foundations of Information Technology in the Era of Network
 and Mobile Computing © Springer Science+Business Media New York 2002

60

result (Toda, 1989) showing the surprising power of counting in the context
of nondeterministic polynomial-time, namely that the polynomial hierarchy is
contained in p#P, naturally raises the question of whether #P functions are at
least easy to approximate. In the standard sense of coming close to the correct
value (i.e., within a multiplicative factor), approximating #P functions is in
A~. Moreover, any technique for showing that it has complexity lower than
A~, would have to be non-relativizable. (See (Stockmeyer, 1985).) In search of
a better answer, Cai and Hemachandra (Cai and Hemachandra, 1989) proposed
an alternative notion of approximation, called enumerative counting. Instead
of restricting the range of a function value to an interval, they consider enumer­
ating a short list of (not necessarily consecutive) values, guaranteed to contain
the correct one. Which of these approximation tasks is more natural depends
on the function one is trying to approximate: enumerative counting is more
suitable in cases when there is no natural total ordering on the range of the
function; or when the range is either exponentially large (as in the case of the
determinant), or some intervals of the range are substantially denser than oth­
ers, and it is preferred to obtain a fixed number of candidates for every input
of the same length, instead of dealing with an interval that, though bounded,
may contain vastly different numbers of possible values for different inputs (de­
pending not on the input itself, but on the value of the function on this input).

More formally, a function f is said to be g(n)-enumerable if there exists a
function that, on input z, outputs a list of at most g(lzl) values that is guar­
anteed to contain /(z). Cai and Hemachandra (Cai and Hemachandra, 1991),
and also Amir, Beigel, and Gasarch (Amir et al., 1990), showed that if the per­
manent function is poly-enumerable in polynomial time, then P = p#P. (Their
result is actually stated for #SAT, another classical #P-complete function.)
Thus if we are given ann x n integer matrix A, and instead of n!(2n)n values
that perm(A) can possibly take, we get a restricted list of polynomially-many
values, guaranteed to contain perm(A), then we can easily (in polynomial time)
determine which one is the correct one. This is certainly a non-enumerability
result, as it says that a very hard to compute function (hard for the whole
polynomial hierarchy) can easily bootstrap its exact value if it is left with poly­
nomially many candidates.

This paper investigates the enumerability of functions complete for logspace
counting classes. In particular, it is interesting whether enumerability implies
a similar decrease in the complexity of the determinant; and if so, to what ex­
tent. Since #L functions have significantly less computational power (they are
contained in the NC2, or even TC1), the enumerability properties of logspace
counting analogs can be very different from those of #P-complete functions.
This is even more interesting, because, as far as we know, there are no results
on approximating the determinant (or the rank) in the standard sense. Another
purpose of such an investigation is to get a better understanding of the rela­
tionships among the complexity classes sandwiched between NL and uniform
TC1•

On the Enumembility ofthe Determinant and the Rank 61

We show that if there exists an enumerator that, given a matrix, outputs
a list of constantly many numbers, one of which is guaranteed to be the rank
of the matrix, then it can be determined in AC0 (with oracle access to the
enumerator) which of these numbers is the rank. Thus, for example, if the
enumerator runs in logspace, then the problem of computing the rank is in
logspace. The result holds for any commutative ring with identity whose size
grows polynomially with the size of the matrix. The existence of such an
enumerator implies a slightly stronger collapse of the exact counting logspace
hierarchy; namely, it shows that the the hierarchy collapses to the closure of its
base class C=L under :::;~(1°)-tt reductions. We also consider a related problem
of computing the number of dependent vectors in a given set, and prove it to
be ::;~go)-tt -equivalent to computing the rank. For the determinant function
we show that if the determinant is poly-enumerable in logspace, then it can be
computed exactly in logspace. We also establish a similar result for computing
the determinant modulo any prime.

1. Preliminaries
We will be concerned with the complexity of computing the following func­

tions (with input and output in {0, 1 }*):

• DETp: Given A E Fnxn, compute the determinant of A.
• RANKp: Given A E Fnxn, compute the rank of A.
• SINGULARITYp: Given A E Fnxn, determine whether A is singular.
• INDEPENDENCEp: Given a set of vectors in pn, determine whether they

are linearly independent.

Here F is any commutative ring with unity. When F = Z, the ring of in­
tegers, F is dropped. With some abuse of notation, we will consider these
functions as sets by associating the function f : {0, 1}* --+ {0, 1}* with the
set {(x,i) I the i-th bit of f(x) is 1}. Notice that a function is in NCk if and
only if its associated set {its characteristic function) is in NCk and is polyno­
mially bounded; hence there will be no confusion in viewing circuit classes as
functional, sets being identified with their characteristic functions.

Uniformity. In order to make circuit classes comparable to traditional
classes defined by time and space, we need to place uniformity restrictions on
circuit families. For our purposes it will be sufficient to use logspace uniformity,
meaning that there exists a logspace machine that, on input 1 n, generates a
description of the circuit for n inputs. For a detailed treatment of uniformity
and a discussion of other uniformity conditions, see (Ruzzo, 1981; Barrington
and Immerman, 1997).

Reductions. We use Wilson's model (Wilson, 1985) of oracle circuits to
define the reductions. A function f is AC0 -reducible to function g, if there is
a logspace uniform AC0 family of circuits that computes J, where in addition

62

to the usual gates, oracle gates for g are allowed. Similarly we define NC1-

reducibility except that now the circuits have a bounded fan-in, and thus an
oracle gate with fan-in m has to count as depth logm. For a circuit class C,
we write C(J) to denote the class of functions C-reducible to f. For a function
class :F, C(:F) denotes the class of functions C-reducible to some function in :F.
A function f is AC0 many-one reducible to a function g (written as f ~~00g)
is there exists an AC0 family of circuits (On} such that for every x of length n,
we have f(x) = g(Cn(x)).

Logs pace counting classes and the complexity of prob­
lems in linear algebra

Many basic linear algebra problems are known to be in NC2• In order to
classify and capture the exact complexity of these problems, Cook (Cook, 1985)
defined the class of problems NC1-reducible to the determinant of integer matri­
ces, and showed that most linear algebra problems with fast parallel algorithms
are in this class. Many are in fact complete for this class; others were shown
to be complete for the (potentially smaller) class of problems reducible to com­
puting the rank (von zur Gathen, 1993; Santha and Tan, 1998). Santha and
Tan (Santha and Tan, 1998) defined a more refined hierarchy of problems that
reflects the computational difference between the functional and the verifica­
tion versions of the problems under AC0-Thring and AC0 -many-one reductions.
Toda (Toda, 1991) gave many examples of graph-theoretic problems that are
(under appropriate reductions) equivalent to computing the determinant. (Al­
though some of these problems still have natural matrix interpretations when
graphs are identified with their adjacency matrices.)

Allender and Ogihara (Allender and Ogihara, 1996) observed that, even
though for most natural problems the closures under AC0 and NC1-reductions
coincide, this does not seem to be apparent for the determinant. This motivated
the definition of the following hierarchies (defined using the "Ruzzo-Simon­
Tompa" oracle access model (Ruzzo et al., 1984), which is standard for defining
Thring reductions for space-bounded nondeterministic machines, see (Allender
and Ogihara, 1996)):

• The exact counting logspace hierarchy C=LUC=L C~1uC=L C=L0 =L ... =
AC0(C=L)

The class C=L is defined as the class of languages, for which there
exists a GapL function f such that for every x, x is in the lan­
guage if and only if /(x) = 0. If follows immediately that the set
of singular matrices is complete for C=L. Allender, Beals, and Ogi­
hara (Allender et al., 1999) showed that AC0 and NC1 reducibilities
coincide on C=Li furthermore, the hierarchy collapses to LC-L.
We show that, if RANK is 0{1)-enumerable in logspace, then it

ACO fC collapses to the ~O(l)-tt-closure o =L·

• The PL hierarchy PL U PLPL U PLPLPL U · · · = AC0(PL)

On the Enumerability ofthe Determinant and the Rank

Ogihara (Ogihara, 1998) showed that the PL hierarchy collapses
to PL under AC0 (in fact TC0) reductions, which was improved
to NC1 reducibility by Beigel and Fu (Beigel and Fu, 1997). A
problem, easily seen to be complete for PL, is checking whether
the determinant of integer matrices is positive.

It is not known whether the #L hierarchy collapses, or whether
AC0 (#L) = NC1 (#L). The latter would imply the collapse (Al­
lender, 1997).

63

Allender et al. (Allender et a!., 1999) showed that the problems of comput­
ing the rank of integer matrices, determining whether the rank is odd, and
determining the solvability of a system of linear equations, are all complete for
AC0 (C=L). Clearly, the problems of computing and verifying the rank of a
matrix are AC0-equivalent (since there are just n+ 1 possibilities for the rank).
However, Allender et a!. classified the complexity of verifying the rank exactly,
showing that it is complete for the second level of the Boolean Hierarchy above
C=L (i.e. the class of sets expressible as an intersection of a C=L and a co-C=L
set).

Our results. We show that if there exists a logspace computable 0(1)­
enumerator for RANK, then RANK is ~~T1°)-tt-reducible to INDEPENDENCE, and
thus to SINGULARITY. (The reduction holds for arbitrary rings.) SINGULAR­
ITY is complete for C=L, and thus the existence of the enumerator implies that
AC0 (C=L) coincides with the closure of C=L under 0(1)-tt-reductions, a slight
improvement over O(poly(n))-tt that follows from (Allender et al., 1999) (un­
conditionally). We also show that if RANKp is 0(1)-enumerable in logspace,
then RANKp E FL, where F is any commutative ring with identity whose size
grows at most polynomially with the size of the input matrix. Finally, we
consider a related problem of computing the number of dependent vectors in
a given set (i.e., vectors involved in some non-trivial linear dependencies with
other vectors in the set), and show it to be ~~g0)-tt-equivalent to computing
the rank. For the determinant function DET we establish the following two
results: (1) If DET is poly-enumerable in logspace, then DET is in FL. (2) For
any prime p, if the determinant-modulo-p function is (p- 1)-enumerable in FL,
then it can be computed exactly in FL.

Organization of the paper. All the results pertaining to the rank
and the determinant are collected in Sections 3 and 4, respectively. Section 5
concludes with a discussion.

2. Enumerability of the Rank
Recall that a function f is logs pace g(n)-enumerable if there exists a logs pace

computable function that, on input x, outputs a list of at most g(ixi) values, one

64

of which is J(x). The following lemma shows how to combine several matrices
into a single matrix such that the ranks of the original matrices can be read off
the rank of the combined matrix.

Lemma 2.1 [Block diagonal construction] There exists a logspace computable
function S that given an ordered list Q = (A1 , ... , Aq) of n x n matrices, out­
puts a single matrix S(Q) of dimension O(nq) such that a logspace procedure
can uniquely decode the sequence of ranks (rank(AI), ... , rank{Aq)) from the
value of rank(S(Q)). Moreover, both procedures can be implemented by uni­
form AC0 circuit families.

Proof: Consider the following combining construction. On input Q =
(A1 , ..• , Aq), S outputs a block diagonal matrix (i.e. a matrix of n x n blocks
sitting on the main diagonal) with the following block structure. The first block
of S(Q) corresponds to At. the next (n+ 1) blocks correspond to A2, and so on,
until we get to nq +nq-l +· · ·+1 blocks of A9• The multiplicity of Ai as a block
is E~=l ni-l, thereby the dimension of S(Q) is Ek,1 ni+1(q- i + 1) = O(nq).
The rank of S(Q) is the sum of all block ranks, and since the rank of each
block is at most n, the original sequence of ranks (rank(At), ... , rank{Aq))
can be read off from the value ofrank(S(Q)). It is easy to see that both the
construction and the decoding can be done in uniform AC0 • I

The combining construction above allows one to eliminate many candidate rank
sequences. For example, if we were to feed each of q matrices to an r-enumerator
separately, we would get rq purported rank sequences, whereas combining the
matrices into a single query reduces the number of candidates to r. In order
for the dimension of S(Q) to be polynomial in n, the number of matrices, q,
has to be constant. A simple information-theoretic argument shows that this
is the best possible. Indeed, the dimension of a matrix whose rank can encode
(n+ 1)q possible rank sequences must be at least (n+ 1)q. Notice that combining
matrices into a single query to an r-enumerator allows one to link matrices in
the following sense.

Definition 1 Two r-element sequences {Pt, . . . , Pr} and { Q1, • • • , Qr} are said
to be linked if Pi= Pi if and only if Qi = q;, for all1 ~ i < j ~ r.

In other words, two matrices are linked - relative to an enumerator - if there
is a direct correspondence between the values on their claimed lists of ranks;
hence knowing the rank of one immediately gives the rank of the other.

Claim 2.1 There exists r0 such that for any r > ro, any set of (1;r)r r-element
sequences, contains at least one linked pair.

Proof: The number of r-element sequences sufficient to guarantee the exis­
tence of a linked pair is precisely one more than the number of partitions of
an r-element set into non-empty subsets. The latter is known as the rth Bell
number, Br. De Bruijn (de Bruijn, 1970) gave the asymptotic formula

On the Enumerability ofthe Determinant and the Rank 65

lnBrr = lnr -lnlnr- 1 + lnln rlnr + llnr + 12 (lnlnrln r) 2 + 0 (lnlnr(lnr) 2),

immediately yielding the claim. Other (less explicit) asymptotic approxima­
tions for Br are known (see, for example, (Lovasz, 1993)). I

Let ll":(r) be the minimum number of matrices that are guaranteed to contain
a linked pair. By Claim 2.1, II": ~f ll":(r) :::; (1;rt· Given ann x n matrix A,
let Ai (for 1 :::; i :::; n) denote the n x n matrix with the first i rows of A and
Os elsewhere, so that An = A. An r-enumerator for the rank function defines
the equivalence graph of A, a labeled graph on [n] ~f {1, ... , n} with the set of
nodes corresponding to A = { A1 , · · · , An}, and an edge between nodes i and
j if and only if there is a set of II": - 2 matrices in A - {A;, Aj} certifying the
equivalence between Ai and Aj (i.e. witnessing that A; and A1 are linked).
(We can assume without loss of generality that the enumerator is deterministic
and the combining encoding of queries in Lemma 2.1 is symmetric.) The label
of an edge is defined by the equivalence (i.e. direct correspondence between the
r claimed values for rank(Ai) and the r claimed values for rank(Aj)) given by
the lexicographically smallest /\":-tuple linking A; and Aj.

Notice that by definition every subset of K. nodes in the equivalence graph
induces at least one edge. Hence the number of connected components in the
equivalence graph is at most K. -1. The following proposition shows that in this
case every pair of nodes is connected by a short path (where the length of a path
is the number of edges it contains). The proof can be found in (Beygelzimer
and Ogihara, 2002).

Proposition 2.1 Any pair of nodes in the equivalence graph is connected by a
path of length at most 2K-- 3.

We will use equivalence graphs in the proof of the theorem below.

Theorem 1 If, for some integer r, there exists an r-enumerator for RANKp,
then RANKp is computable in AC0 with oracle calls to the enumerator. Here
F is any commutative ring with identity whose size grows polynomially with
the size of the input matrix.

Proof: Given an enumerator and a set of matrices, the equivalence graph
is uniquely defined. Recall that the number of equivalence classes (i.e. the
number of connected components in the graph) is at most K. - 1. Consider
guessing the number of equivalence classes, a representative matrix from each
equivalence class, and, finally, the ranks of the representatives chosen. Since
there are at most (K- -l)n()K-- 1r"'-1 possibilities total, which is polynomial in
n when r is constant, we have no problem checking them all in parallel; thus
we will concentrate on a single guess.

Once we have guessed the number of equivalence classes and their repre­
sentatives, we can check whether every node is reachable from at least one

66

representative, and whether the representatives are not reachable from each
other. Recall that we only need to check all paths of length at most 2~~;- 3
from every representative node. If at least one of these conditions is not sat­
isfied, we reject; otherwise we proceed to checking the consistency of ranks, as
we do next.

Let RI, ... , Rk E A be the representative matrices, and TI, ... , Tk be the
corresponding ranks, where 1 :::; k < ~~; is the number of equivalence classes.
Note that TI, •.. , Tk uniquely define the ranks of all matrices in A. Of course,
we do not know TI. ... , Tk. Instead, we will use the block diagonal construc­
tion in Lemma 2.1 to pack RI, ... , Rk into a single matrix, which we can
then feed to the enumerator to get a list of r sequences of ranks, one of
which is (r1, ... ,rk)· Denote the sequences by (rf, ... ,Tf), ... , (r[, ... ,rk).
Each (rf, ... , rt) uniquely defines the rank sequence (vi, ... , v~) claimed to
be (rank(AI), ... ,rank(An)). Let U; = {1:::; j:::; n I v} = vJ-I + 1}, where
we define vb = 0 for all 1 :::; i :::; r; thus each of the U1 , · • • , Ur claims to be
a maximal set of linearly independent rows of A. Our goal is to test whether
each U; is indeed maximal, i.e. whether every remaining row of A is a linear
combination of the rows in U;. As there are only constantly many U; 's, testing
them in parallel causes no problem. The rank of A is given by the size of the
smallest U; that passes the maximality test. (This number can be found as the
corresponding v~.)

Remark 1 Alternatively, we could have obtained the (alleged) maximally in­
dependent sets of columns VI, ... , Vr (using the same procedure as for the
rows). The square submatrices indexed by ul X VI, ... ' Ur X Vr all claim
to be non-singular. (We can obviously discard all candidate sequences with
IU;I =/:. IV;I.) Now instead of verifying the maximality claim, we can test, in
parallel, which submatrices are indeed non-singular, and then take the maxi­
mum over all that pass the test.

Notice that the discussion above is valid for arbitrary matrices. Now we show
how to test the maximality of U;'s for matrices with entries from any commu­
tative ring whose size does not grow more than polynomially with the size of
the input matrix.

Testing maximality:. Given row vectors VI, ••• ,vq,w E pn, verify that
w is in subspace generated by v1 , ••• , vq.

Let F = { a1, · · · , am} be the ground field. If v1, ••• , Vq are linearly inde­
pendent, W is dependent On VI 1 ••• 1 Vq 1 and W =/:. on (where Q iS the null ele­
ment of F), then there must exist unique coefficients c1 , • . . , cq E F such that
c 1v 1 + · · · + CqVq + w = 0. For each i and j, 1:::; i:::; m, 1:::; j:::; q, define the

On the Enumerability ofthe Determinant and the Rank 67

matrix

M/ = a;Vj +w

Vq

If the above conditions hold, then for each j, there is a unique i such that
rank(M/) = q -1; namely, rank(M/) = q -1 iff a; = Cji otherwise rank(M/) =
q. We have qm<nm matrices1, which is polynomial inn, provided that m grows
at most polynomially in n. We want to reduce the number of possibilities for
the ranks of these matrices to a constant, and we already know how to force
the enumerator to do this for us: Recall that there is a constant K = K(r)
such that combining any K matrices into a single query witnesses at least one
equivalence relation between a pair of claimed lists of ranks. Furthermore,
there are at most K-1 equivalence classes, and thus only polynomially (in nm)
many choices of how to partition M/ s into the equivalence classes. All choices
can be verified in parallel, each one gives only a constant number of possible
values for the ranks of M/s. For each candidate sequence of ranks we collect
the coefficients c;s, assuming that this sequence is correct (i.e. for each j there
is a unique i such that rank(M/) = q -1, and rank(M/) = q for all! f:. i); then
we verify (column-wise in parallel) that the equality c1 v1 + · · · + cqVq + w = 0
holds. Notice that the maximality test can be run in parallel not only for all
of U1 , · · • , Ur, but also for all rows w claimed to be linear combinations of the
rows in Uh (for each h, 1 :5 h :5 r). The number of matrices that we are dealing
with for each h is less than n2m, so if m is polynomial in n, testing them in
parallel causes no problem. It is easy to see that the entire computation can
be done in AC0 with oracle gates for the enumerator, since we are dealing with
fields of polynomial size (and thus elements of logarithmic length).

Now, to extend this method to commutative rings of polynomial size, we
just have to test whether, for each d E F, there exist coefficients c1, ... , Cq E
F satisfying c1 v1 + · · · + CqVq + dw = 0, which can be done in parallel for
each possible d. For some i there can be more than one value of j for which
rank(M/) = q- 1, but since the underlying computation is AC0 we have only
to select the smallest such j. I

Corollary 2.1 Let F be any commutative ring with identity whose size grows
polynomially with the size of the input matrix. If there exists a 0(1)-enumerable
for RANKp that runs in logspace, then RANKp is computable in logspace.

1 If q = n (i.e. if the enumerator has claimed that A has full rank), we can verify whether
each row is a linear combination of the remaining rows. Since there are just n rows, the
verification can be done in parallel. The sequence passes the test if and only if it passes all
of the n tests. Thus we may assume that q < n.

68

Computing the number of dependent rows
Consider the following related problem: Given a set of row vectors Vt, .•• , Vn E

pn, determine how many of them are dependent, i.e., are involved in some non­
trivial linear dependency with other vectors in the set. Define the problem
DEPF: Given a matrix A E Fnxn, compute the number of dependent rows of
A, written as dep(A).

Proposition 2.2 If, for some integer r, there exists an r-enumerator for DEP F,

then DEPF is computable in TC0 with oracle calls to the enumerator. Here F
is any commutative ring of polynomial size.

Proposition 2.3 For an arbitrary ring F, DEPF is :::;~W:)-tt-equivalent to
RANK F.

The proofs are not included due to space limitations; they can be found in
(Beygelzimer and Ogihara, 2002).

3. Enumerability of the Determinant
Theorem 2 If, for some k, DET is n1c-enumerable in logspace, then DET E FL.

Proof: Let G be the configuration graph of a nondeterministic logspace
machine on some input x. Let #patha(8, t) denote the number of directed
paths from node 8 to node t in G. Define j(G) as the function, whose value
(written in binary) consists of a sequence of n 2 blocks of length 8 = 2n flog n 1,
the (n(i -1) + j)th segment corresponding to #path0 (i,j), where 1:::; i,j:::; n;
thus

n
f(G) = L 2(n(i-l)+i)•#path0 (i,j).

i,j=l

It is easy to see that j is a #L function; this can be done by exhibiting an NL
machine N whose number of accepting computation paths on G is j(G). The
machine N, on input G, nondeterministically guesses a number p = n(i - 1) + j,
1 ~ p ~ n2 , after which it guesses q, 1 ~ q ~ 211•, followed by a guess of path
from node i to node j in G. If the guess is correct, N accepts; otherwise, it
rejects. It is easy to see that N is a nondeterministic logspace machine that has
the required number of accepting paths. Hence J E GapL, and a function is in
GapL if and only if it is logspace many-one reducible to the determinant. Thus
there must exist a logspace function g such that for all G, j(G) = DET(g(G)).
We shall use g to transform G into a matrix M = g(G), and then run the n/c­
enumerator on M to obtain a list of nk values, one of which is the determinant of
M. Using the equality in the above reduction, we convert this list to a list of n /c
candidates for f(G) {each of which, if correct, certifies that the corresponding
claimed value for det(M) is correct). Since we have only n/c candidates for J(G),
they can be checked in parallel. Given a purported f(G), we can uniquely read
off #path0 (i,j) for each pair (i,j), 1 :::; i,j :::; n. These values can then be
locally checked using the self-reducibility of #path0 . I

On the Enumerability ofthe Determinant and the Rank 69

A natural question is whether the same theorem holds for finite fields. We can
only show a similar result for the determinant of integer matrices modulo some
integer p. The problem of computing the determinant mod p is $~S-complete
for ModpL, defined in (Buntrock et al., 1992). ModpL is the class of sets A for
which there exists f E #L such that for all x, x E A iff f(x) ~ 0 mod p. We
will also use the notion of membership comparability, due to Ogihara (Ogihara,
1995).

Definition 2 A setS is g(n)-membership comparable, written asS E L-mc(g(n)),
if there exists a function f E FL such that for any set of g(n) inputs x1, ... , x9(n),

each of length at most n, f excludes one of 2o(n) candidates for the character­
istic sequence Xs(Xl, •.• , Xg(n))·

We will also use the predicate version of the problem, namely DET-mod-p =
{(A, i) I det(A) = i (modulo p)}.

Theorem 3 Let p be any prime. If there exists a logs pace computable (p- 1)­
enumerator for DET-mod-p, then DET-mod-p E FL.

Proof:
2002).

4.

Omitted due to space limitations; see (Beygelzimer and Ogihara,
I

Open questions
A natural question is whether the rank being, say, O(logn)-enumerable im­

plies that the rank is in logspace. As we mentioned, it does not seem possible
to combine more than a constant number of queries into a single query to the
enumerator. Another improvement would be to show that Proposition 2.2 holds
for AC0 in place of TC0 , the question being whether counting the number of
dependent basis vectors can be avoided in this context.

References
Allender, E. (1997). A clarification concerning the #L hierarchy. Available at

http:/ fwww.cs.rutgers.edurallender /.
Allender, E., Beals, R., and Ogihara, M. (1999). The complexity of matrix rank and

feasible systems of linear equations. Computational Complexity, 8:99-126.
Allender, E. and Ogihara, M. (1996}. Relationships among PL, #L, and the determi­

nant. Theoretical Informatics and Applications, 30(1}:1-21.
Amir, A., Beigel, R., and Gasarch, W. (1990}. Some connections between bounded

query classes and nonuniform complexity. In 5th Structure in Complexity Theory
Conference, pages 232-243.

Barrington, D. and Immerman, N. (1997). Time, hardware, and uniformity. In Hemas­
paandra, L. and Selman, A., editors, Complexity Theory Restrospective II, pages
1-22. Springer-Verlag.

Beigel, R. and Fu, B. (1997). Circuits over PP and PL. In 12st IEEE Conference on
Computational Complexity, pages 24-35.

70

Beygelzimer, A. and Ogihara, M. (2002). On the enumerability of the determinant
and the rank. Electronic Colloquium on Computational Complexity TR02-016.

Buntrock, G., Damm, C., Hertrampf, U., and Meine!, C. (1992). Structure and im­
portance of Logspace-MOD class. Mathematical Systems Theory, 25(3):223-237.

Cai, J. and Hemachandra, L. (1989). Enumerative counting is hard. Information and
Computation, 82(1):34-44.

Cai, J. and Hemachandra, L. (1991). A note on enumerative counting. Information
Processing Letters, 38:215-219.

Cook, S. (1985). A taxonomy of problems with fast parallel algorithms. Information
and Control, 64:2-22.

Damm, C. (1991). DET = L#L? lnformatik-Preprint 8, Fachbereich lnformatik der
Humboldt-Universitii.t zu Berlin.

de Bruijn, N. G. (1970). Asymptotic methods in analysis. North-Holland, Amsterdam.
Lovasz, L. (1993). Combinatorial problems and exercises. North-Holland, 2nd edition.
Ogihara, M. (1995). Polynomial-time membership comparable sets. SIAM Journal on

Computing, 24(5):1168-1181.
Ogihara, M. (1998). The PL hierarchy collapses. SIAM Journal on Computing, 27:1430-

1437.
Ogihara, M. and Tantau, T. (2001). On the reducibility of sets inside NP to sets with

low information content. Preprint.
Ruzzo, W. (1981). On uniform circuit complexity. Journal of Computer and System

Sciences, 22(3):365-383.
Ruzzo, W., Simon, J., and Tampa, M. (1984). Space-bounded hierarchies and proba­

bilistic computations. Journal of Computer and System Sciences, 28:216-230.
Santha, M. and Tan, S. (1998). Verifying the determinant in parallel. Computational

Complexity, 7:128-151.
Stockmeyer, L. (1985). On approximation algorithms for #P. SIAM Journal on Com­

puting, 14(4):849-861.
Toda, S. (1989). On the computational power ofPP and EBP. In 90th IEEE Symposium

on Foundations of Computer Science, pages 514-519.
Toda, S. (1991). Counting problems computationally equivalent to computing the

determinant. Technical Report CSIM 91-07, Department of Computer Science,
University of Electro-Communications, Tokyo, Japan.

Valiant, L. (1979). The complexity of computing the permanent. Theoretical Computer
Science, 8:189-201.

Valiant, L. (1992). Why is boolean complexity theory difficult. In Paterson, M., editor,
Boolean FUnction Complexity, London Mathematical Society Lecture Notes Series
169, pages 84-94. Cambridge University Press.

Vinay, V. (1991). Counting auxiliary pushdown automata and semi-unbounded arith­
metic circuits. In 6th IEEE Structure in Complexity Theory Conference, pages
270-284.

von zur Gathen, J. (1993). Parallel linear algebra. In Reif, J., editor, Synthesis of
Parallel Algorithms, pages 574-615. Morgan Kaufmann.

Wilson, C. (1985). Relatizived circuit complexity. Journal of Computer and System
Sciences, 31:169-181.

