
PARITY GRAPH-DRIVEN READ-ONCE
BRANCHING PROGRAMS AND AN
EXPONENTIAL LOWER BOUND FOR
INTEGER MULTIPLICATION
{Extended Abstract)

Beate Bollig•
FB lnformatik, LSS, Univ. Dortmund, Germany
bollig01s2.cs.uni-dortmund.de

Stephan Waack
lnstitut /fir Numerische und Angewandte Mathematik
Georg-August- Universitiit Gottingen, Germany
waackCimath.uni-goettingen.de

Philipp Woelfel•
FB lnformatik, LSS, Univ. Dortmund, Germany
woelfe1CIIs2.cs.uni-dortmund.de

Abstract Branching programs are a well-established computation model for
boolean functions, especially read-once branching programs have been
studied intensively. Exponential lower bounds for deterministic and
nondeterministic read-once branching programs are known for a long
time. On the other hand, the problem of proving superpolynomiallower
bounds for parity read-once branching programs is still open. In this
paper restricted parity read-once branching programs are considered
and an exponential lower bound on the size of well-structured parity
graph-driven read-once branching programs for integer multiplication
is proven. This is the first strongly exponential lower bound on the
size of a nonoblivious parity read-once branching program model for an
explicitly defined boolean function. In addition, more insight into the
structure of integer multiplication is yielded.

"Supported in part by DFG grant WE 1066.

R. Baeza-Yates et al. (eds.), Foundations of Information Technology in the Era of Network
 and Mobile Computing © Springer Science+Business Media New York 2002

84

1. Introduction
Branching programs (BPs) or Binary Decision Diagrams (BDDs) are a well­

established representation type or computation model for boolean functions.

Definition 1 A branching program (BP) or binary decision diagram (BDD)
on the variable set Xn = { Xt, ... , Xn} is a directed acyclic graph with one
source and two sinks labeled by the constants 0 and 1. Each non-sink node (or
internal node) is labeled by a boolean variable and has two outgoing edges, one
labeled by 0 and the other by 1. A nondeterministic branching program is a
generalized branching program where the number of edges leaving an internal
node is not restricted.

An input a E {0, 1}n activates all edges consistent with a, i.e., the edges
labeled by ai which leave nodes labeled by Xi· A computation path for an
input a in a BP G is a path of edges activated by a that leads from the source
to a sink. A computation path for an input a which leads to the 1-sink is called
accepting path for a.

The output for an input a is 1 iff there is an accepting path for a. A parity
branching program is a nondeterministic branching program with the parity
acceptance mode, i.e., an input is accepted iff the number of its accepting
paths is odd.

The size of a branching program G is the number of its nodes and is denoted
by IGI. The branching program size of a boolean function I is the size of the
smallest BP representing I. The length of a branching program is the maximum
length of a path.

The branching program size of a boolean function f is known to be a measure
for the space complexity of nonuniform 'furing machines and known to lie
between the circuit size off and its {/\, v,-.}-formula size (see, e.g., [19]).
Hence, one is interested in exponential lower bounds for more and more general
types of BPs (for the latest breakthrough for semantic super-linear length BPs
see [1], [3] and [4]). In order to develop and strengthen lower bound techniques
one considers restricted computation models.

Definition 2 i) A branching program is called (syntactically) read k times
(BP k) if each variable is tested on each path at most k times.

ii) A BP is called s-oblivious, for a sequence of variables s = (st. ... , s,),
Si E Xn, if the set of its internal nodes can be partitioned into disjoint
sets Vi, 1 ~ i ~ l, such that all nodes from Vi are labeled by si and the
edges which leave Vi-nodes reach a sink or a ¥;-node, j > i.

Bryant [9] has introduced ordered binary decision diagrams (OBDDs) which
are up to now the most popular representation for formal circuit verification.
OBDDs are oblivious BP1s, where on each path from the source to a sink the
variables are tested accoding to a variable ordering given by a permutation 1r

on the variable set. Unfortunately, several important and also quite simple

Parity Graph-driven Read-Once Branching Programs 85

functions have exponential OBDD size. Therefore, Gergov and Meine} [12] and
Sieling and Wegener [17] have generalized independently the concept of variable
orderings.

Definition 3 A graph ordering is a branching program with a single sink,
where on each path from the source to the sink all variables appear exactly
once. A (parity) graph-driven BP1 with respect to a graph ordering G0 , (parity)
G0-BP1 for short, is a (parity) BP1 with the following additional property. If
for an input a, a variable Xi appears on the unique computation path of a in
Go before the variable Xj, then Xi also appears on all computation paths of a
in G before Xj·

(Note that the size of a (parity) Go-BP1 G is the number of nodes in G and
not in G and Go.)

For many restricted (nondeterministic) variants of branching programs ex­
ponential lower bounds are known (for a survey see e.g. (15]). Moreover,
Thathachar (18) has been able to prove an exponential gap between the size
of nondeterministic BPks and deterministic BP(k + 1)s for an explicitly de­
fined boolean function. His results have demonstrated that the lower bound
techniques for these models are highly developed. Nevertheless, the problem
of proving superpolynomial lower bounds for parity read-once branching pro­
grams is still open. Krause (13) has proved the first exponential lower bounds
for oblivious parity branching programs with bounded length. Later, Savicky
and Sieling (16) have presented exponential lower bounds for restricted parity
read-once branching programs. In their model only at the top of the read-once
branching program parity nodes are allowed. Recently, Brosenne, Hameister,
and Waack [8) have proved the first (not strongly) exponential lower bound on
the size of restricted parity graph-driven BP1s representing the characteristic
function of linear codes.

Motivated by applications the analysis of natural functions like the basic
arithmetic functions is of interest.

Definition 4 Integer multiplication MULn maps two n-bit integers x =
Xn-1· .• xo and y = Yn-1·. ·YO to their product x · y = z = Z2n-1 .. . zo.
MULi,n denotes the boolean function defined as the ith bit of MULn.

The middle bit of multiplication (MULn-1,n) is known to be the hardest bit.
Hence, in the following we only consider the function MULn := MULn-1 n·

For OBDDs Bryant (10) has presented an exponential lower bound of size 2,;/8

for MULn· Incorporating Ramsey theoretic arguments of Alon and Maass
(2) and using the rank method of communication complexity, Gergov (11] has
extended the lower bound to arbitrary nondeterministic linear-length oblivious
BPs. Recently, Woelfel [21] has improved Bryant's lower bound up to 0(2nf2).

The first exponential lower bound on the size of deterministic BP1s has been
proven by Ponzio [14]. His lower bound is of order 2°(n112) and has been
improved by Bollig and Woelfel [7] to the first strongly exponential lower bound

86

of size 0(2nf4) for MULn. Bollig [5] has presented the first (not strongly)
exponential lower bound on the size of MULn for so-called nondeterministic
tree-driven BP1s. Her result also holds for parity tree-driven BP1s. Until now
exponential lower bounds on the size of MULn for general nondeterministic
BP1s or BPks with k ~ 2 are unknown. Here we present an exponential lower
bound on the size of restricted parity graph-driven BP1s for MULn. This is
the first strongly exponential lower bound for this branching program model.
In addition, we yield more insight into the structure of integer multiplication.

Due to the lack of space we have to omit some of the proofs. For a full
version of the paper see [6].

2. The Lower Bound Criterion
In [17] a restricted variant of graph-driven BP1s has been investigated.

Definition 5 A graph-driven BPl G = (V, E) with respect to a graph ordering
Go = (Vo, Eo) is called well-structured if there exists a representation function
a: V ~ Vo with the following properties. The nodes v and a(v) are labeled by
the same variable and for all inputs a such that v lies on the computation path
for the input a the node a(v) lies on the path in Go which is activated by a.

Similar to the deterministic case well-structured parity Go-BP1s are defined.
The difference between graph-driven and well-structured graph-driven BP1s is
the following one. In the general graph-driven model it is possible that two
different inputs reachinG the same node labeled by Xi, whereas they reach in
the graph-ordering Go different nodes labeled by Xi· This is not allowed in the
well-structured case.

Brosenne, Homeister, and Waack [8] have realized how this restriction can be
used to determine the number of nodes that is necessary to represent a boolean
function f in a well-structured parity graph-driven BPl. A further observation
which turns out to be very helpful in order to prove exponential lower bounds
is the following one. The size of a well-structured parity graph-driven BP1 G
and the size of a graph ordering Go of minimal size such that G is Go-driven
are polynomially related. First, we need the following lemma which is a slight
generalization of a result from [17].

Lemma 1 ([8]) Let Go be a graph ordering, v a node in a well-structured
parity Go-BP1 G, a the representation function, and c E {0, 1}. If w is one of
the c-successors of v in G then all paths to the sink in Go which leave a(v) via
the c-edge pass through a(w).

Proposition 1 Let G be a well-structured parity graph driven BPl on n vari­
ables. There exists a graph ordering Go such that G is Go-driven and IGol ~
2niGI.
Proof. Let G~ be a graph ordering such that G is G~-driven and let .N11 (G) be
the set of nodes u in G such that a(u) = v. First, we mark all nodes v in G~ for

Parity Groph-driven Read-Once Branching Programs 87

which Nv(G) is not empty. Afterwards we eliminate all nodes which have not
been marked in G0. An edge leading to one of theses nodes v is redirected to
the first successor of v which has been marked. Because of Lemma 1 this node
is uniquely determined. The resulting graph is a read-once branching program
with one sink and at most IGI nodes. Finally, we use the usual algorithm (see
also [20]) to insert nodes such that on each path from the source to the sink
there exist for each variable x; exactly one node labeled by x;. According to
a topological ordering of the nodes, for each node v the set V(v) of variables
tested on some path from the source to v excluding the label of v is computed.
Afterwards on each edge (v,w} dummy tests of the variables in V(w) \ V(v)
excluding the variable tested at v are added. A dummy test is a node where
the 0- and the l-edge lead to the same node.

The resulting graph ordering Go consists of at most 2niGI nodes. It is easy
to see that G is G0-driven. D

The proof of Proposition 1 cannot be generalized in a straightforward way
for (general} parity graph-driven BPls because the existence of the a-function
is an essential part of the proof. Until now exponential lower bounds on the
size of general parity graph-driven BPls are unknown.

In the following, we consider the representation of a boolean function f by
its value table as an element of (Z2}2n. This set is a Z2 vector space where
addition is component-wise parity and scalar multiplication by 0 or 1 is defined
in the obvious way. Before we state our lower bound criterion, we have to
introduce some notations. Let v be a node in the graph ordering G0 , G a
well-structured parity G0-driven BP 1, Nv (G) the set of nodes u in G such that
o:(u) = v, and f a boolean function. On all paths from the source to v the
same set of variables has to be tested. W .l.o.g. let x1, ... , x;_1 be the previously
tested variables and let v be labeled by x;. Let A(v) ~ {0, l}i-1 be the set
of vectors (all ... , a;_1) such that v is reached for all inputs a starting with
(at, ... ,a;-t)· We define :Fv := {f1.,1=a1 , ... ,., 1_ 1=a;_ 1 i(at, ... ,a;-t) E A(v)}.
The functions of :Fv depend syntactically on all variables Xt, ... , Xn but they
do not depend essentially on Xt, ... , X i-t· (A function g essentially depends
on a variable Xj iff Yla:;=O ::f. Yla:;=t·) Now let Pv be the set of all nodes that
lie on a path leaving v in Go including v. Then we define B?,~ as the boolean
vector space spanned by all functions in Uwe'Pv :Fw.

Let V be a vector space and Vt , V2 be sub vector spaces of V. Vt is said
to be linearly independent modulo V2, if V1 n V2 = { o}, i.e., dim V1 + dim lt2 =
dim(V1 + V2).

Lemma 2 Let A'(v) be a subset of A(v) such that the sub/unctions
/ia:1=a1 , ... ,z1_ 1 =a•-t> (at,··· ,a;_t) E A'(v), are linearly independent, and
let B?,~, be the vector space spanned by these sub/unctions. If B?,~, is linearly
independent modulo the vector space of all sub/unctions in B7,~ not essentially
depending on x;, then iNv(G)i :2: IA'(v)l.

88

3. Integer Multiplication and the Matrix Game
We start our investigations with two technical lemmas which provide impor­

tant properties of the function MULn.
In the rest of the paper [x)~:::~ denotes the bits at position n- 1 to n - k in

the binary representation of the integer x. Using universal hashing Bollig and
Woelfel (7, proof of Lemma 5) have shown the following.

Lemma 3 (Covering Lemma) Let X <;;;; Z2n and Y <;;;; Z2n .­
{1, 3, ... , 2n - 1 }. If lXI · IYI ~ 2n+2k+l, k ~ 0, then there exists an
element y• E Y such that

'v'zE{0, ... ,2k-l} 3xEX: (xy*)~:::k=Z.

The lemma states that if X and Y are large enough sets of (odd) n-bit
integers, then by choosing an appropriate y E Y, the possible outcomes in the
bits n- 1, ... , n- k of the products xy for x EX cover all possible k-bit values.
(Note that Bollig and Woelfel [7) have proved this statement only implicitly in
a non-parameterized form.) We now state another important lemma about
integer multiplication, which is a generalization of Lemma 6 from (7).

Lemma 4 (Distance Lemma) Let Y <;;;; z;n_ 1 , 1 ::; k ::; n- 3, and (z;, zD E
Z2n-t x Z2n-t, where z; =j:. zj, 1 ::; i ::; t. Then there exists a subset Y' <;;;; Y
with

'v'y E Y' : 4 · 2n-k-l $ ((z;- zf)y) mod 2n-l ::; 2n-l - 4 · 2n-k-l

such that IY'I ~ IYI - t · 2n-k+1.

Proof. Let 6; := (z;- zi) mod 2n-l, 1 ::; i::; t, and

M' .- {0, ... ,4 · 2n-k-l -1} and

M" .- {2n-1 - 4. 2n-k-1 + 1, ... '2n-1 - 1 }.

Let Y' be the set of all y E Y where (y6;) mod 2n-l ¢ M' U M" for all
i E {1, ... , t}. Bollig and Woelfel (7, proof of Lemma 4) have shown that the
number of y E Y with (y6;) mod 2n-l E M' U M" for a fixed i E {1, ... , t} is
bounded above by 2n-k+1. Therefore, for at most t · 2n-k+1 elements y E Y
there exists at least one element i E {1, ... , t} such that (y6;) mod 2n-l E M'U
M". Altogether, we have proved that the size of Y' is at least IYI- t · 2n-k+l.

0

Before we state our main lemma about properties of integer multiplication,
we motivate our investigations. Let Go be a graph ordering which is not too
large. Then we can prove that there exists a node v such that w .l.o.g. at least
as many x- as y-variables have been tested from the source to v, v is labeled
by a variable x;, and there is a partial assignment a* to the y-variables tested

Parity Graph-driven Read-Once Branching Programs 89

on the paths to v such that many paths which agree for the tested y-variables
with a* lead to v. Let A'(v) be the set of these assignments. Now our aim is
to prove that the boolean vector space spanned by the subfunctions of MULn
according to A' (v) is linearly independent modulo the vector space spanned by
all subfunctions not essentially depending on v•, where V* contains x; and
the variables which have been tested on the paths to v. Then we can conclude
using Lemma 2 that the size of well-structured parity Go-BP1s representing
MULn is large.

In the following, we investigate integer multiplication of two binary numbers
x = {xn-1 1 ... ,xo) andY = (Yn-1, ... ,yo), where Xn-1 = Yn-1 = 0 and
xo =Yo= 1. Let Vz = {x1, ... ,xn-2} and V11 = {y1, ... ,Yn-2}· Furthermore,
let V~ ~ Vz (V~ ~ V11) be a set of m x-variables (y-variables), where m 5 L(n-
17)/6J. We fix an arbitrary assignment of the v;-variables. Now we consider
a 2m x 22n-2m-4 matrix M. Each row is associated with one assignment of
the V~-variables and each column with an assignment of the variables from
Vz \ V~ and V11 \ v;. Together with the fixed assignment of the v;-variables,
Xn-1 = Yn-1 = 0 and xo = Yo = 1, we obtain two well-defined n-bit numbers
Xr,c and Yc for each pair {r, c) of a row and a column. We define Mr,c as
MULn(Xr,c.Yc)· Finally, we define for an arbitrary fixed variable Xi E Vz \ v~
and a column c the column d as the one which only differs from c by the
assignment to the variable x;.

Now our aim is to show that for an arbitrary choice of different rows
r 1, . . . , r1, there exists a column c such that

l l

ffiMrJ,c ::j:. ffiMrJ,c•· {1)
j=1 j=1

Before we show {1) we illustrate how this property can be used to prove
lower bounds using Lemma 2. The set of all possible assignments of the v;­
and v;-variables is a superset of the set A(v). By fixing the v;-variables by an
arbitrary assignment, we obtain a set A • (v) which determines the matrix M.
The number of a row of M identifies an assignment a determined by an element
in A* (v) and the row itself represents the function vector of the subfunction
MULia· In this setting, (1) is the following. If we take an arbitrary linear
combination of subfunctions {represented by the rows r 1, ... , r'), then there
exist two assignments to the variables in {Vz \ v;) U (V11 \ v;) differing only
in their setting to Xi such that the function value of the linear combination is
different for both assignments. Hence, no subfunction not essentially depending
On the v;- and v;-variables and X; Can be represented as a linear COmbination Of
the subfunctions determined by A*(v). By Lemma 2, this allows the conclusion
that INv(G)I ~ IA'(v)l, where A'(v) ~ A*(v).

We return to the proof of {1). Let Xr,c be the number in Z2n-l defined by
the choice of a row rand a column c and Yc the number in Z2n-l defined by the
choice of the column c and the fixed assignment of the v;-variables. Therefore,

Mr,c = [xr,c · Yc]n-1·

90

The number Xr,c can be written as the sum of two components x~ow + x~01 ,
where x~ow is the number defined by the partial assignment of the v;-variables
given by the row r and the 0-assignment of the variables from Va: \ v; and
x~01 is the number defined by the partial assignment of the variables from
Va: \ v;, Xo = 1, and the 0-assignment of the v;-variables. It follows that
M _ [(row+ col)] r,c- Xr Xc • Yc n-l•

We take a look at the columns where for an arbitrary i the variable Xi is set
to 0. Obviously the set of all pairs (x~01 , Yc) of theses columns c corresponds
to a set X X y where X, y ~ z;n-1> lXI = 2n-m-S' and IYI = 2n-m-2. Fur­
thermore, x~~w - x~ow = 2i. Finally, the choice of l rows r 1 , ... , r1 corresponds
to the numbers x~fw, ... , x~?w. For the ease of description we denote these
numbers by x1 , • • • , x1•

Summarizing, our aim is to prove that, under the assumption discussed
above, for arbitrarily chosen x1 , .•• , x1 there exists a pair (x, y) E X x Y such
that the number of indices j E {1, ... , l} for which

[(xi + x)Y]n-1 =/= [(xi + x + 2i)Y]n-1

is odd. Formally this leads to the statement of Lemma 5.

Lemma 5 Let m :5 l(n -17)/6J, 1 :5 l :5 2m, X,Y ~ z;n_1, d =/= 0, and let
x1 , ••• x1 be elements from Z2n_1 with the following properties:

i} lXI ~ 2n-m-3 and IYI ~ 2n-m-2'

ii) V 2 :5 j :::; l : x1 f= xi and V 1 :::; j :::; l : x 1 f= xi + d,

iii} for all x EX and all1 5: j 5: l: x +xi+ d < 2n-1 .

Let (x,y) EX x Y and let u(x,y) be the number of indices j E {1, ... ,l}
where [(xi +x)y]n-1 =/=[(xi +x+d)y]n-1 . Then there exists a pair (x, y) EX xY
such thatu(x,y) is odd.

Obviously, the conditions of Lemma 5 are fulfilled for d = 2i and our choice
of x1, . •• , x1 and X and Y as described above. (Note, that we have achieved
(iii) by setting Xn-1 = Yn-1 = 0.)

Proof. Let k = 2m+ 5 and X' := {x1 + x I x E X}. Clearly IX'I = lXI ~
2n-m-a. Because of condition (iii), X' is a subset of Z2n-1. First, we consider
the 2l-1 pairs (x1,z) where z E Z := {x2 , ... ,x1}U{x1 +d, ... ,x1 +d}.
Because of condition (iii), all z E Z are elements of Z 2n-1 and, because of
condition (ii), they are all different from x 1 • Let Y' be the set of ally E Y such
that for all pairs (x1,z), z E Z,

4. 2n-k-1 :5 ((z- x1)y) mod 2n-1 :5 2n-1- 4. 2n-k-1. (2)

According to Lemma 4

IY'I ~ IYI - (2l- 1)2n-k+l > IYI - 2m+1+n-k+l
~ 2n-m-2 _ 2n-m-3 = 2n-m-3.

Parity Graph-driven Read-Once Branching Programs 91

Here we have used the fact that 2l ~ 2m+l. Using m ~ l(n- 17)/6J we can
conclude that

IX'I·IY'I ~ 22n-2m-6 ~ 22n-n/3+17/3-6 = 2n+{2/3)n-l/3.

Since k = 2m + 5, it follows that

2n+2k+l = 2n+4m+ll ~ 2n+{2/3)n-34/3+11 = 2n+{2/3)n-l/3

such that we obtain IX'I·IY'I ~ 2n+2k+l. Now we can apply Lemma 3.
According to this there exist an element y• E Y' and x•, x .. E X 1 such that

[x*y*J~=~ = 2k-l - 1 and [x**y*J~=~ = 2k-l.

Let y = y•. According to the definition of X' we can write x• as x1 + x and
x•• as x1 + x' for two elements x, x' E X such that

Next we prove the following claims for x and x':

(C1) [(x1 + x)y]n-1 # [(x1 + x')Y]n-1·

(C2) For all 2 ~ i ~ l: [(xi+ x)y]n-1 =[(xi+ x')Y]n+

(C3) For all 1 ~ i::::; l: [(xi+ x + d)y]n-1 = [(xi+ x' + d)y]n-l·

Using these claims we can prove in the following way that either u(x, y) =
u(x',y)- 1 or u(x,y) = u(x',y) + 1. From (C1) and (C3) fori= 1 we can
conclude that

[(x1 + x)y]n-l = [(x1 + x + d)y]n-l {::} [(x1 + x')Y]n-l # [(x1 + x' + d)y]n-l,

and from (C2) and (C3) that

[(xi+ x)y]n-1 =[(xi+ x + d)y]n-1 ¢> [(xi+ x')Y]n-1 = [(xi+ x' + d)y]n-1

fori = 2, ... , l.
Therefore, exactly one of the values u(x,y) or u(x',y) is odd and we can

complete our proof by proving (C1)-(C3). (C1) follows immediately from
equation (3). To prove (C2) and (C3) we reconsider the pairs (x1, z), z E
Z = { x2 , .•. , x1, x1 + d, . .. , x1 + d}. Obviously, it is sufficient to prove that
[(z + x)y]n-1 = [(z + x')Y]n-1, for all z E Z. We assume that this is not the
case, w.l.o.g. [(z + x)y]n-1 = 0 and [(z + x')Y]n-1 = 1 (the other case follows
similarly).

According to equation (3) it follows that

2n-l- 2n-k ~ ((x1 + x)y) mod 2n < 2n-1 and (4)
2n-1 < ((x1 + x')y) mod 2n < 2n-1 + 2n-k. (5)

92

From this it follows that

1 $ ((x'- x)y) mod 2n < 2. 2n-k. (6)

From our assumption [(z + x)y]n-1 = 0 and [(z + x')Y]n-1 = 1 we know that

((z + x)y) mod 2n < 2n-1 $ ((z + x')y) mod 2n.

Since {(z + x')y) mod 2n- ((z + x)y) mod 2n = ((x'- x)y) mod 2n, we can
conclude using inequality (6)

2n-1 - 2 · 2n-k $ ((z + x)y) mod 2n < 2n-1.

Together with inequality (4) we obtain

-2 · 2n-k < ((z + x)y) mod 2n- ((x1 + x)y) mod 2n < 2n-k.

Considering all terms in this inequality modulo 2n-1 it follows that

((z- x1)y) mod 2n-1 < 2n-k or ((z- x1)y) mod 2n-1 > 2n-1 - 2 · 2n-k.

But this is a contradiction to inequality {2) and we are done. 0

Altogether, we have proved that the vector space spanned by all subfunctions
of MULn according to all assignments of them V~-variables and an arbitrary
assignment a* of the m v;-variables is linearly independent modulo the vector
space spanned by all subfunctions of MULn according to all assignments of the
V~- and v;-variables not essentially depending on a variable X; from V:~: \ v~.

4. A Strongly Exponential Lower Bound for
Integer Multiplication

Combining the new lower bound technique for well-structured parity graph­
driven BP1s with Lemma 5 we prove the first strongly exponential lower bound
on the size of a nonoblivious parity branching program model.

Theorem 1 The size of well-structured parity graph-driven BP1s representing
MULn is bounded below by 2(n-46)/12 fn.

Proof. Let G be a well-structured parity graph-driven BP1 representing MULn
and Go be a graph ordering of minimal size such that G is Go-driven. We
may assume that the size of Go is at most 2112L(n-lT)/6J, because otherwise
using Proposition 1 we can conclude that the size of parity graph-driven BP1s
representing MULn is bounded below by

21/2L(n-17)/6J /(4n) ~ 2(1/2)·(n-22)/6 /(4n) = 2(n-46)/12 fn.

Let m := l(n -17)/6J, Vz = {xl> ... 1 Xn-2}, and V11 = {y1, ... ,Yn-2}.
Since on all paths in Go all variables have to be tested, it is obvious that on

Parity Graph-driven Read-Once Branching Programs 93

all paths from the source to a node v the same set of variables is tested. In the
following we only investigate paths where xo = Yo = 1 and Xn-1 = Yn-1 = 0.
We define a cut in the graph ordering Go in the following way. The cut consists
of all nodes v where vis labeled by a Vx-variable and on all paths to v exactly
m Vx-variables and at most m Vy-variables have been tested (or vice versa).
On each path in Go there is exactly one node of the cut. Using the pigeonhole
principle there exists one node v which lies on at least 22n-4 /IGol paths from
the source to the sink. W.l.o.g. vis labeled by x;, and m Vx-variables and m'
Vy-variables, m' :::::; m, have been tested. Using the pigeonhole principle again
there exists one partial assignment a• to the Vy-variables tested on the paths
from the source to v such that there are at least 2m /IGol paths to v which agree
for the Vy-variables with the partial assignment a*. Let A' (v) be the set of all
assignments associated with these paths, v; (V~) be the set of the x-variables
(y-variables) which have been tested, and let v be labeled by x;. Clearly the
requirements from Lemma 5 are fulfilled and we can conclude that the vector
space spanned by all subfunctions according to A'(v) is linearly independent
modulo the vector space of all subfunctions not essentially depending on the
v;- and the V~-variables and x;. Therefore, we obtain the result

!Nv(G)j 2:: IA'(v)j 2:: 21/2[(n-17)/6J.

Altogether, we have proved a lower bound of 2112 l(n-17l/6J /4n,which is at least
2(n-46)/12 jn, on the size of well-structured parity graph-driven BPls represent­
~~~. D 

Acknowledgments 
We would like to thank Stefan Droste and Ingo Wegener for proofreading 

and fruitful discussions on the subject of the paper. 

References 

(1] M. Ajtai. A non-linear time lower bound for boolean branching programs. In 
Proceedings of the 40th Annual IEEE Symposium on Fountations of Computer 
Science, pp. 60-70. 1999. 

(2] N. Alon and W. Maass. Meanders and their applications in lower bounds argu­
ments. Journal of Computer and System Sciences, 37:118-129, 1988. 

[3] P. Beame, M. Saks, X. Sun, and E. Vee. Super-linear time-space tradeoff lower 
bounds for randomized computation. In Proceedings of the 41st Annual IEEE 
Symposium on Fountations of Computer Science, pp. 169-179. 2000. 

[4] P. Beame and E. Vee. Time-space tradeoffs, multiparty communication com­
plexity, and nearest-neighbor problems. In Proceedings of the 94th Annual ACM 
Symposium on Theory of Computing. 2002. To appear. 

(5] B. Bollig. Restricted nondeterministic read-once branching programs and an 
exponential lower bound for integer multiplication. RAIRO Theoretical Infor­
matics and Applications, 35:149-162, 2001. 



94 

[6] B. Bollig, S. Waack, and P. Woelfel. Parity graph-driven read-once branching 
programs and an exponential lower bound for integer multiplication. Technical 
Report TR01-73, Electronic Colloquium on Computational Complexity, 2001. 

[7) B. Bollig and P. Woelfel. A read-once branching program lower bound of 0(2"'4 ) 

for integer multiplication using universal hashing. In Proceedings of the 99rd 
Annual ACM Symposium on Theory of Computing, pp. 419-424. 2001. 

[8) H. Brosenne, M. Hameister, and S. Waack. Graph-driven free parity BDDs: 
Algorithms and lower bounds. In Mathematical Foundations of Computer Sci­
ence: 26th International Symposium, volume 2136 of Lecture Notes in Computer 
Science, pp. 212-223. 2001. 

[9) R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE 
7hmsactions on Computers, C-35:677-691, 1986. 

(10) R. E. Bryant. On the complexity of VLSI implementations and graph represen­
tations of boolean functions with applications to integer multiplication. IEEE 
7hmsactions on Computers, 40:205-213, 1991. 

[11) J. Gergov. Time-space tradeoffs for integer multiplication on various types of 
input oblivious sequential machines. Information Processing Letters, 51:265-269, 
1994. 

[12) J. Gergov and C. Meine!. Efficient analysis and manipulation of OBDDs can be 
extended to FBDDs. IEEE 7\-ansactions on Computers, 43:1197-1209, 1994. 

[13) M. Krause. Separating EBL from L, NL, co-NL, and AL (=P) for oblivious turing 
machines of linear access time. RAIRO Theoretical Informatics and Applications, 
26:507-522, 1992. 

[14) S. Ponzio. A lower bound for integer multiplication with read-once branching 
programs. SIAM Journal on Computing, 28:798-815, 1998. 

[15) A. Razborov. Lower bounds for deterministic and nondeterministic branching 
programs. In Proc. of .FUndamentals in Computation Theory, volume 529 of 
Lecture Notes in Computer Science, pp. 47-60. 1991. 

[16) P. Savicky and D. Sieling. A hierarchy result for read-once branching programs 
with restricted parity nondeterminism. In Mathematical Foundations of Com­
puter Science: 25th International Symposium, volume 1893 of Lecture Notes in 
Computer Science, pp. 650-659. 2000. 

[17) D. Sieling and I. Wegener. Graph driven BDDs - a new data structure for 
Boolean functions. Theoretical Computer Science, 141:283-310, 1995. 

[18] J. S. Thathachar. On separating the read-k-times branching program hierarchy. 
In Proceedings of the 90th Annual ACM Symposium on Theory of Computing, 
pp. 653-662. 1998. 

[19) I. Wegener. The Complexity of Boolean .FUnctions. Wiley-Teubner, 1987. 

[20] I. Wegener. Branching Programs and Binary Decision Diagrams - Theory and 
Applications. SIAM, first edition, 2000. 

(21) P. Woelfel. New bounds on the OBDD-size of integer multiplication via universal 
hashing. In Proceedings of the 18th Annual Symposium on Theoretical Aspects 
of Computer Science, volume 2010 of Lecture Notes in Computer Science, pp. 
563-574. 2001. 


