
VALIDATION OF LONG· TERM SIGNATURES 
About Revocation Checking of Certificates in the Context of 
long-term Signatures 

Karl Scheibelhofer 
Institute for Applied Information Processing and Communications 
Graz University of Technology 
Inffeldgasse I6a 
A-80/0Graz 
Email: Karl.Scheibelhofer@iaik.at 

Abstract: The current practice of digital signature creation is simple. However, signature 
verification is much harder. This especially holds for long-term signatures, 
signatures that should remain verifiable over years. After the signing 
certificate expired, it is hard to find out if the certificate was valid at the time 
the signature was created. Current revocation checking mechanisms, like 
CRLs and OCSP, may not provide the status of certificates which are no 
longer valid. This is one reason why many of the current signature verification 
systems cannot verify signatures after the signing certificate expired. There are 
several approaches for coping with these problems: attach all data that is 
required for validation to the signature right after signature creation, let the 
verification software collect and archive all validation data that it needs, or use 
advanced services for certificate status checking. Currently, there are hardly 
any advanced services available. However, this paper shows that it is not hard 
to design such services. 

Key words: digital signatures, long-term signatures, revocation checking, certificate status 
checking, advanced electronic signatures, CRL, OCSP, DPV 

1. INTRODUCTION 

Not only since the European Union published the Directive on Electronic 
Signatures [1] digital signatures have been a big issue. Many European 

Communications, VCE, com, funding support, including 
of EPSRC, is gratefully acknowledged. More detailed technical reports on this research &re 
available to Industrial Members of Mobile VCE. The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 
The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35612-9_23

B. Jerman-Blaži et al. (eds.), Advanced Communications and Multimedia Security

© © IFIP International Federation for Information Processing 2002

http://dx.doi.org/10.1007/978-0-387-35612-9_23


280 Advanced Communications and Multimedia Security 

compliant with the laws. Such products often use a smart card as signature 
creation device, a smart card reader, software for signing and verification, 
and a qualified certificate. 

Everyone who works with signed email knows how easy it is to sign a 
document. Insert the smart card into the reader, enter the PIN (Personal 
Identification Number) and then the smart card calculates the signature value 
over the data to be signed. For the process of signing, most systems do not 
need to access any online service. If the user created the signature using 
products compliant with law, the resulting signature will be a legally valid 
electronic signature. However, this is just half of the story. Having a legally 
valid signature is nice, but we also need to be able to verify the signature. 

Verifying the signature right after it was created can also be harder than 
one might think. This is the case with systems that use CRLs (Certificate 
Revocation Lists) [5]. Because CAs are not required to issue a new CRL 
each time a certificate gets revoked, the client will not notice a certificate's 
revocation before the CA issues the next CRL. From the most recent CRL 
the client can only get reliable status information for times before the CRL 
was issued. This problem also occurs with OCSP (Online Certificate Status 
Protocol) [6] responders which are implemented based on CRLs. 
Unfortunately this is very often the case. 

When the CA issued the next CRL after the signature creation, CRLs and 
OCSP responders will provide the necessary information to verify the 
signer's certificate. To verify a signature, it is required to verify the 
certificate with respect to the time when the signature was created. Current 
mechanisms may not provide this information directly. This makes the 
verification of signatures hard, especially if one needs to verify them after 
the certificate expired. In this case, current revocation checking mechanisms 
may not provide any information about the certificate. Because of this, 
current software products that use digital signatures are unable to verify 
signatures after some time. For instance, most of the prominent email clients 
have this problem, but most of all other software products that verify 
signatures have the same problem. However, there are ways to cope with this 
problem. This paper will show some of them. One approach tries to solve 
this problem at creation time of the signature. It attaches all validation data 
that the verification process needs to verify the signature. Another approach 
requires new revocation checking mechanisms. Such new mechanisms can 
ease signature validation dramatically. This paper proposes a simple but 
effective revocation checking service. 



Validation of Long-term Signatures 281 

2. VERIFICATION OF LONG· TERM SIGNATURES 

It is easy to sign a document using current technology. All you need is 
signing software, a signature key, and a certificate for this key. You can get 
all these things easily. When a user signs a document he uses his signing key 
to create a signature value. The signed version of the document will consist 
of several parts: the original document, a signature value and the signer's 
certificate (maybe not the complete certificate, but at least an unambiguous 
identifier of it). Moreover, the signed document may contain other attributes 
like the signing time or an identifier of the policy under which the user 
signed the document. Figure 1 shows the contents of such a signature. The 
signature value covers all those elements which are highlighted grey. But is 
all this information enough to be able to verify the signature later on? 

I Original Document 
, 

Signature 

I Signing Certificate lr , 

I Signing Time 
< 

I 
" 

Signing Policy 

I Signature Value 

" ! I 

Fig ure 1. The contents of a simple signed document. 

We can find this out by having a closer look at software that tries to 
verify the signature. Let us assume that a relying person tries to verify the 
signed document one year later. In addition, we assume that the certificate 
that the signer used is expired meanwhile. The software can use the 
certificate, which is contained in the signed document, to cryptographically 
verify the signature value, even though, this is not enough. To verify the 
signature, the software must also find out, if the signer's certificate was valid 
at the time the signature was created. If the certificate is valid now, at the 
time of verification, is irrelevant. The signing time is normally part of the 
signed document. Maybe, the user can specify the signing time when 
verifying the signature, if the signed document does not contain the signing 



282 Advanced Communications and Multimedia Security 

time. Having the signing time, it must find out, if the certificate was valid at 
this time. The following sections show different methods for that. 

2.1 Using CRLs for Revocation Checking 

The software may try to use CRLs to get the desired information. Almost 
all CAs provide CRLs for their issued certificates. In principle, CRLs are 
lists of certificates which have been revoked. The list does not contain the 
complete certificates but the serial numbers of the certificates. The issuer of 
the CRL is also given in the CRL. The combination of issuer and serial 
number identifies a certificate uniquely in X.S09 based systems. Thus, the 
software checks if the serial number of the concerned certificate is in the 
CRL. If the certificate is within its validity period and the serial number is 
not in the CRL, the certificate has not been revoked and can be considered 
valid. A CA issues CRLs regularly. Each CRL contains the date when it was 
issued and the date when the next CRL will be issued latest. With this 
information, the client can see, if the CRL he has is still valid. The CA may 
issue a new CRL even earlier than the date given in the last CRL. This may 
be applicable, if some certificate has been revoked meanwhile and the CA 
wants to provide current revocation information. Thus, a client may decide 
to try to get always the latest CRL. Figure 2 shows the most important 
elements of a CRL. The extensions allow conveying additional information, 
for example, an identifier of the signing key of the authority or the number 
of the CRL, which is a monotonically increasing sequence number. 

I Issuer I Revoked Certificates 

I This Update I I Serial Number I 
I Revocation Date I 

I Next Update I 
I Extensions ... I 

Extensions • I Authority Key I • Identifier • 
I CRL Number I 
I Other I Extensions ... 

Figure 2. The most important contents of a CRL. 



Validation of Long-term Signatures 283 

To find out where to get the CRL, the software can investigate the 
certificate itself. Inside a certificate, there is an entry that specifies where the 
software can find the CRL for this certificate - this is called the CRL 
distribution point. In practice, this is often an URL (Uniform Resource 
Locator) to a file on an HTTP (Hypertext Transfer Protocol) sever which 
contains the most recent CRL. There we can already see a problem. Under 
this location, the client only gets the current CRL. The current CRL 
normally contains only information about certificates which are still within 
their validity period. However, we need a CRL, which contains information 
about the status of the certificate at the signing time - for instance, one year 
ago. There is no standard mechanism to get old CRLs. So what can the 
software do in this case? Instruct the user to contact the CA for getting an 
old CRL that was valid at the signing time, download it manually and 
configure the software to use this? - Most users will say something like that: 
"What the hell is a CRL? And why is my software not able to do that for me 
automatically?" And they are right. This is unsuitable for practical purposes. 
The only chance for the software to verify the certificate is to have all CRLs 
available locally - all CRLs of all CAs that the user may ever try to verify a 
certificate for. This is practically infeasible. 

Do delta CRLs relieve the situation? Delta CRLs are a special form of 
CRLs. They aim at keeping the amount of transferred data small. A delta 
CRL just contains the changes with respect to a complete CRL. To be useful 
for the client, the client needs this base CRL and the delta CRL. The base 
CRL may contain hundreds of revoked certificates. For instance, after this 
base CRL has been issued, but before the next complete CRL gets issued, the 
CA revokes another two certificates. To avoid issuing a new complete CRL, 
the CA can issue a delta CRL which refers to the base CRL and contains the 
two additional certificates. Consequently, a client, which already has the 
base CRL, can download the latest delta CRL. This delta CRL will be 
relatively small compared to the complete CRL. Having the base and the 
delta CRL, the client has all the latest revocation information. The CA may 
issue delta CRLs even more frequently than CRLs. However, a delta CRL 
must always refer to a complete CRL; it can never refer to another delta 
CRL as its base. Similarly to complete CRLs, the certificate itself contains 
the information where the client can find a delta CRL. Now we can see, that 
delta CRLs do not provide any information that we cannot get from the 
complete CRL. Thus, we have not made a real progress with respect to our 
verification problem. 

There is another type of CRL called indirect CRL. Indirect in this context 
means that the issuer of the CRL is not the same as the CA that issued the 
certificates that are in scope of this CRL. A CA can use indirect CRLs to 
outsource CRL issuing. In this case, the CA will issue a certificate for the 



284 Advanced Communications and Multimedia Security 

other organization. This organization uses this certificate to issue and sign 
CRLs for the CA. Another situation where indirect CRLs are necessary is 
when a CA ceases operation. Then a different organization may continue to 
provide CRLs for this CA. In this case, the other organization will also use a 
different key for signing the CRL - it will be an indirect CRL. All in all, 
there is not much difference between normal CRLs and indirect CRLs, at 
least not regarding the information they provide for the client. 

2.2 Using OCSP for Revocation Checking 

Let us assume that we have a more sophisticated software. A software 
that is able to use OCSP services. OCSP is an online service that normally 
uses HTTP as transport protocol. If the certificate contains the address of the 
OCSP responder, the software can use it. The client sends a request to the 
OCSP server and gets a response. With such a request, the client can ask for 
the status of a certain certificate. The answer of the server tells the client one 
of three possible states: the certificate has been revoked with the revocation 
time, the status is good or the status is unknown. If the certificate has been 
revoked, the meaning of the answer is clear. The meaning of unknown status 
is also clear, though not very helpful. What does "good" mean? It does not 
mean that the certificate is valid. OCSP defines "good" as that the certificate 
has not been revoked. However, this does not imply that the certificate is 
valid, is within its validity period or has ever been issued. 

Now, all is fine, the software will be able to verify the certificate, won't 
it? Unfortunately no. OCSP, as it is now, may not provide any additional 
information to CRLs. Depending on the implementation, an OCSP responder 
may not provide any more information than the most recent CRL. But 
doesn't it tell me the status of certificate at the signing time? No, not 
directly. OCSP does only provide the current certificate status. Seen 
realistically, OCSP is no big advance over CRLs. However, it is possible to 
implement an OCSP responder in a manner that it provides more information 
than CRLs do. It can provide the current status of a certificate; this is the 
status of the certificate when the OCSP server creates the response. 
Moreover, it can provide the certificate's status as long as it is required, long 
after the certificate expired. Many current implementations do not provide 
any more information than the recent CRLs, because the OCSP standard 
does not require it. Using such an implementation, OCSP only saves 
bandwidth in some cases. As we can see, software that is based on current 
revocation checking mechanisms may be unable to check the certificate's 
status in the depicted use-case - validation of long-term signatures without 
having the necessary validation data in the signed document. 



Validation of Long-term Signatures 285 

2.3 Adding Validation Data to the Signature 

The only solution that can be implemented using the current standards is 
adding all necessary data to the signature at signing time (or short after that). 
This means, attaching the complete certificate chain and all corresponding 
CRLs to the signed document. Remind that we need the frrst CRLs that were 
issued right after signature creation. The certificate chain may require all 
certificates up to a self-signed CA certificate, but in certain scenarios a 
shorter certificate chain may be sufficient. In general, the signer cannot 
anticipate in advance which CA certificate in the chain a verifier trusts. 
Additionally, the signing software may add a trusted timestamp to the signed 
document. Such a timestamp can provide evidence that the signature was 
created before the indicated time. This will support the verification software 
in determining the signature time. Instead of or in addition to CRLs, the 
signing software could also attach current OCSP responses. Figure 3 shows 
an example for such a signed document with attached validation data. 

I Original Document 
, 

Signature 

I Signing Certificate Timestamp I 
I Signing Time I Certificate Chain I 
r Signing Policy 
, 

CRLs I 
I Signature Value II OCSP Responses I 

Figure 3. A signed document with attached validation data. 

Adding the CRLs or OCSP responses would result in a considerable 
amount of extra data. Normally, the verifier needs to validate a complete 
certificate chain, which means that he needs the CRLs of all involved 
certificates. Moreover, if there is any indirect CRL involved, the verifier 
must construct and validate a separate certificate chain for the signer of this 
CRL. Attaching several CRLs and/or OCSP responses to each signature is 
not very convenient. In some use-cases, the required amount of additional 
memory for this validation data may exceed the original document's size. 
There are even standards from the ETSI that specify how to encode such 
types of electronic signatures, signatures that include all the validation data. 



286 Advanced Communications and Multimedia Security 

The ETSI TS 101 733 [3] document defines such structures for encoding 
signatures based on CMS (Cryptographic Message Syntax) [8] and the ETSI 
TS 10 1 903 [4] document defines similar structures for signatures based on 
the XML Signature [9] standard. Both standards are rarely used in practice 
yet. 

2.4 Advanced Certificate Status Checking Services 

What would solve such problems is a service that can answer the simple 
question ''Was this certificate valid at this specific time?" Currently, there is 
no such service and it is unlikely that we will see such services in the near 
future. The PKIX (Public-Key Infrastructure X.S09) working group is 
currently working on successor of OCSP versions one. This successor may 
include a service called Delegated Path Validation (DPV). This service could 
validate a complete certificate chain with respect to a certain time. The 
service will use the chain validation algorithm as specified by the PKIX 
working group. Such a service will come much closer to what we need to 
verify a signature, or more precisely to verify the certificate that was used 
for signing. The service must have access to the complete history of all 
certificates in its scope; otherwise it would not be able to answer our request. 

This service would have to tell if the certificate chain, which ends with 
the signer's certificate, was valid one year ago, at the time the signature was 
created. If the service has only access to the current CRL, it would not be 
able to answer this request either. In this case, the service would respond that 
it does not know if the certificate chain was valid at the concerned time. We 
see, it is not sufficient to define such new protocols. The providers of such 
services must have databases that contain the required history of the 
certificate states, or they must have access to a service that provides the 
same information. If these services are implemented solely based on 
mechanisms like CRLs, they will not provide any additional information. 
Moreover, the service providers need to maintain these databases for many 
years; at least as long as the signatures should be verifiable. If a signature 
should be verifiable for at least thirty years, which may apply to advanced 
electronic signatures, the service provider needs to maintain the certificate's 
status history at least thirty years after the certificate expired. Seen 
realistically, this is not an extraordinary requirement. The laws for electronic 
signatures often require archiving the revocation information for such long 
periods. In addition, services that provide delegated path construction and 
validation may be suitable for enterprises but not for CAs. A CA may not 
want to provide such service or it may want to outsource it. In this case, the 
service providers must have means to get current information about 
certificate states. Services like delegated path validation will not solve the 



Validation of Long-term Signatures 287 

problem of getting the status of a certificate, they only move the problem to 
the service providers. 

A problem with advanced services like DPV is trust. The client has to 
decide, if he trusts in the correct operation of that service. A user will not 
delegate such a relatively critical task to a service that he does not trust. 
Therefore, it is likely that each enterprise runs its own service, because trust 
relations are easier to manage in a closed environment. A public service will 
return a signed response. In consequence, the client has to verify the 
signature of the response. This, once again, requires verification of the 
certificate. The responsibility can never be transferred completely to a 
service; the final trust decision is always up to the client. In practice that 
means that the client needs a trust anchor. A trust anchor is most likely a 
certificate which the client trusts, normally a CA certificate. Careful users 
check the hash of trusted certificates, before they configure their client to 
trust this certificate. To check the hash, they use a trusted channel, which 
may be via telephone or even face to face. 

2.5 Signed Document Store 

Another solution for this problem would be a dedicated server which 
accepts signed documents and takes care about the collection of all necessary 
validation data. This approach would have several advantages over the 
straight forward one, which attaches all this validation data to the signed 
document. The server would collect each CRL just once and would store it 
locally; it can use the same CRL for other signed documents as well. 
Contrary, for the all-in-the-document approach, each client that signs a 
document collects the validation data at least once. Moreover, a server could 
parse incoming CRLs and convert the status information into a more 
efficient form. This may be a database that keeps track of the history of all 
concerned certificates. Such a server could also easily keep track of 
resigning. Resigning of signed document is required, if algorithms or keys 
become relatively weaker over time, because technology and science 
advance and it becomes easier to break the keys or the algorithms. 
Therefore, the server could resign the signed document (more precisely the 
signature of the document) with a stronger algorithm or key before the 
signature can be forged. If a signature has been resigned early enough with a 
stronger algorithm or key, it does not matter, if the inner signature is 
forgeable afterwards. Of course, after resigning we must obtain a timestamp 
that provides evidence that the signature was resigned before it could have 
been forged. Confidentiality of documents would not raise a problem, 
because it would not be required to send the original document to the server. 
The server does not need it to maintain the signature. The original document 



288 Advanced Communications and Multimedia Security 

is only required for signature verification. Moreover, the original document 
could be sent encrypted. 

2.6 Proposal for a Simple Certificate Status Checking 
Service 

We saw that the current mechanisms for certificate status checking, 
CRLs and OCSP, are not optimal. However, a simple service could provide 
all information we need. First, we need to find out what information such a 
service should provide. The question that the client needs an answer for is 
"Was this certificate valid at this time?" Thus, the minimal information that 
the client must send to the service is: the certificate (or an unambiguous 
identifier of it) and the concerned time. The answer could be one of three: 
the certificate was valid at this time, the certificate was invalid at this time or 
the service does not know the answer. If the certificate was invalid or the 
service does not know the answer, the service may provide additional 
information about the reason. Such a service is relatively simple. Figure 4 
shows the contents of possible requests and responses. The figure does not 
show it, but the response will contain a signature and the certificate of the 
responder. Based on the responder's certificate, the client can make its trust 
decisions. The trust model can be the same as for other certificates. 

Upon setup of a new responder, we can get all status information about 
the past from CRLs. Of course, we would need all CRLs that a CA issued. In 
practice, the service would convert the information contained in the CRLs 
into a more convenient form; for instance, it would store the information in a 
database. As already mentioned, there is no automatic mechanism for getting 
old CRLs. Thus, the administrator needs to do this manually. This is not a 
very big drawback, because it is needed just once at setup time. After setup, 
the service gets the states directly from the database. The CA has to ensure 
that its database always contains the current states. 



Validation of Long-term Signatures 

Certificate Status Request 

Certificate Identifier 
Concemed Time 

Certificate Status Responses 

Valid 
Certificate Identifier 
Concemed Time 

Invalid 
Certificate Identifier 
Concemed Time 
Reason 

Unknown 
Certificate Identifier 
Concemed Time 
Reason 

Figure 4. The contents of requests and responses of a simple certificate status service. 

289 

It is easy to extend this service to provide complete status histories of 
certificates. The only thing that we need to change in the request is the time 
field. We would provide a time interval instead of a single time value. The 
answer that this request would express would then change to: "What was the 
status history of the given certificate in the given time interval?" The 
response is a list of status information records. The first entry in the list is 
the status at the beginning of the time interval. There would be one 
additional entry in this list for each status change. Each of these entries 
would have a time value, which tells, when the status changed to the new 
state. ill Figure 5 we can see the structure of such requests and responses. If 
we just want to know "Was this certificate valid at this time?", it is still easy 
to use. ill such a case, the client sends a time interval of zero length; it starts 
at the concerned time and ends at the concerned time. The response of the 
server can only contain one entry in the list, because a certificate can only 
have one state at a single point in time. As in the simpler version, the 
responses will be signed and will contain the responder's certificate. 



290 Advanced Communications and Multimedia Security 

Certificate Status 
History Request 

Certificate Identifier 
Start of Time Interval 
End of Time Interval 

Certificate Status History 
Responses 

I Certificate Identifier 

Status 
Start of Time Interval 

Status 
Time of Status Change 

• • • 
Unknown 
Certificate Identifier 
Reason 

Figure 5. The contents of requests and responses of an advanced certificate status history 
service. 

What advantages would this advanced version have? A client can get the 
complete history of a certificate with one request/response. For example, if a 
client has a certificate that is already expired, it can request the complete 
history. It stores this response and can use it later on to verify any signature 
that was created using this certificate. The client will never need to request 
any status information for this certificate again. If we operate a server that 
stores signed documents, it can easily get the status history of certificates. 
Most certificates will have a simple life-cycle. They will be issued and used 
until they expire. The server can store this information efficiently with 
respect to memory consumption and performance. 

3. CONCLUSION 

As this paper shows, it is much harder to verify signatures as to create 
them. Simple signed documents without the complete validation data cannot 
be automatically verified after some time, especially after the signing 
certificate expired. Using current revocation checking mechanisms, like 
CRLs and OCSP services, it may be impossible to get the status of an 
expired certificate. To verify a signature however, it is required to find out, if 
the used signing certificate was valid at the time the signature was created. 
Moreover, CRLs do not provide the current revocation status; even OCSP 
responders may not provide this information. 



Validation of Long-term Signatures 291 

In principle, there are two ways to cope with this problem, if there are 
only OCSP or CRLs available for revocation checking. First, we can solve 
the problem at the time of signature creation. We can simply attach all data 
to the signature that is required to verify it. This includes the complete 
certificate chain and all corresponding CRLs or OCSP responses to verify 
the certificate with respect to the signing time. A big drawback of this 
solution is the relatively big amount of extra data that we must attach to a 
signature. Second, we can implement the verification software to collect all 
revocation information that it might need some time. This solution is not 
suitable for simple signature verification software; it is rather suitable for 
dedicated servers that store signed documents. For such servers it would be 
feasible to collect such big amounts of revocation information and archive 
them. 

Nevertheless, advanced services for certificate status checking could 
make the verification of signatures much easier. It is not hard to design a 
service that provides the answer to the simple question: "Was this certificate 
valid at this time?" The real work for establishing such a service would be to 
setup a database that contains the status history for all certificates in scope. 
Moreover, it would be easy to design such a service in a manner that it can 
provide the complete history of a certificate's status. 

For the future it would be desirable to have such advanced services which 
provide the information that the client needs to verify a certificate. While 
providing the required information, new services should refrain from 
supporting optional features which provide no real benefit. Nowadays, most 
of the work for revocation checking is delegated to the client, even if a 
server could do this work more efficiently. Today, the client has to download 
and archive CRLs and OCSP responses. It is really time for software 
developers and service providers to realize that there are serious deficiencies 
in current PKI (Public Key Infrastructure) technologies. Many of the current 
problems can be solved much better with solutions that are simpler than the 
current ones. 

REFERENCES 

[1] European Directive on Electronic Signature. The European Parliament and the Council, 
Brussels, December 1999, available online at 
<http://europa.eu.intJISPO/ecommerce!legalldigital.html> 

[2]The Austrian Signature Law. The National Council of Austria, Vienna, August 1999, 
available online at <http://www.a-sit.atl> 

[3] Electronic Signature Formats. Electronic Telecommunications Standards Institute, TS 101 
733 V.1.3.1, France, February 2002, available online at 
<http://www.etsi.orglSEClel-sign.htm> 



292 Advanced Communications and Multimedia Security 

[4] XML Advanced Electronic Signatures (XAdES). Electronic Telecommunications 
Standards Institute, TS 101 903, France, February 2002, available online at 
<http://www.etsi.orglSEClel-sign.htm> 

[5] Housley, R., Ford, W., Polk, W., Solo, D.: Internet X.509 Public Key Infrastructure, 
Certificate and CRL Profile. The lETF, RFC 3280, April 2002, available online at 
<http://www.ietf.orglrfclrfc3280.txt> 

[6] Myers, M., Ankney, R., Malpani, A., Galperin, S., Adams, C.: X.509 Internet Public Key 
Infrastructure, Online Certificate Status Protocol- OCSP, RFC 2560, June 1999, available 
online at <http://www.ietf.orglrfc/rfc2560.txt> 

[7] Adams, Carlisle, Lloyd, Steve, "Understanding the Public-Key Infrastructure", New 
Riders Publishing, ISBN: 157870166X 

[8] Housley, R.: Cryptographic Message Syntax. The lETF, RFC 2630, June 1999, available 
online at <http://www.ietf.orglrfc/rfc2630.txt> 

[9] XML Signature. The W3C and the lETF, Recommendation, 12 February 2002, available 
online at <http://www.w3.orglSignaturel> 


	VALIDATION OF LONG-TERM SIGNATURES

	1. INTRODUCTION

	2. VERIFICATION OF LONG· TERM SIGNATURES

	2.1 Using CRLs for Revocation Checking
	2.2 Using OCSP for Revocation Checking
	2.3 Adding Validation Data to the Signature
	2.4 Advanced Certificate Status Checking Services
	2.5 Signed Document Store
	2.6 Proposal for a Simple Certificate Status Checking Service


	3. CONCLUSION
	REFERENCES




