
IMPLEMENTING ELLIPTIC CURVE 
CRYPTOGRAPHY 

Design of a Standard Compliant Java Library 

Wolfgang Bauer 
Institute for Applied Information Processing and Communications 
Graz UnitJersity of Technology 
wolfgang.bauer4liaik.at 

Abstract Properties like short keys and efficient algorithms make elliptic curve 
cryptography (EOO) more and more interesting for future oriented ap­
plications. In this paper we give a short overview of the basics of EOO. 
Thereby we show where programmers can gain possible speed-ups and 
what parts are crucial. Since there are many different implementation 
options and some of the algorithms are patented, we believe that there 
is no optimal solution. Therefore we introduce a software framework, 
which allows a transparent replacement of data and algorithms. Fur­
thermore, we discuss aspects of the standardized encoding, and point 
out where interoperability problems could occur. 

Keywords: EOO, Java 

INTRODUCTION 
The security of public key cryptography is based on hard mathemati­

cal problems. Today, the popular algorithms are either based on the inte­
ger factorization problem (IFS), like RSA, the discrete logarithm prob­
lem (DLP), like DSA, or the elliptic-curve discrete-logarithm problem 
(ECDLP). The only problem where no sUb-exponential time algorithm 
is known so far is the ECDLP. That is why the key lengths of elliptic­
curve based algorithms are much shorter and increase much slower over 
time. The Austrian signature ordinance, for instance, stipulates RSA 
keys of at least 1023 bits, whereas ECDSA keys may be 160 bits only 
(by the end of the year 2005). 

Therefore ECDLP based algorithms getting more and more important 
especially for smart cards, which are very limited in memory. For this 
Communications, VCE, com, funding support, including 

of EPSRC, is gratefully acknowledged. More detailed technical reports on this research &re 
available to Industrial Members of Mobile VCE. 

© 

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 

© 

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35612-9_23

IFIP International Federation for Information Processing 2002
B. Jerman-Blaži et al. (eds.), Advanced Communications and Multimedia Security

http://dx.doi.org/10.1007/978-0-387-35612-9_23


18 Advanced Communications and Multimedia Security 

reason the Austrian Social Insurance Smart Card, which every Austrian 
citizen should have at the beginning of the year 2003, uses the Elliptic 
Curve DSA (ECDSA) for secure electronic signatures. 

In this paper we introduce design aspects and problems of a standard 
compliant ECC Java library. This library is designed to work not only 
for signature creation, but also for verification. This means, that it must 
be able to deal with all requirements defined in the standards. There 
are numerous of papers which discuss different aspects and algorithms 
of ECC, whereas this paper focuses on implementing all of the stan­
dard requirements. We point out software design decisions and where 
interoperability problems may occur. 

The rest of this paper is organized as follows. The next section pro­
vides a short overview of elliptic-curve cryptography. Afterwards we 
discuss components and implementation options of an ECC software 
system. Section 3 defines the design goals and section 4 introduces the 
actual design of an ECC Java library. Finally conclusions are given. 

1. BASICS OF ELLIPTIC CURVE 
CRYPTOGRAPHY 

The idea of ECC was first introduced by Neil Koblitz and Victor 
Miller in the mid eighties. Since then cryptographers started to analyze 
the ECDLP and so far no vulnerabilities have been discovered. First 
ECC was an academic concern but in recent years it started to gain 
commercial interest, which lead to standards like [7] and [8]. 

To understand ECC you have to know a lot of math, which is usually 
scaring for programmers. Therefore one common way is to start with 
the following graphical example. Figure 1 shows an elliptic curve (y2 = 
x3 + ax + b) defined over the field of real numbers (a, b, x, y E 

We define a basic operation, the point addition. The sum of two points 
is determined as shown in figure 1. Draw a line through the points P and 
Q and the intersection of this line with the curve is the Point -(P+Q). 
Now take the negative y-coordinate (which again is a point on the curve) 
and you are done. For doubling a point use the tangent and proceed as 
with the point addition. This rule obviously will not work if the line 
through the point(s) is parallel to the y-axis. Therefore we define the 
point at infinity (0 ) as a result of this operation. 

Calculations with infinite fields, as with in the example above, are 
not suitable for cryptographic purposes. That is why finite fields Fq , as 
described in section 2.1, are used. The set E(Fq ) consists of all points 
(x,y),x E Fq,y E Fq satisfying the elliptic curve equation and the point 
O. 



Implementing Elliptic Cu.rve Cryptography 

6 

4 

P+Q 
-6 

Figure 1. Elliptic Curve Point Addition 

Table 1. Point Addition and Doubling Formulas 
P = (:l:l,Yl) and Q = (:l:2,Y2) E E{Fq)j P ¢ Q 

)

2 
:l:s = -:1:1 -:1:2 

Ys = ::=!! (:I:I - :l:s) - Yl 

2P = (:l:s,ys) :1:3 = 2111 - 2:1:1 

Ys = (:I:I - :1:3) - Yl 

19 



20 Advanced Communications and Multimedia Security 

Table 1 shows the formulas of the previously described point opera­
tions. It can be shown that E{Fq } together with the point addition forms 
a group. We write the" +" for the group operation {point addition} and 
the neutral element is 0 . Thus 0 +P = p+o = P V P of E{Fq }. 

With this additive group [9] defines the EODLP problem as follows. 
Given an elliptic curve E defined over a finite field Fq, a Point P E E{Fq} 

of order n, and a point Q = lP where 0 l n - 1, determine 1. 
Based on this hard mathematical problem one can adapt algorithms 

based on the DLP to EODLP by replacing Z; with the elliptic curve 
group. After this short introduction to the EO arithmetic, the next 
section shows the basic components of a software implementation. 

2. COMPONENTS AND IMPLEMENTATION 
OPTIONS 

There are many other papers, like [5J [6] [1], comparing and explain­
ing aspects of elliptic curve crypto systems. Therefore this section only 
points out where software developers have various implementation op­
tions and what has to be heeded. According to our software design, 
introduced in section 4, this section is subdivided into finite field arith­
metic, EO arithmetic, and data formatting options. 

2.1 Finite Field Arithmetic 
Finite fields form the basis of EO arithmetic. As the formulas of table 

1 show, one simple point addition requires many operations in the un­
derlying finite field. Therefore special attention and efficient algorithms 
are required. 

Figure 2. Classification of Finite Fields 



Implementing Elliptic Ourve Oryptography 21 

Figure 2 shows a classification of finite fields. The two boxed leafs 
of this tree (Fp and F21') are used for EOO and are specified in the 
standards. 

2.1.1 Prime Fields. Prime fields are the most efficient choice 
for software implementations. Many papers like[6] describe algorithms 
for long integer arithmetic. The basic addition and multiplication oper­
ations use conventional integer arithmetic based on the processor's word 
size. Therefore they are very fast. 

The crucial operations are the reduction modulo a prime and the 
calculation of the multiplicative inverse element. By the use of projective 
coordinates the inversion in the formulas of table 1 can be avoided. Only 
one inversion at the end of the EOO calculation is needed to regain the 
affine coordinates. Therefore the costs for this operation can nearly be 
neglected. The major design decision in prime field arithmetic is how 
to integrate the modular reduction and how to represent field elements 
(e.g. use a Montgomery or Barret reduction). 

As a last point we should mention, that in general the square operation 
can be done more efficient than a mUltiplication. This is the reason why 
we decided to put this operation into the list of basic field operations, 
as show in section 4. 

2.1.2 Binary Fields. There are several ways of representing 
field elements in F21', whereby polynomial basis representation seems to 
be the most efficient [6]. Unfortunately, to be standard compliant, one 
must be able to deal with Gaussian Normal Basis (GNB) representations 
as well. Since almost every algorithm in GNB seems to be patented and 
this representation does not provide any benefits, we decided not to sup­
port it at all. Nevertheless, we still have the option to implement a base 
transformation and therewith gain standard compliance subsequently. 

In polynomial base representation the field elements are considered 
as polynomials with coefficients E F2. Addition, which is the same as 
subtraction, is a simple XOR operation. Multiplication is a conventional 
polynomial multiplication modulo an irreducible polynomial. 

Microprocessors do not support polynomial arithmetic and therefore 
software implementations of F2l' multiplication are usually slow. How­
ever, modulo reduction can be performed rather efficient. That is espe­
cially true for trinomials and pentamonials, which are the standardized 
reduction polynomials. In binary fields the programmer has to consider 
what algorithms to use and data formats that allow efficient polynomial 
arithmetic. As in prime fields squaring can be done more efficient. 



22 Advanced Communications and Multimedia Security 

2.2 EC Arithmetic 
Efficient finite field arithmetic is the key for a high performance ECC 

implementation. Even so the EC group arithmetic offers a lot of tuning 
possibilities. The basic operation for ECC is the computation of the 
scalar product k * PO::; k ::; n - 1, which is a repeatedly application 
of the basic group operation. Depending on the field type (prime or 
binary) the formulas are a little bit different. The actual group for the 
calculation is determined by a set of so called domain parameters. It 
consists of the following items. 

• The field size, which defines the underlying field Fq• In case of 
binary fields the used basis type and in case of a polynomial base 
representation the irreducible polynomial, is required. 

• The Curve Parameters a and b E Fq 

• The Base Point G = (xa,Ya), xa,Ya E Fq on E of prime order. 

• The Order n (of the base point G). 

• The cofactor h = #E(Fq)/n 

• Optional parameters. 

Depending on the actual domain parameters EC arithmetic offers some 
implementation variants. For instance there exist some elliptic curves, 
where more efficient algorithms are known (e.g. Koblitz curves). Further 
speed-ups can be achieved by the fact that in elliptic curve groups one 
gets the negative element nearly for free. This allows the construction 
of efficient addition-subtraction chains for the scalar multiplication [4]. 
The point representation influences the overall performance as well, and 
the type of coordinates (affine, projective or mixed) to be used, has to 
be considered. 

2.3 Algorithms 

All the previously mentioned parts form the basis for an elliptic curve 
crypto system. Algorithms originally based on the discrete logarithm 
problem can be adapted to work on elliptic curves. Though their exist 
other ECC algorithms like an EC version of the Diffie-Hellman key­
agreement scheme or encryption schemes, the most famous EC algorithm 
is the ECDSA. It can be subdivided in 3 steps. 

1 Message Digesting: using SHA-l 

2 EC Computation: calculation of k*G (k randomly chosen) 



Implementing Elliptic Curve Cryptography 23 

3 Modular Computations: modulo n 

The third point always requires some arithmetic modulo a prime. There­
fore it is not possible to calculate an ECDSA signature with binary field 
arithmetic only. But this fact is mainly important for signature creation 
devices. 

2.4 Data Formatting and Standards 
The sections above have shown how elliptic curve crypto systems op­

erate. To use them in praxis and to ensure interoperability one has to 
present the data in a system independent and standartized way. Several 
ECC standards exist and figure 3 shows their compatibility. 

Figure 3. Compatibility of ECC Standards 

To make sure an ECDSA signature can be verified, the other party 
must know the public key and the related domain parameters. Therefore 
the standards define structures for the encoding of all the data. There 
are two drawbacks of this approach. 

• Memory requirements: the size of the encoded domain parameters 
is much larger than the signature and the keys. 

• The verifying party must either rely on the validity of the domain 
parameters or perform some checks. 

To circumvent this unsatisfying situation the possibility exists to use 
a unique object identifier. This approach will only work if the domain 
parameters are standardized. [7] [8] and [3] altogether define OIDs for 
20 curves over prime fields (112 - 521 bits) and for 38 curves over binary 
fields (113 - 571 bits). We believe that this variant is the best, since 
there is no argument to use other curves than these standardized. Ap­
plication do not have to do a parameter validation and the encoding size 
is negligible. One disadvantage is, that every party must have a table, 
assigning OIDs to domain parameters. 

There is a third variant, where domain parameters are omitted at 
all. The application either implicitly knows them, or within a public 



24 Advanced Communications and Multimedia Security 

key infrastructure, these domain parameters may be inherited from a 
Certification Authority. This approach might be useful in some special 
cases, but in general it could cause interoperability troubles. 

Patented algorithms might cause further interoperability problems. 
Unfortunately some of them are contained in the standards. For in­
stance the following three ways of encoding elliptic curve points are 
standardized. 

• The uncompressed form, which consists of the x and y coordinate 
of this point. 

• The compressed representation only contains the x coordinate and 
one single bit indicating which of the two possible points to take. 
To decompress a point, one has to solve the elliptic curve equation 
with a given x value, which is a quadratic equation. 

• A hybrid form, which is a mixture of the points above. 

Certicom holds a patent on the point compression and thus not every 
software might support this feature. Nevertheless a good software design 
allows all of the encoding possibilities above. To take patent issues 
into consideration the design should support plug-able modules and easy 
configuration. 

A further point that should be considered is the encoding of the data 
structures, like domain parameters and public keys. U ntH today the 
most common format is the Abstract Syntax Notation 1 ASN.1. The 
ECC standards define such ASN.1 structures und thereby allow ECDSA 
to be used with existing X.509 certificates (private key encoding for use in 
PKCS#8 is only defined in [2]). As an alternative the Extensible Markup 
Language XML is getting more and more important nowadays. But the 
syntax for ECDSA with XML signatures is only a draft yet. Nevertheless 
software designers should keep in mind that other formatting options 
may be desired in the future. 

3. DESIGN GOALS 
As already stated in the introduction, the software design is very 

much dependent on the actual deployment. For instance, software for 
signature creation devices usually has to implement only a small part of 
the corresponding standard. That means one can optimize code for one 
set of domain parameters (see section 2) and choose one of the encoding 
possibilities. Furthermore, the signature creation devices may leave some 
tasks to the environment. Memory and computational limited devices 
may just compute the signature value and the formatting and encoding 
may be left to the application. 



Implementing Elliptic Curve Cryptography 25 

In this paper we focus on the more general case, which deals with both, 
signature creation and verification. The challenge is to write code, which 
provides for integration of all standardized features. Since there are 
many implementation options and design tradeoffs there is not one best 
way. Furthermore, new faster algorithms might pop up and subsequent 
integration should not be problem. Finally, patent issues have to be 
considered and thus algorithms and data representations should be plug­
able. The main points of our design guidelines can be summarized with 
the following key words. 

• Modularity: Subdivide the problem and make the modules inde­
pendent. 

• Extensibility: Easy integration of new algorithms and data repre­
sentations. 

• Maintainability: The code should be well structured and easy to 
understand. 

• Performance: At first view a large software framework (with ab­
stract classes and interfaces) and high performance seem to be 
contradictory design goals. However performance is primary in­
fluenced by the used algorithms and therefore a flexible and clear 
design pays off. 

• Robustness: Ensure a well defined behavior particularly in case of 
an error. 

After this definition of the design goals, the next section introduces 
the software framework. We will pick out some parts and explain how 
some of the points above can be achieved. 

4. SOFTWAREDESIGN 

The design of the whole library would go beyond the scope of this 
paper. Therefore this section introduces the overall module concept and 
explains some features in more detail. 

The main parts of the library are shown in Figure 4. According to the 
design criteria above, each module operates independent. The behavior 
of the modules is defined by interfaces and the actual implementation is 
not visible from outside. This design allows a transparent replacement 
of the algorithms and data representations. 

Finite Field Arithmetic. The common interface for all finite fields 
defines the basic field operations like: 



26 Advanced Communications and Multimedia Security 

JCE/JCA Integration 

Figure 4. Software Module Design 

public interface Field { 

} 

public FieldElement getONEelement()j 
public FieldElement getZEROelement()j 
public void negate(FieldElement a)j 
public void add(FieldElement a, FieldElement b)j 
public void invert(FieldElement a)j 
public void multiply(FieldElement a, FieldElement b)j 
public void square(FieldElement a)j 

As you can see, there are no implementation specific elements within 
this interface. The square operation, which is not really required, was 
added for performance reasons. The interface contains some additionally 
methods to get the field type and some other utility functions that are 
not listed above. Furthermore, the finite field module contains interfaces 
for field elements and their values. Thereby implementations can choose 
any desired data structures and algorithms. 

Elliptic Curve Arithmetic. The structure of this module is very 
similar to the previously presented. Again the developer has the com­
plete freedom of how to present the data and which algorithms to use. 
Depending on patent issues it is possible to change algorithms without 
any modification in the rest of the whole library. Also the coordinate 



Implementing Elliptic CUnJe Cryptography 27 

types (affine, projective or mixed) are not hard coded and can be changed 
transparently. The common interface offers methods for the basic group 
operation. To speed up the ECDSA signature verification process we de­
cided to put a method for simultaneous multiplications (P = hi G+h2 W) 
into the interface (see [10]). 

Elliptic Curve Algorithms. This module contains the ECC al­
gorithms like ECDSA or ECDH. It defines interfaces for private and 
public keys. Furthermore the administration of domain parameters and 
encoding specific tasks are placed here. Applications access the library 
through the Application Programming Interface API. The next session 
discusses the integration of this API with the Java framework. 

Java Integration. Security has been one of the main design goals of 
the Java programming language. Therefore it offers a large framework 
for cryptographic algorithms called Java Crypto Extension (JCE)/Java 
Crypto Architecture (JCA). The so-called provider concept allows third 
party implementation of various algorithms but until now no framework 
for ECC exists. One can use the existing signature interface to work with 
ECDSA but there is no common way to specify the domain parameters 
and keys. Therefore, always some proprietary code must be included in 
the application. 

A further shortcoming of the Java framework is the design of the 
BigInteger class. This class is usually used for arbitrary long integer 
arithmetic. Unfortunately it has two serious disadvantages for the use 
in ECC . 

• Instances of this class (objects) are immutable. This means, for 
every finite field operation a new object must be created. Since 
ECa computations require many operations in the underlying fi­
nite field, many of the BigInteger objects have to be created, which 
is not very efficient. 

• There is no public method for the often used square operation and 
therefore the slower multiply method has to be taken. 

For the reasons above, it makes sense to implement an own, mutable 
BigInteger class. 

5. CONCLUSIONS 
Short keys and efficient algorithms make ECC interesting for future 

oriented applications. This paper provides an introduction into ECC. 
We have discussed various parts of a standard compliant software library, 



28 Advanced Communications and Multimedia Security 

like finite field and EC arithmetic. The numerous implementation vari­
ants and encoding options, as well as possible patent issues, require a 
flexible software architecture. We have introduced a design, which en­
ables programmers to transparently add, remove, or replace algorithms 
and data types. This framework might be considered as a performance 
penalty. Usually the main speed-ups can be achieved by efficient algo­
rithms and data structures and therefore the advantages of a plug-able 
design pay-off. Furthermore, a clear and modular structure provides for 
easy integration of new algorithms guarantees the maintainability. 

References 
[1] Michael Brown, Darrel Hankerson, Julio Lopez, and Alfred Menezes. Software 

implementation of the NIST elliptic curves over prime fields. In CT-RSA, pages 
250-265, 2001. 

[2] Certicom. Sec 1: Elliptic curve cryptography, 2000. 

[3] Certicom. Sec 2: Recommended elliptic curve domain parameters, 2000. 

[4] Daniel M. Gordon. A survey of fast exponentiation methods. J. Algorithms, 
27{1}:129-146, 1998. 

[5] Jorge Guajardo and Christof Paar. Efficient algorithms for elliptic curve cryp­
tosystems. In CRYPTO, pages 342-356, 1997. 

[6] Darrel Hankerson, Julio Lopez Hernandez, and Alfred Menezes. Software im­
plementation of elliptic curve cryptography over binary fields. In Cryptographic 
Hardware and Embedded Systems, pages 1-24, 2000. 

[7] IEEE. 1363 standard specification for public key cryptography, 2000. 

[8] American National Standards Institute. X9.62-1998, public key cryptography 
for the financial services industries: The elliptic curve digital signature algorithm 
{ecdsa}, 1998. 

[9] D. Johnson and A. Menezes. The elliptic curve digital signature algorithm 
(ecdsa), 1999. 

[10] Bodo Moeller. Algorithms for Multi-ezponentiation, pages 165-180. Springer­
Verlag, 2001. 


	IMPLEMENTING ELLIPTIC CURVECRYPTOGRAPHY
	INTRODUCTION
	1. BASICS OF ELLIPTIC CURVE CRYPTOGRAPHY

	2. COMPONENTS AND IMPLEMENTATION OPTIONS

	2.1 Finite Field Arithmetic
	2.2 EC Arithmetic
	2.3 Algorithms
	2.4 Data Formatting and Standards

	3. DESIGN GOALS
	4. SOFTWAREDESIGN
	5. CONCLUSIONS
	References




