NOAA Technical Report NOS 127 CGS 12

Cartographic Generalization

Reston, VA July 1988
U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Ocean Service Charting and Geodetic Services

National Ocean Service/Charting and Geodetic Services

The Office of Charting and Geodetic Services (C\&GS), National Ocean Service, NOAA, plans and directs programs to produce charts and related information for safe navigation of the Nation's waterways, territorial seas, and national airspace. It establishes and maintains the horizontal, vertical, and gravity geodetic networks which comprise the National Geodetic Reference System.

C\&GS coordinates planning and execution of surveying, charting, and related geophysical data collections to meet national goals. In fulfilling these objectives, it conducts geodetic, gravimetric, hydrographic, coastal mapping, and related geophysical surveys; analyzes, compiles, reproduces, and distributes nautical and aeronautical charts and geodetic and other related geophysical data; establishes national mapping and charting standards; and conducts research and development to improve surveying and cartographic methods, instruments, equipment, data analysis, and national reference system datums.

NOAA geodetic and charting publications as well as relevant publications of the former U.S. Coast and Geodetic Survey are sold in paper form by the National Geodetic Information Branch. To obtain a price list or to place an order, contact:

National Geodetic Information Branch (N/CG174)
Office of Charting and Geodetic Services
National Ocean Service, NOAA
Rockville, MD 20852
Make check or money order payable to: NOAA National Geodetic Survey. Do not send cash or stamps. Publications can also be charged to Visa, Mastercard, or prepaid Government Printing Office Deposit Account. Telephone orders are accepted (301 443-8631).

Publications can also be purchased over the counter at the National Geodetic Information Branch, 11400 Rockville Pike, room 26, Rockville, MD. (Do not send correspondence to this address.)

An excellent reference source for all Government publications is the National Depository Library Program, a network of about 1,400 designated libraries. Requests for borrowing Depository Library material may be made through your local library. A free listing of libraries in this system is available from the Marketing Office (mail stop MK), U.S. Government Printing Office, Washington, DC 20402 (202 275-3634).

NOAA Technical Report NOS 127 CGS 12

Cartographic Generalization

K. Stuart Shea

PAR Government Systems Corporation
Reston, VA
July 1988

U.S. DEPARTMENT OF COMMERCE
 C. William Verity, Secretary

National Oceanic and Atmospheric Administration

William E. Evans, Under Secretary

National Ocean Service
 Paul M. Wolft, Assistant Administrator

Charting and Geodetic Services
R. Adm. Wesley V. Hull, Director

Mention of a commercial company or product does not constitute an endorsement by the U.S. Government. Use for publicity or advertising purposes of information from this publication concerning proprietary products or the tests of such products is not authorized.

PREFACE

This report on cartographic generalization addresses the need for the National Ocean Service (NOS) to select a technical and operational solution to the problem of cartographic generalization within the scope of the Automated Nautical Charting System II. Cartographic generalization is a most complex issue at NOS because of our unique approach to digital nautical cartography. A thorough understanding of the issues in cartographic generalization, such as, feature selection, point simplification, feature aggregation, feature displacement, are essential for developing an optimal implementation strategy.

The specific objective of this project is to develop a global conceptual model, while selecting and testing techniques that can potentially contribute to the operational solution.

This report was prepared by PAR Government Systems Corporation, June 1987, fo: the NOAA Charting Research and Development Laboratory, Charting and Geodetic Services, NOS, NOAA, Rockville, Maryland 20852, under a NOAA Science and Technology Grant, NOAA Contract No. 40AANC700230. This report is reprinted in its entirety.

CARTOGRAPHIC GENERALIZATION

by
PAR Government Systems Corporation 1840 Michael Faraday Drive, Suite 300 Reston, Virginia 22090
(703) 478.9690
Author:
Mr. K. Stuart Shea
prepared for the
CARTOGEN PTogram
in Response to
U.S. Deparment of Commerce
National Oceanic and Atmosperic Administration (NOAA)
National Ocean Service (NOS)
Charting and Geodetic Services (C\&GS)
Order \#40AANC700230

dated 30 June 1987

Automating Generalization: Fact or Fiction?

"Generalization is difficult to define, explain or specify in writing, or to restrict to bounds and limits." (A.M. Floyd)
"Only he who is master over the matter and can perform with his hands what his mind wishes, is able to generalise well." (E. von Sydow)
"The problems involved in practical generalization are so varied that it is virtually impossible to derive rules to cover all eventualities." (G.A. Montagano)
"...generalization depends on personal and subjective feelings," and therefore is "part of the 'art' that enters into the map making process." (M. Ecker)
"To a certain extent, generalization may be compared to the work of an artist."
(A.J. Pannekoek)
"...the design factor in generalisation can clearly be based only on the carographer's very personal, and therefore inherently biased, beliefs." (D.W. Rhind)
"...a largely undefined process and followed more or less the warm feeling of individual subjective intuition." (J. Neumann)
"...it can be seen that good generalization is, at leash a function of purpose plus objective evaluation...Since these are human factors, requiring intelligence and judgement, generalization is likely to remain outside the realm of electronic insorumentaion."
(D.E. Long)
"One of the difficulties...in an attempt to automate...is a consequence of the ambiguous, creative nature of the process which lacks definitive rules, guidelines, or systemization."
(D.M. Brophy)
"...the automated generalization procedures should not necessarily be modeled on manual procedures." (G.E. Langren)
"Generalization algorithms exist at present, but more sophistication is needed." (D.R. Caldwell)
1.0 INTRODUCTION 1
1.1 Background 1
1.2 An Overview of the Cartographic Generalization Study 3
1.3 Otganization of this Repor 4
1.4 Project References 5
1.5 Terms and Abbreviations 5
1.6 Endnotes 6
2.0 OVERVIEW OF CARTOGRAPHIC GENERALIZATION 7
2.1 Introduction to Cartographic Generalization 7
2.1.1 The Generalization Process 7
2.1.2 Automating the Generalization Process 8
2.2 An Automated Generalization Model 11
2.2.1 Objectives of Generalization (Why to Generalize) 13
2.2.1.1 Product Objectives 13
2.2.1.2 Philosophical or Theoretical Objectives 17
2.2.1.3 Technological Objectives 20
2.2.2 Situation for Generalization (When to Generalize) 21
2.2.2.1 Conditions 21
2.2.2.2 Measures 23
2.2.2.3 Decisions 25
2.2.2.3.1 Procedure Control 26
2.2.2.3.2 Algorithm Selection 27
2.2.3 Procedures of Generalization (How to Generalize) 28
2.2.3.1 Line Simplification 29
2.2.3.1.1 Independent Point Routines 31
Nth Point 31
Random 32
2.2.3.1.2 Local Processing Routines 33
Line Width 33
Euclidean Distance 34
United States Geological Survey - A 35
United States Geological Survey - B 36
Angle of Change 37
Distance and Angle 38
Field of View 39
2.2.3.1.3 Unconstrained Extended Local Processing Routines 40
Reumann-Wikkam 40
Roberge 41
2.2.3.1.4 Constrajned Local Processing Routines 42
Lang Tolerancing 42
Johannsen Tolerancing 43
Opheim 44
2.2.3.1.5 Global Processing Routines 45
Douglas Corridor 45
2.2.3.2 Feature Type Conversion/Refinement 48
2.2.3.2.1 Algorithms for Conversion/Refinement 49
Building Combination 50
Senlement Selection by Populaion/Locaion 50
Setuement Selection by Nearest Neighbor 50
Uniform Density Law 51
Drainage Network Refinement 51
Polygon Refinement through Epsilon Filtering 51
2.2.3.3 Feature Displacement 53
2.2.3.3.1 Conflict Detection 53
2.2.3.3.2 Conflict Resolution 54
2.2.3.4 Feature Smoothing 57
2.2.3.4.1 Averaging 58
Simple Averaging 58
Weighted Moving Averaging 59
Forward-Look Interpolation 60
2.2.3.4.2 Epsilon Filtering 61
Epsilon Generalization (Perkal's Rolling Ball) 61
Epsilon Generalization (Brophy's Rolling Ball) 62
2.2.3.4.3 Arc Substitution 63
Pseudo-Hyperbola 63
Polynomial Curves 64
Bezier Curve 65
B-Spline 66
2.2.3.4.4 Waveform Processing 67
Fourier Analysis 67
Hysteresis Smoothing 68
2.2.3.5 Data Compaction 69
2.2.3.5.1 Chain Coding 70
Basic and Differential Chain Coding. 70
Octant and Quadrant Chain Coding 71
2.3 Endnotes 72
3.0 NOS GENERALIZATION REQUIREMENTS 75
3.1 Accuracy Constraints on Generalization in Nautical Charing 75
3.2 Proposed ANCS II Generalization Processes 76
3.3 Discussion 78
3.3.1 Shorelines-A Generalization Example 78
3.3.2 Suggested Approaches to Shoreline Generalization 79
3.4 Endnotes 81
4.0 SUMMARY, CONCLUSIONS, \& RECOMMENDATIONS 83
4.1 Summary-General Observations 83
4.2 Summary-Specific Observations 85
4.3 Conclusions and Recommendations 89
4.4 Endnotes 90
Appendix A-Bibliography 91
Appendix B-Software Overview 103
B. 1 Introduction 103
B. 2 Control Panel 103
B.2.1 Algorithm Selection Using Pop-up Menus 104
B.2.2 Executing the Desired Algorithm 105
B.2.3 Reset and Quit Buttons 106
B.2.4 Show/Hide and Overlay/No Overlay Buttons 106
B. 3 The Displays Window 106
B.3.1 Creating an Input Line 107
B.3.2 Using the Display Menu 107
B. 4 The Coordinates Window 108
B:4.1 The File Panels 109
B.4.2 The Coordinate Matrices 110
B. 5 Current System Implementation 110
B. 6 Conclusion 111
B. 7 Endnotes 112

1.0 INTRODUCTION

This document is the Final Technical Report representing a summary of the research performed for the Cartographic Generalization (CARTOGEN) study conducted by PAR Government Systems Corporation (PGSC). This repor has been prepared for the National Ocean Service's (NOS) Charting and Geodetic Services (C\&GS). This introductory section will present a background to the problems addressed by the study, acquaint the reader to the CARTOGEN effor, and will briefly discuss the organization of the repor.

1.1 Background

To provide a basis for discussing the development of a digital cartographic data generalization capability, we must first understand the trends toward the future which are prevalent throughout the Mapping, Charting, and Geodesy (MC\&G) community. The transition towards large digital cartographic data bases to satisfy needs for multi-product exploitation, product flexibility, timely responsiveness to user demands, and lower production costs is a phenomenon familiar to all suppliers of carrographic information. Advances in processing techniques have great potential for benefits to be gained by all members of the MC\&G community. Nowhere are these benefits more obvious than in the exploitation of digital cartographic data to support the production of nautical and bathymeric chars and related products.

The Nautical Charting Division (NCD) of the Office of Charing and Geodetic Services (C\&GS) within the National Ocean Service (NOS) has the mission of providing nautical chars, marine related publications, and information required for safe and efficient transit of the Nation's coastal waters and inland waterways. NOS marine products also directly support development of offshore resources and defense of the Nation's coastal areas. NOS developed and implemented an automated chart production system in 1978 that parrially supports various production requirements of nautical cartography. Although this computer assistance has enabled NOS to eliminate cerrain repetitive tasks, more critical activities associated with the nautical chart production process have not benefited with current automated technology. For example, document assessment, data evaluation, and response to demands for new products still are manual production effors.

The production programs of the National Ocean Service are, however, currently in a state of transition to all-digital, softcopy production capabilivies. ${ }^{1}$ This transition includes
the establishment of uniform procedures relating to the collection, screening, evaluation, editing, symbolization, retrieval, and exchange of digital source and production data. The NOAA Charting R\&D Laboratory intends to procure an integrated system to include: computer hardware, commercially available software, custom software, and design and developmental support for system integration to facilitate the implementation of the Automated Nautical Charting System II (ANCS II).2.It is the goal of the ANCS II acquisition to provide a comprehensive computer system which can effectively and efficiently maintain a data management subsystem of approximately 50 million extensively atribured cartographic features as well as a chan production system of up to 3000 nautical chart panels which can be expressed in published graphic or digital form, and interactively display and provide full editing capability for both subsystems. There are six general categories of documents received by NOS for evaluation and application to the Marine Information Data Base (MIDB) and used as input to the ANCS II. These include: (1) letters; (2) blueprints; (3) Notice to Mariners; (4) Hydrographic Surveys; (5) Topographic Surveys; and (6) USGS Quads. About 16,000 documents are received each year, with an average of 7,200 documents per year applied to the MIDB, from which about 2.2 million features are selected. The amount of features selected from a document will vary greally depending on the document Given the number and size of documents to provide sufficient coverage for a production requirement, the size of this data base can be enormous.

In order for NOS to optimally exploit the digital cartographic data in the ANCS II production environment, the physical and memory size requirements of the digital information must be reduced and, concomitanly, exploited to the fullest extent. Current advances in digital storage technology (such as optical disk storage) allow large quantities of digital information to be collected and stored in limited physical environments. Even so, the large-area production requirements, and variety and types of information collected in digital form, cannot be stored in even the highest-technology storage media without resorting to some form of data compression, data elimination, or data reduction. Even if it could be, the NOS currently produces a variety of types, scales, and formats of products from the same data. As such, the cartographic information must be generalized to satisfy both the storage and scale constraints imposed by production requirements.

The overall problem of cartographic generalization as it relates to this report and the the ANCS II covers the entire range of the generalization process. This includes: (1) scale
change; and (2) feature generalization-including selection, simplification, conversion, refinement, smoothing, and compaction. The effective use of a digital cartographic data base supporting multi-product exploitation does present some technical challenges. By their very nature, cariographic data bases tend to be large for any coverage area of practical use. To be useful, the data must be of sufficiently high resolution; that is, the data must include all of the earth features (nanural and man-made) of interest to a level of detail that will permit accurate navigation, landmark recognition, and production of varied product types. Memory size limitations within mass storage devices, along with the need to decrease overall processing costs, requires that the overall cartographic data volume is reduced to suppor the production environment.

1.2 An Overview of the Cartographic Generalization Study

The objective of this study was to provide an analysis of the carographic reduction problem as it pertains to current and planned char production systems at NOS. Approaches . designed to yield high proportion data reduction for vector data were investigated. Implementation of these algorithms in a production scenario will allow for the generalization of the required carographic data bases. A creative and well-engineered approach to this problem will provide a exciting exploitation of the MC\&G data base. A project overview is presented below:

Task 1. Requirements Identification-comprised of a shor-term analysis concentrating on reviewing current NOS's principles and practices, product specifications, and plans for the Automated Nautical Charting Systern II (ANCS II). The specific scale-change processes and other applications of generalization were reviewed.

Task 2. Cartographic Generalization R\&D Review-concentrated on surveying the techniques, methods, standards, and requirements for carographic generalization algorithms. This assessment served to: 1) categorize requirements for generalization; 2) determine the implicit and explicit relationships between the algorithms; and 3) evaluate the algorithms in terms of approach, operational issues, input/output, and strengths/weaknesses.

Task 3. Solution Identification-concentrated on identifying a global conceptual solution to the generalization problem.

Task 4. Test/Demonstration of Contributing Techniques-concentrated on developing an algorithm performance system which operates on limited data sets to examine specific generalization techniques.

An illustration of the CARTOGEN Project Model is presented below.

To accomplish these tasks the PGSC project team performed a comprehensive literature search examining the application of cartographic data generalization in disciplines such as cartography, image and picture processing, computer science, geology, electrical engineering, and computer vision. Secondly, discussions were held with the research component of NOAA's Charting R\&D Laboratory. And, finally, PGSC drew upon its superb staff to conduct the program

1.3 Organization of this Report

This report is organized into four (4) sections and two (2) appendices. The report proceeds from the general to the specific. In addition to this introduction, the material contained in each of the sections is highlighted as follows:

Section 2, Overview of Cartographic Generalization, outlines the particularly salient aspects of the generalization processes, including both scalechange and feature generalization process requirements and their impacts upon the current and planned cartographic production environment. A model for an automated generalization procedure is presented. This section also describes many of the cartographic generalization techniques which were discovered through our survey effor. This discussion proceeds in a top-down fashion by describing major coding techniques (selection, simplification, compaction, etc.) and then outining appropriate examples.

Section 3, NOS Generalization Requirements, outines some paricularly salient aspects of the generalization processes at NOS, including both scale-change and generalization process requirements and their impacts upon the current and planned canographic production environment.

Section 4, Summary, Conclusions, and Recommendations, synopsizes tie repor and describes what factors should be addressed when expanding this work towards a production capability.

Appendix A, Bibliography, provides a comprehensive set of references for cartographic generalization; these sources were used in the preparation of this герог.

Appendix B, Software Overview, provides a comprehensive review of the software test environment that was developed under this effor.

1.4 Project References

References used throughout the preparation of this report are cited in the appropriate discussions of the individual generalization techniques (procedures) as well as accompanying individual algorithms. The sources listed in Appendix A were used as general references throughout the preparation of this report. This list is meant to illustrate to the reader the type and variation of sources used to compile the enclosed information; this information providing a solid foundation upon which the recommendations were made.

1.5 Terms and Abbreviations

Terms and abbreviations used throughout the preparation of this report are defined below.

CARTOGEN Catographic Generalization project
CG\&S Office of Charing and Geodetic Services of NOS
DBMS Data Base Management System
MIDB Marine Information Data Base
NOAA National Oceanic and Amospheric Administration
NOS National Ocean Service of NOAA

NCD Nautical Charting Division of the CG\&S
MC\&G Mapping, Charting, and Geodetic Data
PGSC PAR Government Systems Corporation
1.6 Endnotes
${ }^{1}$ Shea, K. Stuart (1987a).
${ }^{2}$ Deparment of Commerce (1986).

2.0 OVERVIEW OF CARTOGRAPHIC GENERALIZATION

The following discussion pertains to carnographic generalization. More specifically, the generalization of vector-based Mapping, Charing, and Geodesy (MC\&G) data will be examined.

2.1 Introduction to Cartographic Generalization

All charts are reductions of some part of the environment. It would be impractical, if not impossible, to portray the entire Earth at a $1: 1$ scale. The reduction of the environment to a more comprehensible scale concomitantly yields a variety of undesirable consequences. These include: (1) a decrease in the distances separating features on the chart; (2) a loss of visual clarity due to overcrowding; and (3) a shift of visual imporance from the specific to the general. ${ }^{1}$ In order to depict the important aspects of the Earth's surface at a more reasonable scale, features must be reduced in size and some detail of features must be omitted. Also, entire features might have to be eliminated, enlarged, combined, and/or displaced to fit within the graphic constraints of a typical char. To this end, the cartographer must apply a series of manipulations to the chart data in order to depict the important information at the reduced chart scale. These manipulations of the chan data are commonly referenced under the collective ropic of Cartographic Generalization. The generalization processes are important to both manual and digital cartography.

The establishment of rigid guidelines for generalization has heretofore been a carographic enigma. This has been evident for a number of years in manual cartography, and is characteristically shown by the inability of cartographers to merely define a ubiquitous definition of generalization. Regardless of the apparent disparity in the definition of the term, carrographic generalization will be defined here as the selection and simplified representation of detail appropriate to the scale and/or purpose of the chart. ${ }^{2}$

2.1.1 The Generalization Process

Before a cartographer can begin the data modifications required by the generalization process, information must first be selected for portrayal; the information being consistent with the purpose of the chart. Generalization, therefore, can be seen to operate in two stages: (1) selection of the data to be portrayed; and (2) generalization of this
data with regard to the scale and format of the final product. Thus, selection is a necessary pre-processing step to generalization.

Selection of information is merely a dichotomous query; either the information is required or it is not. No modification of the information is required in the selection stage, and can thus be done without regard for char format or scale. Selection, then, can be thought of as a sifting process; one which segregates out the information required for a paricular product or to suppor a particular production requirement. For example, a digital MC\&G data base might contain cartographic information to support the production of a variety of products, with data resolution possibly equaling the largest scale product in the data base, and data available for many geographic areas, not all of which may be required for a paricular job. A sifting function can determine whether to include or exclude chart information for a particular product or group of products, with a specific geographic area in mind.

Subsequent to the selection process, the generalization of each set of data that constitutes the selected information can then be accomplished. These manipulations are commonly combined into four categories: ${ }^{3}$

Simplification: The determination of the important characteristics of the data, the retention and possible exaggeration of these important characteristics, and the elimination of unwanted detail.

Classification: The ordering or scaling and grouping of data.
Symbolization: The graphic coding of the scaled and/or grouped essential characteristics, comparative significances, and relative positions.

Induction: The application in carography of the logical process of inference.
Selection, along with the above four processes together combine to form the "Generalization Process."

2.1.2 Automating the Generalization Process

Manual generalization of char features often collectively includes the separate processes of selection and simplification all under the label of cartographic license. In a mere sweep of a pen, a carrographer will select a feature to be represented on his char and draft his "generalized representation" of the feature. The cartographer's generalized
representation will inherently retain those characteristics that he deemed necessary to delineate the feature with or without optionally exaggerating those characteristics, while also deleting the characteristics of the feature not required for his intent and puposes.

The not-so-recent trend in cartography to a computer-assisted environment must address the same topics of chart generalization, yet each must be treated independently; this independence necessitated by the finite logic of a computer. The computer has made cartography faster, more consistent, and more accurate for many cartographic endeavors (such as projection transformations), yet computer-assisted chart generalization has lagged far behind.

Research in automating the generalization methods for carographic data has yielded a plethora of papers, theories, and computer algorithms, emanating from such disciplines as Geography, Computer Science, Mathematics, and Engineering. Some of these algorithms, however, have been designed with little or no cartographic basis, with cartographers neglecting to apply logical cartographic principles. For example, many "line simplification algorithms are frequently developed with litrle understanding of the quality of their output."4

An obvious question is then: how is the concept of cartographic generalization instituted into computer-assisted carographic practice? ${ }^{5}$ This question must obviously be based within the framework of whether generalization in the digital domain will be fully automated, semi-automated, or highly interactive. If we view the generalization process as it truly is-subjective, interactive, undocumented, idiosyncratic, and, yet still, holistic in its perception and execution-then we have run head-first into an undefinable problem. In turn, this means an unsolvable one. As such, the notion of completely replacing the human cartographer in the generalization process is a goal doomed to failure. The limits of existing computing technology cannot perceive the chart as a whole as does the man and, therefore, cannot assess the impact of the generalization of one feature on another feature.

If, however, we merely aim to aid the cartographer in the generalization process, we are addressing a much more realistic and achievable goal. Our efforts, then, should be directed in that path; that is, on a path towards providing the cartographer with intelligent rools, rather than trying to emulate his intuitive chart-making knowledge. This does not mean, however, that the generalization process needs to be entirely interactive; instead, a
semi-automated approach seems both reasonable and within the grasp of current design sophistication and computing capabilities. Many generalization problem areas can be addressed today in a fully- or, at worst, semi-automated modes of operation. Line simplification routines, for example, are nearing an overall level of maturation and understanding that we can begin to apply the techniques with some assurance of success. Other areas, such as the refinement of disjoint line clusters to support scale reduction may, indeed, be many years away from having practical algorithms developed.

In the following pages, we will be discussing the generalization process in the context of Simplification, Combination, Refinement, Conversion, Displacement, Smoothing, and Compaction of MC\&G data. 67 Two types of operations can be identified in the Simplification of data stored as vector coordinate strings. ${ }^{8}$ They are: (1) Point Simplification and (2) Feature Simplification. Point simplification operates on the principle of coordinate removal, replacement, or reposition to provide a vector coordinate string which represents the location of the original line. Feature simplification, on the other hand, is similar to a sifting process where entire features are omitted since their inclusion is not essential to retain the overall message and characteristics of the chart. Combination techniques will be reviewed as they relate to combining like features into new, yet similar features; for instance, the combination of two small lakes into a larger lake would fall within this category. Feature Refinement procedures will be reviewed as they relate to selecting a representative subset of features to depict at the reduced scale of the product. As an example, this would include the selection of a subset of piers on a coastline to depict the overall navigational characteristics of the region being mapped. Feature type Conversion deals with the modification of the geometric atributes of a feature to represent it in a new form at the reduced scale. An example here would be the collapse of an areal feature to a linear feature representation. Displacement, or conflict resolution, techniques are used to counteract the problems that arise in feature conflict detection. The interest here lies in the ability to offset feature locations to allow for the application of symbology. Smoothing operators would be applied to features to create a more aesthetically pleasing product without violating the spatial accuracy. And, finally, data Compaction will be reviewed as it applies to post-processing the vector feature data to reduce the digital storage requirements. ${ }^{9}$

2.2 An Automated Generalization Model

In order to replace some portion of the human generalization process with computer-assisted algorithmic assessment, we must first understand the generalization process in an automated sense. Once we have modeled this process as rules or guidelines to follow, we can begin to understand where and how computers can provide processing assistance to the nautical cartographer. One significant problem that cartographers have encountered over the past two and one-half decades involves the development of objective rules for automated generalization. This results from a very simple fact: carographers have never-and perhaps will never-developed objective rules for the generalization of data in manual mode. The problem of such subjectivity is well-documented in the literature and is discussed at length in a recent publication. ${ }^{10}$ In order to develop such objective rules, most probably decades of research into the cognitive aspects of generalization would be necessary. It might be possible, however, to, in part, bypass such detailed cognitive understanding with the development of comprehensive models of generalization. Ulimately, this would allow cartographers to bypass such studies and perhaps develop new control structures based entirely on digital methods. Before such an endeavor is made, a clearer understanding of the rules of generalization is required.

McMaster and Shea have postulated that the primary goal of generalization may be stated as follows, "To maintain clarity with appropriate content at a given scale for a chosen map purpose and intended audience." ${ }^{11}$ This, of course, requires some elaboration.

By Clarity, it is meant that the legibility or readability of the chart is maintained. It is not possible, under any circumstances, to reduce a chart scale and yet maintain the original level of detail. We can maintain such clarity by manipulating the mapped image using a variety of operators-omission, simplification, displacement, agglomeration, aggregation, collapse, conversion, and smoothing-that we ultimately wish to convert to computer algorithms.

The amount of detail retained after generalization is obviously a direct function of a change to a Given Scale. Unfortunately, at this time we still do nor know the mathematical relationships berween features retained and scale change. The extent to which details can be retained might be specified with formulas similar to the uniform density law
CRRTOGIN Program
Prepared by PAR Govemment System Corporation
derived from Töpfer and Pillewizer to relate the number of features n_{f} on a chart at scale M_{f} to be retained from a source chart at scale M_{a} having n_{a} features. ${ }^{12}$ Yet their formula $n_{f}=n_{\mathrm{a}} \sqrt{M_{2} / M_{f}}$ does not directly address local feature density, which relates more directly to char cluter than does the aggregate number of features. Although this introduces the problem of feature density, it assumes that feature types do not change as a result of the scale change operation. ${ }^{13}$ Cartographers know this to be untrue. In addition to the need to decrease the absolute numbers and/or density of features at a reduced scale, many of the representations of features may alter due to the scale reduction. Area features will collapse to lines and points, lines collapse to points, multiple point features aggregate to areas, multiple area features agglomerate into new areas, and linear and point distributions are refined to depict representative patterns. Features need to be displaced and/or exaggerated to successfully communicate the intended message within the graphic constraints of the char.

A char has a Chosen Purpose and Intended Audience, which is fundamental to the design. Starting with an initial digital data base at a given scale, the cartographer may wish to reduce the scale of the product. However, one intended audience may have an application for the product which is entirely different than that of another audience. The generalization of most features for these two intended purposes would be accomplished with entirely different goals in mind.

In an automated environment, the generalization process must be guided by three thoughts: (1) Why we generalize; (2) When we generalize; and (3) How we generalize.

The illustration above provides such a model based within the context of generalization requirements, general cartographic principles and practices in manual production, and knowledge of existing research and development in the automated cariography discipline.

The following discussions will elaborate on each of the three areas: Why. When, and How.

2.2.1 Objectives of Generalization (Why to Generalize)

In order to fulfill the requirements of the primary goal of generalization stated above, cartographers must carefully consider a series of objectives subsumed within this major goal. These Objectives of Generalization can be thought of as Why we generalize.

2.2.1.1 Product Objectives

From a product perspective, a cartographer generalizes to meet the specific requirements of a product or group of products. To accomplish that goal, three objectives of each product, as illustrated to the right, should be sought towards this purpose.

The Objectives of Generalization can be viewed from three vantage points as illustrated in the figure on the left. These objectives can be based upon: (1) very specific requirements of the product, or group of products, being developed; (2) general cartographic principles (that is, the intuitive or philosophical objectives of cartography); and (3) governed by the requirements levied by existing computing technology.
data bases. The structure of these data bases are commonly designed to maintain both feature atributes as well as the topological relationships between the features. This design ensures that feature relationships may be efficiently ascertained and still available for multiple-product generation. MC\&G data bases contain a wealth of information for many products and for many geographic areas. Since many products do not require the complete set of this stored information, methods to ignore unneeded data for a particular product are necessary. This process of culling the data is referred to as data segregation, or, simply, sifting.

A data base of MC\&G information can contain cartographic data to suppor a variety of products wherein the resolution of the data may vary from geographic area to area. Let's look at a typical example of generalization as it applies to nautical chart products. NOS' Nautical Charting Division (NCD) is primarily a manual production environment This environment is currently in a state of transition to an all-digital mode of operation and will include the establishment of uniform procedures relating to the collection, screening, evaluation, editing, symbolization, retrieval, and exchange of digital source and production data. ${ }^{14}$ As part of this transition, the NCD has considered maintaining a single digital MC\&G data base to support all naurical chart and marine related publications requirements. As a result, data for a specific geographic region-for example, Flushing, Long Island, New York-may be collected for, and suppor, many scales of a particular naurical product as illustrated by the chan below:

Chart \#	Chart Name	Scale
12339	East River-Tallman Island to Queensboro Bridge	$1: 10,000$
12366	L.I. Snd and E. River -Hempstead Harbor to Talman Island	$1: 20.000$
12364	L.I. Snd -N. Haven Hbr. Ent. \& Pt. Jefferson to Throgs Neck	$1: 40,000$
12363	L.I. Snd.-Westem Part.	$1: 80,000$
11300	Approaches to NY, Nannucket Shoals to Five Fathom Bank	1400.000
13006	West Quoddy Head to NY	$1: 675,000$
13003	Cape Sable to Cape Hateras	$1: 1,200,000$

Alhough each product lised above is a nautical chart, scale dictates the specific information required to support individual requirements of the harbor and coastal classifications of each. On the other hand, this same data base might contain information to support the production of a completely different class of products such as:

Chart \#	Chart Name	Scale
\#76	Long Island West Costal Topographic/Bathymetric Chart	$1: 100,000$
NK 18-12	N.Y. Outer Continental Shield or Bathymetric Chan	$1: 250,000$

Here, not only is the nautical carrographer concemed with the selection of the information required for a given product scale, he also must be cognizant of the variety of products the data base will be used to prepare; that is, a knowledge of the product purpose.

During the generation of a product from a digital MC\&G data base, part of the compilation process involves designating the products to be produced and the geographic area of the world covered by those products. In its most elementary form, computerassisted feature selection depends upon feature codes that incorporate a ranking of features providing priorities so that a sufficient number of less important, or non-required, types of features can be suppressed to avoid cluttering the char. A list of features must, then, be rearieved to support the generation of those products.

Let's look at an example. A unique NOS production requirement states that four products be prepared by the production staff. The four products to be derived for a given geographic area are a large-scale Harbor Char, a smaller-scale Coast Char, an even smaller-scale Sailing Chart, and a large-scale Topographic/Bathymetric Chart. When comparing these products individually, one fact is readily apparent: not all features for one product are needed in the other product. Furhermore, features stored in the MC\&G data base might have feature codes which are enirely different from the individual product feature codes. These data base codes may be related to product codes by an association file. Using an association file, sifting may be accomplished by creating a catalog of required features that satisfy the area requirements and match the required product feature codes. The catalog consists of the feature DD number of the features that are candidates for at least one of the products based on area and feature codes. If the required feature catalog is to be used, then the full MC\&G data base must be available to support feature retrievals. Obviously, this is expensive in terms of data storage requirements and data retrieval times. An alternative is to use this catalog to specify the features to populate a subset data base for a particular production requirement. Since this subset data base is smaller, storage and retrieval time requirements will correspondingly decrease.

The operation of creating a subset may be implemented by either reducing a copy of the full MC\&G data base or by building the subset data base from a null data base. In the
first implementation, unwanted features are deleted from the copy of the MC\&G central data base. In the second implementation, required features are added to the initially empty subset data base. In either implementation, basic operations to add, delete, modify, merge, and breakup features (point, line and area) and topology (node, edge and face) are necessary. These basic operations are available in most Data Base Management Systems (DBMSs) and are required to maintain the MC\&G data base. Intrinsic to the basic operations is the validation of the MC\&G data base. This software should guarantee that the structure of the MC\&G data base is self-consistent after each operation.

A second product-specific objective arises when the data have been segregated out for a particular product but must now undergo a scale reduction. Here, many products differ in their "rules" of generalization. Take, for example, two products, both at a 1:50,000-scale, but differing in their purpose and intended audience-a topographic product and a bathymetric product. Each of these may contain common features located near the shoreline; an example here could be the depiction of gas wells. If the scale is reduced to $1: 250,000$, the resultant generalizations of the gas well features can be quite different. In one instance, they may be aggregated and re-represented as an area feature with a label of "numerous gas wells." Alternatively, these wells may be dropped entirely from the other product at the reduced scale. Even though both products require the same features, their handling of scale change, and its influence on generalization, are quite dissimilar.

Although both processes may be intuitively obvious, they are nonetheless important steps in the generalization of cartographic information. The necessity for this data segregation process is reduced substantially if multiple, product-specific digital cartographic data bases are maintained. For instance, maintaining separate data bases for General, Sailing, Coastal, Harbor, International, Small Craft, Canoe, Recreation, and Special Nautical Charts, along with others to support Coastal Topographic/Bathymetric, Outer Continental Shelf, and Smaller-scale regional Bathymetric Charts, will allow quicker and easier sifting processes based merely upon geographic areas, without the added requirement for determining product type and purpose. Unfortunately, this also requires the duplication of many features and their corresponding attributes between like products and scales. The storage overhead required for these multiple data bases may then outweigh the benefits. The ability to support scale change-a radical generalization-within a single
product must consider those goals, or specific requirements, of the particular product. And, also handle any impacts of this scale reduction on the processes selected for accomplishing the generalization.

2.2.1.2 Philosophical or Theoretical Objectives

From a philosophical or theoretical perspective, a cartographer generalizes to counteract the undesirable consequences of scale reduction. To accomplish that goal, six objectives should be sought towards this purpose. ${ }^{15}$ These objectives, as illustrated to the right, are discussed below.

Philosophical Objectives

Reducing Complexity Retsining Spatial Accuracy Retaining Statistical Accuracy Maintaining Aesthecic Quaity Maintaining a Logical Hierarchy Consisently Applying Generalization Rules

> Reducing Complexity. For this purpose, complexity will be defined as the number and variety of phenomenon per unit area. Such complexity results, of course, as the scale is reduced and features become cramped together. This perhaps is the trickiesi problem in all of generalization, for it requires that many of the operators discussed previously be applied to the problem either iteratively or simultaneously. This may be demonstrated with a simple example using the Thousand Island region of upper New York State.

As the name implies, between the U.S. and Canadian shoreline exists thousands of islands varying in size, importance, and many other geomorphic and political factors. Along the shoreline are numerous villages and cities also varying in size. Threaded through these islands is a critical shipping channel. Crossing the St. Lawrence River are numerous bridges. Imagine now taking a digital representation of this area collected/porrayed at a nominal scale of $1: 25,000$ and reducing the data to a $1: 250,000$-scale representation. Many of the islands now collapse together-they must be either agglomerated, omitted, or displaced. Other islands have now collided with the shipping channel and must be omitred or displaced. The river shoreline must be simplified at the reduced scale, yet the shipping channel must retain most of its geometric-planimetric-lidelity. Where bridges exist, however, the shoreline may not be moved through simplification. Additionally, at this reduced scale, most feature boundaries will have to be smoothed in order to eliminate the shapp angularity imposed by digitization. Some bridges may need to be deleted. The transportation networks associated with these bridge locations will need to be altered.

Geographic landmarks that serve as aids to navigation need to be maintained, but this must keep in mind the size, type, and/or location of the landmarks' associated features.

This, of course, describes only a few of the spatial decisions which either the nautical cartographer, or in a digital mode, the algorithm, would have to make in producing a "generalized" chart. The decisions as to the order in which the operators are applied is just as crucial as the selection of the operators and algorithms themselves. Significantly varying generalized versions of the original chart will be obtained through different ordering of the operators. Researchers are, unfortunately, many years away from determining either the correct-let alone the optimum-ordering of such operators or the parameters to use. The concept of complexity, then, and the methods that are necessary in order to reduce complexity and yet fulfill the other goals of generalization, is the single most ambiguous area of generalization. Certainly, though, one fact is clear: without substantial psychological and cognitive testing, decisions regarding these issues will be difficult.

Retaining Spatial Accuracy. The goal of retaining spatial accuracy is much more clear and measurable than the previous goal. Spatial accuracy can be directly related to displacement between the original and generalized features. Here, displacement refers to the planimetric difference and is measured with yector or areal displacement measures. These are well documented in the literature. Research goals for carographers over the next few years should include the evaluation of algorithms based on their displacement quality.

Retaining Statistical Accuracy. The retention of spatial accuracy deals with what might be called geographical data-the points, lines, and areas that build the data base. One must also consider the accompanying statistical or attribute data associated with these spatial data. This goal is, for the most part, purely mathematical in nature and involves both statistical analysis and classification. It is also a more major concern with thematic mapping that with general or topographic mapping. The overall objective here is to minimize the alteration of statistical atribution of the features.

Maintaining Aesthetic Quality. The aestheric quality of a chart-manual or digital-depends upon a multitude of factors, including the figure-ground relationships, overall balance, and layout. Design is a highly subjective and ultimately biased process that cartographers are just beginning to understand. Although specific rules for good design are impossible to formulate, general guidelines are now being proposed. It must be recognized, however, that imposing absolute precepts upon cartographic design is synonymous with asking Picaso for rules to be used in painting. As is commonly stated in cartography; the art must be retained. Those involved in digital methods who feel that ultimately the entire process can be automated are doomed to failure. There are many exciting possibilities, however, for greatly improving the design of digital products. Some
of these include: the proper implementation of smoothing algorithms and the antialiasing of raster images.

One excellent example of maintaining the aesthetic quality of the chart is related to the reduction of scale such that the size and extent of features is beyond the visual acuity of the eye. The reduction of objects in the chart space cannot be indefinite and must terminate at the limits of acuity of the human eye. Studies have shown that this relates to approximately 0.02 mm at a distance of 30 cm from the eye; any features smaller than 0.2 mm cannot usually be distinguished. It is, however, not realistic to reduce the objects on the chart to the barely perceptible because visual importance is diminished, and the effects of lighting and printing methods on the communicative efficiency of the products can be impaired. Scale reduction, that is, generalization, must weigh the relationship between what is/not shown with the overall complexity of the resulting product.

> Maintaining a Logical Hierarchy. This may be considered a subset of the above goal. A clear mapped image must contain an ordering of the mapped features.
> Large cities must be more prominent that smaller cities; interstate highways more prominent than country roads. This seems relatively straightforward for a single class of feanures-roads-but becomes more difficult when dealing with the entire mapped image. Areal, linear, and point features must be considered in a holistic sense. The major determinant of the graphic hierarchy amongst the features is the char purpose.

Consistently Applying Generalization Rules. Many cartographers now working in the area of digital cartography truly-and somewhat naively-believe that automation of the process will enable the removal of subjectivity. Nothing could be farther from the truth. The problems here are clearly illustrated with Monmonier's work on raster-mode generalization. ${ }^{16}$ There is probably more variation in the selection and application of a generalization algorithm in digital mode than in two manually drafted versions. In order to obtain consistent, unbiased, generalization, cartographers will have to determine three things: (1) exactly, which algorithm to use; (2) the order in which to apply these algorithms; and (3) the input parameters to obtain a given result at a given scale. Given that this information might be available (and must be obtained through additional research), a more unbiased and less subjective result is possible.

In summary, few of the above philosophical or theoretical objectives can be met with current computing technology. Of those goals that can be met, maintaining the spatial and statistical accuracies seem within grasp since these are essentially just computing the mathematical relationships between feature locations and/or atribution. The other objectives, however, can only be accomplished partially because of the holistic perceptual processing that is required to make adequate assessments of goal achievement. Since
perception is a highly individualistic response to a visual stimulus, the cognitive image of the chart will be idiosyncratic. ${ }^{17}$ As a result, even though cartographers may be presented with the same generalization requirements, the individual generalizations will be both particular to, and characteristic of, each cartographer. Thus, trying to attain goals that are based within this perceptual realm, such as maintaining the aesthetic quality of the product, may yet be years away from being achieved.

2.2.1.3 Technological Objectives

From a technological perspective, generalization is extremely important in the digital domain. Here, a carographer generalizes to balance the relationship between sampling interval of data, data complexity, storage requirements, and CPU-needs. To accomplish that goal, the

Technological Objectives

Cost Effectiveness of Algorithms
Minimum Storage/Memory Requirements two objectives illustrated to the right should be sought.

Cost Effectiveness of Algorithms. In digital mode, a significant goal is to reduce the information in a cost efficient manner. This, of course, is relatively easy to ascertain. For instance, in the generalization of line data, we are reasonably sure that the Douglas corridor simplification algorithm is the best mathematically, but one of the worst in terms of computation requirements. Thus, for precise mapping requirements-shorelines, for example-the Douglas routine is perhaps most appropriate. For different requirements, though, other, more computationally efficient routines are probably sufficient. Consider, for example, the fact that another linear simplification algorithm, the Lang tolerancing algorithm, is nearly as accurate as the Douglas algorithm but at a substantially reduced processing cost. Thus, the overall goal here is to balance the cost of a computer algorithm against its "accuracy" of generalization.

Minimum Storage/Memory Requirements. A similar consideration of generalization in digital mode is to reduce the data storage requirements down as much as possible. This may be detemmined by three factors: (1) the final scale reduction of the chart; (2) the output resolution of the graphic device; and (3) the purpose of the chart. A detailed description of the relationship between these is provided in a forthcoming publication. ${ }^{18}$ This can be achieved in two ways: (1) reducing the coordinate numbers required to represent the spatial encivies; and (2) reducing the data structure to more compact, less storage-intensive, forms. Effors here should be directed owards maintaining maximum information with a minimum of storage/memory size requirements.

In summary, both of the above objectives can be met with current computing technology. Much of the current research in cartographic generalization has been formulated with these two goals in mind. In fact, the carnographic literature is pervaded with many exciuing research efforts that have specifically addressed these areas. Much research is still required, however, to coordinate these activities within the perceptual arena of cartography. A wiz-bang algorithm that performs some function of generalization "in a flash" and reduces the data set to a exiguous portion of the original data set, is of no use to the carographer if the end product is perceptually unrecognizable from the original data or does not satisfy the purpose of the chart. Therefore, the algorithm selection and efficiency assessment must be based, in part, within the perceptual realm of cartographic communication.

2.2.2 Situation for Generalization (When to Generalize)

In the above discussions, we have considered the Why component of generalization for formulating objectives of the generalization process. Next, we will consider the situations in which generalization would be required. Ideally, these arise due to the success or failure of the chart product to meet the stated goals. Here, we will view the When of generalization from the three vantage points illustrated to the left.

The Conditions under which generalization procedures would be invoked would be based upon the Measures by which that determination was made, and the Decisions or control of the generalization techniques that will be employed to effect the change.

2.2.2.1 Conditions

Five conditions, that will occur under scale reduction, may be used to derermine necessary generalization. ${ }^{19}$ The conditions illustrated below each identify a problem area in generalization and are described below.

Congestion. Congestion refers to the problem where too many features have been positioned in the same geographical space; that is, feature density is 100 high.

Coalescence. Coalescence is a condition where features will touch as a result of either of two factors: (1) the separating distance is smaller than the resolution of the output device; or (2) the features will touch as a result of the symbolization process.

Conflict. Conflict is a situation in which the feature is in conflict with the background.

Complication. Complication relates to an ambiguity in performance of techniques and order; that is, the results of the generalization are dependent on the iteration of techniques chosen to perform the scale reduction.

Inconsistency. Inconsistency refers to a set of generalization decisions applied non-uniformly across a given char. Here, there would be a bias in the generalization between the topographic elements.

It is the above conditions which require that some type of generalization process occur to counteract, or eliminate, the undesirable consequences of scale change. Unformately, these conditions are highly subjective in nature and, at best, are difficult to quantify. Consider, for example, the problem of congestion. Simply stated, this refers to a condition where the density of features is greater than the available space on the graphic. One might question how this determination is made. Is it made in the absence or presence of the symbology? Is symbology's influence on perceived density—that is, the percent blackness covered by the symbology-the real factor that requires evaluation? What is the unit area that is used in the density calculation? Is this unit area dynamic or fixed? As one can see, even a supposedly simple term, density, is a relative enigma. The other remaining conditions-coalescence, conflict, complication, inconsistency-also can be highly subjective in their assessments. How, then, can one assess the state of the conditions if the quantification of those conditions is ill-defined?

It appears as though such conditions as expressed above may be detected by applying a series of mensuration techniques to the original and/or generalized chart to determine a conditional state. Unfortunately, these techniques may indeed be quite complicated and inconsistent between various products or even within a single product. To

[^0]eliminate these differences, therefore, the assessment of conditions must be based entirely from within a non-product viewpoint. That is, to view the chan as a graphic entity in its most elemental form-points, lines, and areas-and to judge the conditions based upon an analysis of those entities. ${ }^{20}$ This can be achieved by providing simple tools that operate on these geometric configurations and can be combined in some logical fashion to achieve the intended analysis. ${ }^{21}$ This is accomplished through the evaluation of conditional Measures.

2.2.2.2 Measures

Conditional measures can be assessed by examining some very basic geometric properties of the inter- and intra-feature relationships. Some of these assessments are evaluated in an singular feature sense, others between two independent features, while still others are computed in a multi-feature sense. These measures are summarized below.

Density calculations, as shown above, are evaluated by using multi-features. Length and Sinuosity calculations, on the other hand, operate on singular features and might be appropriate for determining conditions requiring generalization. An example, here, could be the calculation of stream network lengths, or overall complexity of the network (based on, say, average angular change per inch) to select an appropriate and representative depiction of a distribution at a reduced scale. Shape calculations are also useful in the determination of whether an area feature can be represented at its new scale. Conditional measures may also be compartmentalized into Distance calculations berween the basic geomeric forms: points, lines, and areas. Distances between each of these forms can be assessed by examining the appropriate shonest perpendicular distance (SPD) or shorest euclidean distance (SED) berween each form. In the case of two geomerric points, only three different distance calculations exist: (1) point-to-point; (2) point buffer-to-point buffer; and (3) point-to-point buffer. ${ }^{22}$ These determinations can indicate if any generalization problems exist if, for instance under scale reduction, the line buffer and areal

[^1]Cartographic Generalization Report
Page 23
buffer conflict. In addition to the geometric measures, other classes of measures can be computed. This includes Gestalt measures, ${ }^{23}$ which indicate perceptual characteristics of the feature distributions, and Abstract measures, which reveal more conceptual evaluations of the spatial distributions. Below, a list of possible measures are tabulated. Although this list is by no means complete, it does provide a starting point from which to evaluate conditions within the charr which do require, or might require, generalization.

DENSITY MEASURES (Poidt, Lide, Area)
number of point, line, or area features per unit area
average density of point line, or area feabures
number and location of cluster nuclei of point, line, or area features
LENGTH MEASURES (Lide, Area)
Toual number of coordinates in line feature or area feanure boundary Total length of line feaure or area feature boundary Average number of coordinates per inch on line feature or area boundary Standard deviation of coordinales per inch on line feature or area boundary;
SINUOSITY MEASURES (Line, Area)
Total angular change of line feature or area boundary
A verage angular change per inch on line feature or area boundary
Average angular change per angle on line feabure or area boundary Sum of positive or negative angles on line feature or area boundary
Total number of positive or negative angles on line feature or area Total number of positive or negaive runs on line feature or area boundary Total number of runs on line feabure or area boundary
Mean length of runs on line feature or area boundary
SHAPE MEASURES (Point, Line, Area)
Area of point line, or area features (unsymbolized/symbolized)
Perimeter of point line, or area features (unsymbolized/symbolized)
Centroid of point line, or area feadures (unsymbolized/symbolized)
X and Y Variances of area features (unsymbolized/symbolized) Covariance of X and Y of area feabures (unsymbolized/symbolized)
Standard Deviation of X and Y of area feanures (unsymbolized/symbolized)
dISTANCE MEASURES (Point, Line, Area)
Shorear Euclidean Distance (SED)

point-point point-line centroid line--line	point-point buffer point-area centroid line-line buffer
line--line centroid	line buffer-line buffer
line buffer-line centroid	line centroid-area bufter
line centroid-area centroid	line centroid-area edge
grea buffer-rea buffer	area buffer-area centroid
area buffer-area edge	erea centroid-serea centroid

Shorest Perpendicular Distance (SPD)

point-line	point-line buffer
point-area buffer	point-area edge
point buffer-point buffer	point buffer-area buffer
point buffer-area centroid	point buffer-area edge
line-area centroid	line-area edge
line-area buffer	line buffer-area buffer
line buffer-area centroid	line buffer-area edge
line centroid-line centroid	

GeStalt MEASURES (Point, Line, Area)
 Closure
 Continuation
 Proximity
 Common Fate
 Figure Ground
 abSTRACT MEASURES (Point, Lide, Area)
 Homogeneity
 Symmery
 Repecition
 Recurrence
 Neighborliness
 Complexity

Each of the above classes of measures can be determined in a digital domain. Their interaction, however, is not as clearly understood. Exactly which of these conditions must exist before a generalization action is taken depends on scale, purpose of the chart, and so on. In the end, it appears as though many of the prototype algorithms may first be developed and then tested and fit into the overall framework of generalization. The exact guidelines on how to apply the measures designed above can not be determined without precise knowledge of the algorithms.

2.2.2.3 Decisions

In order for the cartographer to obtain unbiased generalizations, three things need to be determined: (1) which algorithm to use; (2) the order in which to apply these algorithms; and (3) the input parameters to obtain a given result at a given scale. Thus, the decision process includes
 the factors on the right.

Obviously, an important constituent of the decision-making process is the availability and sophistication of the algorithms. Actually, algorithms is a rather overused,
and somewhat misused, term. Instead, the algorithms should more appropriately be called Controlled Procedures that requires access to Algorithms. Thus, the generalization process is accomplished through a variety of procedures-each attacking specific problems-which employ a variety of algorithms. In the case of line simplification, for example, the simplification procedure would access algorithms such as Lang, Douglas, Roberge, etc. Concomitantly, there may be permutations, combinations, and iterations of procedures, each employing permutations, combinations, and iterations of algorithms. The algorithms may, in turn, be controlled by muliple, maybe even interacing, parameters.

2.2.2.3.1 Procedure Control

The control of generalization procedures is probably the most difficult process in the entire concept of automating generalization. The control decisions must be based upon: (1) the importance of the individual features (this is, of course, related to the product puppose and intended audience); (2) the complexity of feature relationships both in an interand intra-feature sense; (3) the presence and resulting influence of char clutter on the communicative efficiency of the product; (4) the need to vary generalization amount type, or order on different features; and (5) the availability and robustness of generalization processes and computer algorithms.

The necessity for sequenial data processing requires the establishment of a certain sequence of the generalization process in order to avoid repetitions of processes and frequent corrections. The sequence is determined by the effects which result in lack of space or, alternatively, excess of space and locational changes of features caused by the generalization processes. On the basis of mutual interdependencies resulting from such generalization effors of the individual processes automatically carried out, a sequence of generalization processes for the ANCS II is proposed below:

1. Independent and Dependent Generalization Requirement Evaluation
a. Selection of point, line, and area features
b. Identification of regions not to be generalized
c. Identification of regions to be generalized
d. Identification of features not to be generalized
c. Identification of features to be generalized independently
f. Identification of features to be generalized by pairwise dependence
g. Identification of features to be generalized by multi-dependence
h. Evaluation of conditions for independent point, line, and ares feature generalization
i. Evaluation of conditions for pairwise point/line, point/area, and line/area feature generalization
j. Evaluation of conditions for multiple point, line, and area feature generalization
2. Point Aggregation
a. Point Features to Area Features
3. Simplification (low-pass filter)
a. Area Feature outlines
b. Line Features
4. Feature Collapse
a. Area Features to Line Features
b. Area Features to Point Fearures
5. Distribution Refinement
a. Area Features
6. Area Agglomeration
a. Area Features to Area Features
7. Feature Collapse
c. Line Features to Point Features
8. Distribution Refinement
a. Point Features
c. Line Features (disjoint)
d. Line Features (connected)
9. Simplification
a. Area Fearure outlines
b. Line Features
10. Smoothing
a. Area Feature outlines
b. Line Fearures
11. Compaction
a. Area Feature oullines
b. Line Fearures

2.2.2.3.2 Algorithm Selection

The selection of algorithms to support the generalization process must be based upon a variety of factors, not the least of which is proof of concept. The relative obscurity of generalization algorithms, coupled with a limited understanding of the generalization process, removes the selection process from merely conducting a cost-benefit analyses. There just are not algorithms to choose from. This means that many of the concepts need to be prototyped, tested, and evaluated during the design and development of the ANCS II. The evaluation process is usually the one that gets ignored or, at best, is only given a cursory review. Algorithms should be selected based upon cognitive studies, mathemarical evaluation, and design/implementation trade-offs. 24 Once a candidate set of algorithms are available, they should be assessed in terms of their applicability to specific products.

Finally, each individual product may require different algorithms depending on feature type, scale, and/or purpose of the char.

2.2.3 Procedures of Generalization (How to Generalize)

As a final third of the automated generalization model, we must consider the component of generalization that actually performs the processes of scale reduction. This How of generalization must be based within those areas of generalization techniques that have either arisen out of the emulation of the manual cartographer, or based solely on more mathematical efforts.

In the generalization process, we have determined that five basic categories of procedures exist to effect the required MC\&G data changes to support the production requirements. These procedural categories are listed to the right

Procedures

Line Simplification
Feadure Type Conversion or Refinement
Feature Displacement
Feature Smoothing
Data Compaction

For many of these procedural areas, reviews of algorithms are included. As was stressed above, however, the algorithms (and procedures themselves) are affected by the factors listed on the right. The order of application, frequency of application, and limits of the algorithms must also be considered in the automated generalization process.

Algorithms
Pemutations
Combinations
Iterations
Parameters

2.2.3.1 Line Simplification

MC\&G data bases created as a result of the feature selection process will contain only those features necessary to support the required products, to be presented at a required scale, with the minimum data storage requirements and data retrieval times. Even so, the digitization processes used to collect this information employs a variety of scales and/or resolutions of input media. This, in turn, means that superfluous data exists for the individual feature representations. In the digital domain, this means added execution times during processing, increased plotting times, and excessive data storage requirements. Some form of feature simplification can reduce the number of coordinate points required for feature representation. One of the more common uses of point simplification algorithms is their application to linear data sets for coordinate removal. These algorithms are commonly referred to as linear simplification, or merely, simplification routines. Simplification algorithms operate on the principle of point selection or point rejection.

Chart data that has been captured by electronic sampling devices must undergo a variety of transformations before it should be used as a digital representation of chart features. Data gathered by a sampling device such as a manual digitizer samples x, y coordinate pairs in discrete locations, established by the resolution of the input device. These discrete locations can be tied together by vectors to create a digitized line. Common digitizer resolutions result in recording a surplus of coordinate data for the representation of lines. In fact, although human discernability of coordinate differences is only on the order of about 0.02 inches, it is not uncommon to find that most digizizing systems capture coordinates at resolutions far beyond that (such as 0.001 inches). In addition, psychological and physiological errors are induced in the digitization process which create induced detail in the lines. Also, glitches are produced from electrical impulses in the sampling device and mechanical impulses in the operator's hand.

Ideally, a digitized representation of a linear char feature should be accurate in its representation of the fearure (shape, location, and character), yet also efficient in terns of retaining the least number of delimiting coordinate data points in storage. This profligate density of coordinates captured in the digitization stage should be reduced by selecting a subset of the original coordinate pairs, while retaining those points considered to be most representative of the line. ${ }^{25}$ Glitches should be removed. And, finally, the line should be
smoothed to produce a line with a more aesthetically pleasing caricature. ${ }^{26}$ Simplification algorithms will select the characteristic, or shape-describing, points to retain, or will reject the redundant point considered to be unnecessary to display the line's character. ${ }^{27}$ Inevitably, though, simplification algorithms produce a reduction in the number of derived data points, which are unchanged in their x, y coordinate positions. Some practical considerations in the elimination of redundant or superfluous data gathered in the digitization stage includes reduced plotting time, increased line "crispness" due to higher ploting speeds, reduced storage, less problems in attaining plotter resolution due to scale change, and quicker vector to raster conversion. McMaster cites that five major types of linear simplification algorithms can be found in the literature. ${ }^{28}$ They are: (1) Independent Point Routines; (2) Local Processing Routines; (3) Unconstrained Extended Local Processing Routines; (4) Constrained Local Processing Routines; and (5) Global Routines. Examples of each are discussed on the following pages. 29

2.2.3.1.1 Independent Point Routines

Independent Point Routines are those in which no mathematical relationships between neighboring coordinate pairs are assessed.

$N^{t h}$ Point

REFERENCE:
Tobler, Waldo R. (1964).
ALGORITHM DESCRIPTION:
After generating a random integer N , ranging from 1 to K (where K is the number of points in the data set), the algorithm reads the input data file sequentially and retains only every $\mathrm{N}^{\text {th }}$ coordinate pair. Larger values of N obviously y yield greater simplifications.
GRAPHIC EXAMPLE:

In the figure above, a data set consisting of 20 coordinate pairs is being simplified based upon a selection of every $4^{\text {th }}$ coordinate pair. In addition, the first and last points have been retained. Note how the original line has been reduced to a simplification containing only 6 points, an extreme savings in storage, yet the character of the line has changed considerably.
ADVANTAGE:
Computationally one of the fastest line simplification routines and, therefore, one of the cheapest to run in terms of time and money. Simple to program and very straighforward in its operation.

DISADVANTAGE

Straight lines are over represented, and critical points are not necessarily retained. It does not take distance between points into account. Therefore, the algorithm totally ignores the fact that some points are spaced closely while others may be far apart. As a result, the shape of the line derived from this simplification routine will depend entirely on what point in the feature is considered as the staring point-because it is here from which the counting of the $\mathrm{N}^{\text {th }}$ Point will be initiated. Modifications commonly applied to the algorithm includes retention of the first and last coordinate pairs (as in this example), regardless of the $\mathbf{N}^{\text {th }}$ position.

Independent Point Routines (continued)

Random

REFERENCE:
Robinson, Arthur H., et al. (1978).
ALGORITHM DESCRIPTION:
After generating an operator-selected number of random integers N , the algorithm reads the input data file sequentially and retains the first coordinate pair, and then only the coordinate pairs that fall on those random positions within the file. Finally, the last coordinate pair is saved, regardless of whether it fell on one of the random positions.
GRAPHIC EXAMPLE:

In the figure above, the original line contains 8 coordinate pairs. Assume that the cartographer has specified that only 2 random coordinates (N) and the end points of the original line are retained. A random generation of two numbers between 2 and 7 (since 1 and 8 are already retained) yields 2, 3. The simplification has been reduced to only 4 coordinates.

ADVANTAGE:

Computationally one of the fastest line simplification routines and, therefore, one of the cheapest to run in terms of time and money. Simple to program and very straightforward in its operation. The start and end points of a line will remain intact.
DISADVANTAGE:
This procedure has no cartographic basis and, therefore, important characteristics of the line may be lost in the simplification. It does not take distance between points into account. Therefore, the algorithm totally ignores the fact that some points are spaced closely while others may be far apart. As a result, the shape of the line derived from this simplification routine will depend entirely on what points are retained. This will change each time because of the random selection of coordinate pairs.

2.2.3.1. 2 Local Processing Routines

Local Processing Routines are those in which the characteristics of immediate neighboring coordinate pairs are used.

Line Width

REFERENCE:

Tobler, Waldo R. (1965).
ALGORITHM DESCRIPTION:
The algorithm reads the input data file and retains the first coordinate pair as an anchor point. Then, reading sequentially through the coordinate file, the Euclidean distance is calculated between the anchor point and the next point. If the Euclidean distance between the two points is closer together than the width of the plotted line, the second pair is rejected. The algorithm then iteratively reads successive coordinate pairs until it finds one that falls outside of the distance determined by the line width. That point is now retained, it becomes the new anchor point, and the search for the next coordinate pair continues. Finally, the last coordinate pair is saved, regardless of whether it fell on outside of the selected tolerance.
GRAPHIC EXAMPLE:

Simplified Line

In the figure above, a sample line contains 6 points. Points P2 and P3 are closer together than the width of the line and, as a result, only the first point encountered of these two points (P 2) will be retained. The original line is reduced to 5 points.
ADVANTAGE:
Easy to program and fast computationally. Retains end points.
DISADVANTAGE:
Algorithm bears no cartographic logic and is subject to the same disadvantages as were identified in the $\mathrm{N}^{\text {th }}$ point algorithm.

Local Processing Routines (continued)

Euclidean Distance

REFERENCE:
McMaster, Rober B. (1983a).
ALGORTHM DESCRIPTION:
The algorithm reads the input data file and retains the first coordinate pair as an anchor point. Then, reading sequentially through the coordinate file, the Euclidean distance is calculated between the anchor point and the next point. If the Euclidean distance between the two points is less than a pre-selected tolerance, the second pair is rejected. The algorithm then iteratively reads successive coordinate pairs until it finds one that falls outside of the preselected distance. That point is now retained, it becomes the new anchor point and the search for the next coordinate pair continues. Finally, the last coordinate pair is saved, regardless of whether it fell on outside of the selected tolerance.
GRAPHIC EXAMPLE:

In the figure above, a sample line contains 8 points. Points P6 and P7 are closer together than the Euclidean distance specified. As a result, only the first point encountered of these two point pairs (P 6) will be retained. The original line is now reduced to 7 points.
ADVANTAGE:
Easy to program and fast computationally. Retains end points.

DISADVANTAGE:

Algorithm bears no carrographic logic.

Local Processing Routines (continued)

United States Geological Survey - A
 REFERENCE:

United States Geological Survey (personal communication).
ALGORITHM DESCRIPTION:
Corridor algorithms operate by specifying a distance either side of the data line, as a corridor, for point rejection or retention. A vector joining points P1 and P2 is extended as a projected straight line. The perpendicular distance from this extended line to P3 is calculated. Points are accepted if this distance is greater than a pre-tolerance Tl. If the perpendicular distance is less than the tolerance, the point in question is rejected.
GRAPHC EXAMPLE:
Original Line
Simplified Line

In the figure above, point P3 would be eliminated since it is within a threshold tolerance T1 from an imaginary vector drawn between P1 and P2. After P3 is rejected, the imaginary vector is again drawn through Pl and P2. The perpendicular distance of P4 from that line is greater than the toierance, and as such, will be retained.
ADVANTAGE:
Fairly fast. Easy to program.
DISADVANTAGE:
Does not take distance between points into consideration.

Local Processing Routines (continued)

United States Geological Survey - B
 REFERENCE:

United States Geological Survey (personal communication). ALGORTTHM DESCRIPTION:

A second version of this algorithm operates on triads of points. A vector joining the first and third points in the triad is projected as a straight line. The perpendicular distance from this projected line to the middle point is calculated. This middle point is accepted only if this distance is greater than a pre-selected tolerance. If it is accepted, it becomes the new anchor point, the third point now becomes point 2 , the next successive point (point 4) is read in as the new point 3 , and the process repeats. If the distance is less than then specified corridor, the middle point is omited, the third point now becomes the middle, and the next successive point (point 4) is read in as the new point 3, and the process repeats.
GRAPHC EXAMPLE:

In the figure above, the distance of P2, from a computed vector drawn between P1 and P3, is greater than the selected tolerance. As such, P2 will be retained. Point P3 is now tested for its perpendicular distance from the computed vector drawn between points P2 and P4. This distance is less than the selected tolerance and, as such ${ }_{r} \mathrm{P} 3$ is rejected.
ADVANTAGE:
Fairly fast. Easy to program.
DISADVANTAGE:
Does not take distance berween poins into consideration.

Local Processing Routines (continued)

Angle of Change

REFERENCE:
Tobler, Waldo R. (1964). ${ }^{30}$
ALGORITHM DESCRIPTION:
Algorithm compares the angular change between vectors connecting the first and second coordinate pairs, and the first and third coordinate pairs. A tolerance angle is selected by the cartographer and points are rejected if their angle is greater than the tolerance angle specified. Processing is repeated from this point to the next two points.

GRAPHC EXAMPLE:

In the figure above, a sample line consists of 4 points. ${ }^{31}$ Angle θ^{\prime}, the angular change between points $\mathrm{P} 2, \mathrm{Pl}$, and P 3 , is greater than the tolerance angle θ. As such, P 2 is retained. The angular change θ^{\prime} between the next successive three points (P3, P2, and P4), is less than the specified tolerance of θ and, as such, point P3 will be rejected. Simplified line is then reduced w three coordinates.
ADVANTAGE:
Good theoretical basis for point selection. Retains end points.

DISADVANTAGE:

Complexity of program dependent on the computer's resident function. Pure angle algonithms take no account of distance between coordinate pairs; this may have a detrimental effect on the curvature of the resultant line in that large gentle curves may be eliminated and replaced by straight line sections.

Local Processing Routines (continued)

Distance and Angle

REFERENCE:
Jenks, George F. (1980) personal communication.
ALGORITHM DESCRIPTION:
Three parameters are specified: (1) a minimum allowable distance between points 1 and 2 (MIN1); (2) a minimum allowable distance between points 1 and 3 (MIN2); and (3) the maximum allowable tolerance angle between a line drawn through points 1 and 2, and 2 and 3 (ANG). If the distance from point 1 to point 2 is less than MIN1, or the distance from point 1 to point 3 is less than MNN2, point 2 will be rejected. If both distances are larger than the minimum allowable distances, the angular is calculated. If the angle is larger than the tolerance angle ANG, the point is accepted; if it is smaller, the point is rejected. Thus, points will be rejected if they are within the minimum distances or if their angle is less than the specified angle.
GRAPHIC EXAMPLE:

In the figure above there are three examples of this algorithm. In the top example, point P 2 will be eliminated because it is closer to Pl than the tolerance distance MIN1. In the second case, P2 will be eliminated since the distance between P1 and P3 is less than MIN2. In the final example, the distance from P1 to P2 is greater than MIN1 and the distance from P1 to P3 is greater than distance from MIN2. The angular change from the two vectors connecting the three points (θ^{\prime}) is greater than ANG. Therefore, point P2 will be retained.
ADVANTAGE:
Combines the processing speed of a sequential algorithm and, using the sound basis of angular selection algorithms, this algorithm also incorporates a distance measurement.
DISADVANTAGE:
High computational time relative to other sequential algorithms, yet lower than corridor algorithms; a good alternative to both.

Local Processing Routines (continued)

Field of View

REFERENCE:
Jenks, George F. (1980) personal communication.
ALGORITHM DESCRIPTION:
Algorithm evaluates each point according to whether or not it lies within a "field of view" from the previous point. This field of view angle is pre-selected, and sets the orientation of two lines either side of the vector joining two coordinate pairs. If the point being sampled lies within this field of view, it is rejected and processing continues, computing angles and lines to the next point. If the point is outside of this field of view, it is accepted. When a point is accepted, it becomes the new anchor, or base, point and the procedure repeats again.

GRAPHIC EXAMPLE:

In the figure above, a angular threshold of θ^{\prime} has been specified on each side of the Field of View direction. From P1 to P2, the Field of View does not include the next successive point P3, and as such, P3 will be retained. Constructing a field of view now from P1 to P3 includes P4 and it will therefore be eliminated. Because P5 is the end point it will be retained (as was P1). The simplification now consists of 3 coordinate pairs.
ADVANTAGE:
All angle algorithms present a good theorerical basis for point selection. Retains end points.
DISADVANTAGE:
Somewhat complicated to program; the complexity of the program dependent on the resident functions available on the particle host computer. Pure angle algorithms take no account of distance between coordinate pairs-this may have a detrimental effect on the curvature of the resultant line in that large gende curves may be eliminated and replaced by straight line sections.

2.2.3.1.3 Unconstrained Extended Local Processing Routines

Unconstrained Extended Local Processing Routines are those in which the characteristics of neighboring coordinate pairs are used and in which the search region is expanded to sections of the line and not limited to the immediate neighbors.

Reumann-Witkam
 REFERENCE:

Reumann, K. and A.P.M. Witkam (1974).
ALGORITHM DESCRIPTION:
This algorithm searches the immediate neighboring coordinate pairs and evaluates sections of the line by using two parallel lines to define a search region. After calculating the initial slope of the search region, the line is processes sequentially until one of the edges of the search corridor intersects the line.
GRAPHC EXAMPLE:

In the figure above, a search region is recalculated based on the last intersection point. A point is inserted where the curve crosses out of the band or the last input point contained within the band is selected to be retained. The algorithm continues until the last point and its tangent are used. Here, this figure shows all the calculated tolerance bands for the original line. The final simplified line is depicted as a dark band and the retained coordinates as circles.
ADVANTAGE:
Very fast.
DISADVANTAGE:
Does not operate well under severe simplifications. Requires calculation of the tangent to a digitized curve. Choice of the direction tangent is not well calculated where a straight line is drawn between the last two (2) points and used to derive the direction.

Unconstrained Extended Local Processing Routines (continued)

Roberge

REFERENCE:

Roberge, J. (1985).
ALGORITHM DESCRIPTION:
This algorithm is a modification of the Reumann-Witkam. His enhanced strip algorithm provides: (1) a more rigorous definition of the critical line; (2) a test for verical critical lines; (3) a check for inflection points; and (4) an extension factor which enables extended critical lines to be constructed.
GRAPHIC EXAMPLE:
None provided.
ADVANTAGE:
Extension factor proves advantageous for reducing curves with slow rates of curvature.
DISADVANTAGE:
Does not operate well under severe simplifications. Requires calculation of the tangent to a digitized curve.

2.2.3.1.4 Constrained Local Processing Routines

Constrained Local Processing Routines are those in which the characteristics of neighboring coordinate pairs are used and in which the search region is expanded, yet restricted, to some sections of the line.

Lang Tolerancing

REFERENCE:

Lang, T. (1969). ${ }^{32}$
ALGORITHM DESCRIPTION:
A tolerance is specified as the nominated drawing accuracy for the ploter. Points are removed if they lie within the tolerance distance from a line drawn between an initial point and the end point being considered. If the specified tolerance is exceeded, the plotred line is drawn to the next end point assuming that these points satisfy the tolerance check. A modification to the algorithm differs in that only points that were distant from from the last plotted point by greater than the specified distance D were used for ploting.
GRAPHC EXAMPLE:

In the figure above, a line connecting endpoints Pl to P 7 is projected. If the perpendicular distance from this line to intervening points exceeds a specified tolerance, the line is repositioned from points P1 to P6 and the distances are again checked. Here, the distance from P5 to the vector drawn berween points P1 and P7 is greater than the tolerance. The vector is now drawn between P1 and P6 and point P5 still lies ousside of the specified tolerance. As the vector is moved to between P1 and P5, all the distances are within the tolerance and are deleted (points P2 through P4). The imaginary vector is now drawn between the new beginning point P5 and the end point P7, and a test of all intervening points is again computed Since P6 is within the specified tolerance it is omitted and the simplified line now contains only three points of the original line.
ADVANTAGE:
The second algorithm is much faster than the first, but sill relatively slow.
DISADVANTAGE:
Slow. Algorithm produces acceptable results on relatively smooth curves but does not detect the best representation points on sharp curves.

Constrained Local Processing Routines (continued)

Johannsen Tolerancing
 REFERENCE:
 Johannsen, T. (1973).
 ALGORITHM DESCRIPTION:

Of all the data points in a line, points are extracted which represent the maximum curvature after low frequency curves are suppressed. This algorithm processes by moving a chord of given length (l) along the line, by steps of a known distance (D). For each chord position (Di) all of the points between the start (Ai) and the end of the chord (Ei) are evaluated and summed. This is calculated as a function over the are length to derive the extreme points. These are only extracted if they are maximum in relation to a set number of neighboring coordinate pairs.
GRAPHC EXAMPLE:

In the figure above, an example of the Johannsen tolerancing algorithm is presented. A chord of length L is extended from the initial point Ai to some point, Ei, along the arc. All intermediate point between Ai and Ei are summed and compared to the total arc length to evaluate the total distance between the arc and the chord. If extreme points exist, the ration of distance to total arc length will be high and those points will be eliminated. Small distances compared to arc length imply relatively minor peturbations in the line and no points are removed.
ADVANTAGE:
None.
DISADVANTAGE:
CPU-intensive.

Constrained Local Processing Routines (continued)

Opheim

REFERENCE:
Opheim, H. (1982).
ALGORITHM DESCRIPTION:
The search region is resuricted or constrained. by a minimum and maximum distance check, much like the Distance/Angle algorithm. After the initial search region is set which is similar to the Reumann-Witkam, any point within the minimum distance are eliminated. However, as soon as the line "escapes" from the search region on any side, including distance maximum, a new search corridor is established and the last point within the region is saved.
GRAPHIC EXAMPLE:

In the figure above, points $3,4,5$, and 6 are eliminated since they fall within the search region tolerance band. Point 7 becomes par of the simplified line since it is the last point to fall inside the search region.

ADVANTAGE:

None. Not well analyzed yet.
DISADVANTAGE:
If line makes any sudden bends within the maximum distance search region the critical point of the bend will be eliminated.

2.2.3.1.5 Global Processing Routines

Global Processing Routines are those in which the entire line is examined in a holistic sense and not processed sequentially as in all the other classifications.

Douglas Corridor
 REFERENCE:

Douglas, David H., and Thomas K. Peucker (1973). ${ }^{33}$
ALGORITHM DESCRIPTION:
This algorithm operates globally on a data set, processing an entire line at a time. The algorithm begins by defining the first point in the line as an anchor. and the last point as a floating point position. These two points are now connected by a straight line segment. Intervening points along the line are now examined to determine the one with the greatest perpendicular distance berween it and the straight line defined by the anchor and floater points. If this maximum perpendicular distance is less than a maximum tolerable distance, the straight segment is considered suitable to represent the entire line. In cases where the distance condition is not met, the point lying furthest away becomes the new floating point, and the process continues until all points in each segment lie within a given blerance.

In the figure below, a diagrammatic example of the Douglas Algorithm operation is provided This description is provided since the Douglas algorithm is probably the most carrographically-sound linear simplification algorithm. As such, it is an excellent choice for implementation.

The following discussion details the operation of the Douglas algorithm on a sample line containing 31 coordinates (reference the figure below, A).

[^2]
GRAPHIC EXAMPLE:

Original Line

- Compare maximum perpendicular distance to tolerance. Distance is greater then tolerance.
- Compare maximum perpendicular distance to tolerance. Distance is less than tolerance.
- Pop last point, P3, off floster atack.
- Push P3 onto Anchor stack.
- Calculate perpendicular distance to all intermediary points from the imaginary vector drawn berween new anchor P3 and floater P6 (reference the figure above, F).
- Sort for maximum perpendicular distance. In this case, P4.
- Compare maximum perpendiculer distance to tolerance. Distence is less than wierance.
- Pop last point P6, off fonter stack.
- Push P6 onto Anchor stack.
- Calculase perpendicular distence to all intermediary points from the imaginary vector drawn between new enchor P6 and floster P12 (reference the figure above, G).
- Sor for maximum perpendicular disunce. In this case, P9.
- Compare maximum perpendiculer distence to tolerance. Distonce is greater than tolerance.
- Push P9 on floaver arack.
- Celculate perpendicular distrace to all intermediary points from the imaginery vector drawn berween enchor P6 and flomer P9 (reference the figure above, H).
- Son for maximum perpendiculor distace. In this cese, Yl.
- Compere maximum perpendicular distance to tolerance. Distance is leas than tolerence.
- Pop last point P9, off tlower ateck.
- Push P9 onto Anchor stack.
- Calculate perpendicular distance to all intermediery points from the imaginaty vector drawn berween new anchor P9 and floater P12 (reference the figure above, D).
- Sor for maximum perpendicular distance. In this case, P10 of P11 (equal).
- Compare maximum perpendicular distance to tolerance. Distance is less then tolerance.
- Pop last poink P12 off floster stack.
- Purh P12 onto Anchor steck.
- Process is now complete for all coordinates lying between poins P1 and P12. To continue, the above sequence of events would be followed for all points lying berween P12 and P31.
ADVANTAGE:
Perhaps the most highly respected linear simplification algorithm developed; it is based upon sound carographic principles. The Douglas algorithm has proven to be both mathematically and perceptually significant. ${ }^{34}$ In fact, it has been shown that the algorithm most closely replicates the human generalization process in terms of retaining critical points on the line. ${ }^{35}$ These critical points can be related to the physical characteristics of a line, or those related to manmade or perceived positions of importance.

DISADVANTAGE:

Requires a large amount of processing time since it continually works through a line several times until all porions of it have been examined. However, this increased processing time can be considered a trade-off since the Douglas algorithm achieves such ideal simplified representations of the line.

2.2.3.2 Eeature Type Conversion/Refinement

As a chart is a reduced representation of the Earth's surface, and as all other phenomena are shown in relation to this, the scale of the resultant product largely determines the amount of information which can be shown. As a result, the generalization of cartographic features to support scale reduction must obviously change the way features look in order to fit them within the constraints of the graphic.

The information that is contained within the graphic has two components-location and meaning-and generalization affects both. As the amount of space available for portraying the cartographic information decreases with decreasing scale, less locational information can be given about features, both individually and collectively. As part of this requirement for feature type conversion, or feature refinement process, the graphic depiction of the features changes to suit the scale-specific needs. The transformation processes here include: (1) Aggregation/Agglomeration; (2) Combination; (3) Collapse; and (4) Distribution/Network Refinement. Each of these are discussed below.

Point Aggregation. There are many instances when the number or density of like point features within a region prohibits each from being portayed and symbolized within the graphic. Still, their importance, both from a landmark and military significance, require that they be portrayed. To accomplish that goal, the point features must be aggregated into a higher order class feature-areas. One of the best examples of this requirement is the aggregation of a feature like gas wells into an areal outline that is labelled as "numerous gas wells."

Area Agglomeration. This type of generalization is extremely important when portraying features such as hydrography. Through combination of individual features into a larger element, it is often possible to retain the general characteristics of an area despite the scale reduction. For example, a region containing numerous small lakes-each too small to be depicted separately-could with a judicious combination of the areas retain, very closely, the original chart characteristic. One of the limiting factors of this process is that there is no fixed rule for the degree of detail to be shown at various scales; the end-user must dictate what is of most value.

Line Feature Combination. If the scale change is substantial, it may be impossible to preserve the character of individual liner features. As such, these linear features must be combined. As an example, both divided highways and railroad yards are normally represented as two adjacent lines, with a separating distance between them. Upon scale reduction, these two lines require that they be combined into one posicioned approximately halfway between the original two.

Area and Line Feature Collapse. As scale is reduced, many features shown as areas must eventually be symbolized as points or lines. The decomposition of line and area features to point features, or area features to line feature, can also be thought of as a generalization process. Setuements, aimpors, rivers, lakes, islands, and buildings, often portrayed as area features on large scale charts, can become point or line features at smaller scales. Areal tolerances guide this transformation.

Point Distribution Refinement. In many cases, areas that are encountered containing similar point features that are either too numerous or too small to show to scale, no attempt should be made to show all the points. Instead, a representative pattern of the symbols should be added to cover the area, augmented by an appropriate explanatory note. Here, the point features should be thinned out; however, the general pattern of the features must be maintained with the features shown in their correct locations. This typification process retains the general characteristics of the points al a reduced complexity.

Line Network Refinement. In many cases, areas that are encountered containing similar line features that are either too numerous, too small, or too close together to show to scale, no attempt should be made to show all the lines. Instead, a representative pattern of the symbols should be added to cover the area, augmented by an appropriate explanatory note. Here, the line features should be thinned out; however, the general pattern of the fearures must be maintained with the features shown in their correct locations. This typification process retains the general characteristics of the lines at a reduced complexity.

Abstract

Area Polygon Refinement. In many cases, areas that are encountered containing similar area features that are either too numerous, 100 small, or too close together to show to scale, no attempt should be made to show all the areas. Instead, a representative pattern of the symbols should be added to cover the area, augmented by an appropriate explanatory note. Here, the area features should be thinned out; however, the general pattern of the features must be maintained with the fearures shown in their correct locations. This typification process retains the general characteristics of the areas at a reduced complexiry.

2.2.3.2.1 Algorithms for Conversion/Refinement

On the following pages, a sample of the types of algorithms that could be used for various aspects of the feature type conversion/refinement procedures are discussed. This section does not provide designs for new algorithrns; instead, it merely reports on existing algorithms within the canographic literature. It will be immediately obvious that existing research in these areas of generalization lag far behind that of line simplification discussed previously. It should be noted that the follwoing algorithms can be applied to different features than they were originally intended for. For instance, a derivative of the Drainage Network Refinement procedure could be used to support a typification process to select a representative patrem of piers, piers in ruins, or some other disjoint network feature.

CARTOGIN Program	Cartographic Generafieation Report
Prepared by PAR Government System Corporation	Page 49

Building Combination REFERENCE:

Lichtner, W. (1978).
ALGORITHM DESCRIPTION:
The generalization of buildings can be seen to operate in stages: (1) selecting and emphasizing the small buildings; (2) simplifying the building outlines; and (3) combining the buildings. Lichener suggests that buildings be combined by ascertaining if the distance between the buildings falls below a minimum distance and, if so, then atraching the smaller building to the larger and combining the individual outlines to create a new larger building symbol. The basic principle in the combination of buildings is to move the smaller to the larger buildings. To achieve this goal, all buildings within some "generalization area" are sorted according to increasing size. Beginning with the smallest building, the immediately adjacent buildings are found, and the smallest gap to an adjacent building is found and compared to the gap limit imposed by the algorithm. If it falls within that limit, the smaller building is moved to the larger one. If several buildings are situated too close to the original one, they are moved against the adjacent building with the smallest gap distance.

Settlement Selection by Population/Location

 REFERENCE:Peucker, T. (1973).
ALGORTHM DESCRIPTION:
Many algorithms exist to automatically select settlements from a data base to be shown on charts. Poiker's (then Peucker) algorithms operates by first drawing an imaginary circle around each town whose radius is inversely proportional to the population of that town. Thus, a small town has a large radius and a large town has a small radius. No other town may intrude into the area of this circle. Settlement density is controlled by an exponent a. The selection process begins with the largest setrement, adding to it the other settements one by one, largest to smallest, which do not fall within the radii of any of the previously selected setrlements. The formula used to compute the radii is:

$$
\text { radius }(\mathrm{I})=\left(\frac{\text { reference city population }}{\text { population }(\mathrm{I})}\right)^{\mathrm{n}} \cdot \text { reference radius. }
$$

Settlement Selection by Nearest Neighbor
 REFERENCE:

Peucker, T. (1973).
ALGORITHM DESCRIPTION:
The Nearest Neighbor Index (R) is normally used to estimate clustering or dispersion processes in a distribution to select an appropriate areal distribution of settlements. \mathbf{R} is computed for the five largest settlements, and recomputed as settlements are added to the distribution in order of decreasing size. A decrease in \mathbf{R} denotes increased cluttering, hence, a settlement is selected only if its introduction to the distribution increases or causes no change to \mathbf{R}.

Uniform Density Law

REFERENCE:
Töpfer, F. and W. Pillewizer (1966).
ALGORITHM DESCRIPTION:
The extent to which details can be retained might be specified with formulas similar to the uniform density law derived from Töpfer and Pillewizer to relate the number of features n_{f} on a map at scale M_{f}. to be retained from a source map at scale M_{a} having n_{a} features. Yet their formula $n_{f}=n_{a} \sqrt{M_{a}} M_{f}$ does not directly address local feature density, which relates more directly to map clutter than does the aggregate number of features.

Drainage Network Refinement
 REFERENCE:

Catlow, D.R. and D. Du (1984).
ALGORTTHM DESCRIPTION:
Drainage networks, because of their interaction with many of the other geomorphological characteristics of the region being mapped, must retain their basic geographic characteristics at the reduced scale. Catlow and Du introduced a Data Rationalisation, Stream Ordering, and River Generalization to refine drainage networks. First, each river segment is joined into a topological data set to ensure continuity of the linework. Next, each river segment is divided at a point where neighboring items overlay or touch it. This now sets up the drainage network such that the number of river data items corresponds to the number of river segments, and each river confluence is defined by a data node. A stream ordering method-such as that proposed by Strahler (1952)-is then used to place a stream order code and a catchment area code on each data item. A data point is then inserted at the mouth of each drainage network, and the connecting river segments to these seed points are then idenified. Stream orders are now calculated based upon the number of linking items.

Although selecting all stream order 1 streams is a simple method of distribution refinement, it does not produce an acceptable product because drainage networks are considerably reduced in lenge, while single river systems without headstream tributaries are automatically omitted. Thus, it is necessary to consider the more important of the stream order 1 rivers, whether they form simply a single-river system, or whether they area part of a larger drainage network. The generalization process is, then, best performed by selecting not only on the basis of stream order, but also on length of order 1 segments, islands on the basis of area; and lakes on a combination of area and their relation to rivers in the drainage network

Polygon Refinement through Epsilon Filtering
 REFERENCE:

Chrisman, Nicholas R. (1983).
ALGORITHM DESCRIPTION:
This algorithm, developed as part of the ODYSSEY system for geographic information processing at the Laboratory for Computer Graphics (Cambridge, MA), is similar to the work of Julian Perkal (1965). The program starts with a topologically structured file of polygonal boundary lines and uses a geomerric
search strategy of divide-and-conquer to limit search requirements. Clusters form while examining line intersections in which a cluster groups all points that can be linked together by a chain of epsilon tolerances. Point selection to depict the area boundary is accomplished by selecting the point within epsilon of most other points. Once the points are selected, some lines are moved to become congruent. This allows double-line feature (rivers, inlets) to be converted to single-line features, and also supports the attachment of small islands near shores to become part of the mainland.

2.2.3.3 Eeature Displacement

Feature displacement, or conflict resolution, techniques are used to counteract the problems that arise in feature conflict detection. The interest here lies in the ability 10 offset feature locations to allow for the application of symbology. The graphic limits of a char make it necessary to move features from what would otherwise be their true locations. If every feature could realistically be represented at its true scale and location, this displacement would not be necessary. Unfortunately, however, feature boundaries are often an infinitesimal width; when that boundary is represented as a cartographic line, it has a finite width and thereby occupies a finite area on the chart surface. These conflicts need to be compensated for by shifting the features from their true locations, modifyng the features, or deleting them entirely from the graphic.

In the following discussion, conflict detection and cartographic cost resolution are the processes required to automatically detect and resolve conflicts between symbolized topological entities in graphic products. Product specific rules, standard rales, special feature-fo-feature rules, and general cartographic rules are utilized to define and determine what constitutes a conflict, as well as how to resolve a conflict. Conflict detection and resolution rules are used to: (1) determine the candidate conflicting feature types; (2) define the pairwise conflicts between features based on coincidence, overlap of symbols, or proximity of symbols; (3) provide further definition of complex conflicts involving structural relationships between objects in pairwise conflicts; and (4) for each conflict defined, provide the resolution strategies possible, and the cost of each resolution strategy. The cartographic cost of a resolution strategy is defined here as the degree of reduction in char accuracy, information content, and quality as a result of affecting a specific resolution strategy.

2.2.3.3.1 Conflict Detection

Conflict conditions requiring detection and resolution include cases of: (1) Proximity; (2) Overlap; (3) Special Cases; (4) Coincidence; and (5) Exceprions.

Proximity. Two topological encities are proximatrial if their separation at any point is $<x \mathrm{~mm}$, where x is product specific and variable with scale. Entities can be described as coalescing, too close to plot, etc.

Overlap. Two topological entities overlap if their associated symbols intersect and their centerlines do not. This case is also referred to as an overprint. Overlap cases may be acceptable in specific examples or unacceptable and requiring cartographic cost resolution.

Special. Includes special conflict conditions or geometric patems such as parallel lines and sandwich effects.

Coincident. Two topological entities coincide if they share the same topology.
Exception. Under cerrain circumstances the listed conflict rule does not apply and the exception is invoked.

2.2.3.3.2 Conflict Resolution

The baseline for resolution of cartographic conflicts between symbolized topological entities can be comprised of a rule set and a hierarchical listing of symbolized features according to their value to the product and the end user. The rule set is defined as:

General Rules. These sules provide general guidance in the formulation of the chart product.

Product Specific Rules. Product specific rules are tailored for a particular product(s). Items of interest for the chart producer are offered here detailing any special treatment requirements for symbology, exceptions to standard rules, and the identification and guidance for treatment of required or critical information and features.

Standard Rules. Standard rules are those rules generated when no specific product oriented rules are availabie to resolve a conflict.

Special Feature-to-Feature Rules. These rules are invoked to determine if a conflict exists for a pair of features when no specific rule addressing the two feaures is available.

In order to select the best resolution strategy for implementing a rule a means is needed to assign a relative cost to a particular binary conflict resolution action. Candidate resolution strategies include displacement, deletion, symbol alteration, interruption, replacement or special symbolization. Each method of resolution can be associated with a set of cartographic costs for the features involved. In delecion, a feature symbol that would have appeared on the chart in the absence of a conflict is removed. This creates a reduction in the char's information content. The degree of information content reduction is related to the delered feature's importance. A feature displacement hierarchy which represents a view of features' relative importance may serve as an initial ranking. In feanure delecion, cerrain
features, such as key landmarks, may never be deleted. For these features a deletion cost that is prohibitively high would be assigned. Conversely, certain feature's inclusion in the chart may be optional (that is, they may be removed if they are located in a congested area). These features could receive a deletion cost of zero to indicate no cost associated with deleting such a fearure.

When the centerline of a feature (and therefore its symbology) is moved or displaced from ground truth, the accuracy of the char is reduced. The degree of reduction in accuracy is a function of the overall amount of movement as well as the specific feature involved. Cerain features, such as spot elevations, may never be moved. These features would therefore be assigned a very high cost of movement. Less important features when moved may have a lesser impact on the quality of the chart and would therefore be assigned a lower cost of movement. Cost of movement would consist of the weight of a features imporance multiplied by the overall distance of displacement. For line features, the displacement distance would be the summation of the individual movement distances for each node.

The other resolution methods, including symbol change or alteration, interruption, and scaling have a less well defined impact on the quality of a chart. Used properly, these methods, since they retain the feature symbol in its proper location, may not have any negative impact and may be assigned a zero cost of resolution.

For each of the resolution strategies that affect cost a quantitative weight is generated to be applied to each feature included in the product. This weight, based on the feature hierarchy, the rules, and other information, will be a measure of a specified feature's relative impact on chart accuracy and quality when subjected to displacement, deletion, symbol change, etc. The following illustration contains three categories of factors related to the char product, which individually could have a weight assigned to assist in determining the impact of the cost of conflict and its resolution to the overall accuracy of the product.

Cost of Resolution Strategy	Cost of Resolution Factors	Conflict Cost Reguirements
Cost for Aleration	Feature Type	Horizontal Accuracy
Cost for Deletion	Disance	Verical Accuracy
Cost for Internuption	Total Number of Displacements	
Cost for Movement	Method of Resolution	
Cost for Scaling	Total Product Features	
Cost for Rotation	Type Conflict	
Cost for Displacement	Condition of Conflict	
Cost for Replacement	Known Factors	
Cost for Exceptions	Unknown Factors	
Cosi for No Action Taken		
Cost for Change		

With the weighting of the factors presented above, the cost of resolution of a conflict can be mathematically determined. The conflict cost requirements (product accuracy requirements), will set the ultimate goal of acceptance of the product. Analysis of known factors as well as unknown factors will be the next step in the process of determining the exact method which can be used for determining cost.

A determination of acceptability accuracy tolerances for the char product entering the Conflict Detection/Resolution phase of finalization must be determined. This determination must reconcile the goal state of generating a product with a 100% accuracy rating, with the reality that the other phases in the cycle of product generation take away from the ideal situation of 100% accuracy and require conflict resolution to bring the product up to acceptable accuracy tolerances?

The detection and resolution of cartographic conflicts arising from the need to portray real-world features at a greatly reduced scale while maintaining chart readability is a task traditionally dependent on carographers' skill and judgement. In this analysis it is demonstrated that it is feasible, for a specific chart product, to define a comprehensive set of requirements for conflict detection and resolution. These requirements, organized in matrix form, can be used to quickly determine if two char features can create a conflict due to the overlap, proximity or coincidence of their symbology. Given that a conflict does exist, the concept of carographic cost represents a means to select the best (least costly) conflict resolution strategy. Although more work is needed to complete the requirements for all problems these results demonstrate that this approach is a practical one.

2.2.3.4 Eeature Smoothing

Once a set of cartographic features have had the shape-, or boundary-describing points reduced to a minimum, the lines can be adjusted to produce more natural-looking, smoother lines. Smoothing Algorithms are a major category of algorithms which operate on a line by physically moving point coordinate locations. Essentially, these algorithms produce a derived data set, which has had a cosmetic effect applied to it. Here, coordinates are shifted from their digitized locations. This is accomplished by diminishing variations in direction and reducing angles. In general, smoothing operators do not remove coordinates from the data file, they merely readjust their locations. The context of this section will be to view how smoothing algorithms can be applied to MC\&G data once all the required features for a given product have been selected and simplified. Four major types of linear smoothing algorithms can be found in the literature. They are: (1) Averaging; (2) Epsilon Filtering; (3) Arc Substitution; and (4) Waveform Processing. Examples of each are presented on the following pages.

2.2.3.4.1 Averaging

Averaging Routines are those in which a local number of coordinate locations are summed and averaged to provide a new location for some $n^{\text {h }}$ coordinate in the set.

Simple Averaging
 REFERENCE:

Koeman, C. and F.L.T. Van der Weiden (1970). 36
ALGORITHM DESCRIPTION:
Averaging is a means of smoothing sequential x, y coordinate data by taking an average value for a set of recurring values along a line. These are generally referred to as moving averages, as the average is computed while processing along a string of x, y coordinates. A simple moving average will derive points for ploting by taking an unweighted mean of the positions of every N stored points, where N is an integer specified by a cartographer.
GRAPHIC EXAMPLE:

In the figure above, a sample line contains 5 coordinate positions. Point P2 is replaced by the average position of the triad of points P1, P2, and P3. A new triad of points is examined, and P3 is now replaced with the average position of points P2', P3, and P4. The process continues until the smoothed line contains five modified coordinate positions (points P1, P2', P3', P4', and P5).
ADVANTAGE:
Straightorward programming. Algorithm can be modified to retain the starting and ending points of a line.
DISADVANTAGE:
Algorithm is influenced by starting point. Tends to distort peaks and troughs.

Averaging (continued)

Weighted Moving Averaging
 REFERENCE:

Tobler, Waldo R. (1966). ${ }^{37}$
ALGORITHM DESCRIPTION:
The moving average is augmented by weighting. The method assigns weighting values to each point in the calculation in order to increase or decrease its influence on the final point position. Generally, the central point in the set is weighted most heavily since it is the point being moved and moving it too far could seriously affect the character of the line. The weighting factor and the degree of smoothing bear an inverse relationship, with higher weighting factors resulting in lower smoothings. The weighted average coordinate positions (using a weighting factor W) are computed as follows:

$$
X=\frac{X_{1}+W X_{2}+X_{3}}{W+2} \text { and } P=\frac{Y_{1}+W Y_{2}+Y_{3}}{W+2}
$$

GRAPHIC EXAMPLE:

In the figure above, an original line has been shown as a solid line connecting 5 coordinate pairs. In addition, two smoothed lines are represented. The combination dashed/doted line represents a minor or moderate smoothing of the original line, based upon a weighting factor of 5 . The dashed line has had a weighting factor of 2 applied to it and, therefore, results in a more severe smoothing.
ADVANTAGE:
Data can be repeatedly smoothed by subsequent applications of this algorithm.
DISADVANTAGE:
Influenced by its starting point. Distort peaks and troughs, but less than simple averaging. Places more emphasis on the middle points being averaged. Smoothing level is dependent on weighing factor.

Averaging (continued)

Forward-Look Interpolation

REFERENCE:
Boyle, A.R. (1970).
ALGORITHM DESCRIPIION:
Algorithm was designed to be applied to the data at the plotting stage. Plotting begins from the first point in a line segment (star point), with the ploter being driven towards the $\mathbf{N}^{\text {th }}$ point along the line (end point), where \mathbf{N} is an integer specified by the cartographer. Plotting is halted when $1 / \mathrm{N}$ distance is reached along this line. The direction is recomputed to the next end point and plotting continues. As a result, a series of small vectors are created which vary from one another by only a small angle.

GRAPHIC EXAMPLE:

In the figure above, a sample line contains 7 coordinates. Assuming that we are employing a four-point forward look interpolation, ploting will commence, aimed four points down the line, and continue until it reaches $1 / 4^{\text {th }}$ the distance. At this point a coordinate position is accepted and ploting is redirected towards the next point down the line. Note how the simplified line is displaced substantially from the original line.
ADVANTAGE: None.
DISADVANTAGE:
The computer is required to compute the distance from the start point to the end point every time the procedure is repeated-its application at the plotting stage will slow down ploting time considerably. In addition, the resultant line will be displaced somewhat from the original line. The caricature of the simplified line is highly dependent on the amount of forward look (such as 4 point versus 10 point).

2.2.3.4.2 Epsilon Filtering

Epsilon Filtering Routines are those in which an E -generalized zone is created around a linear feature by rolling a ball along the linear edge to eliminate regions of divergence.

Epsilon Generalization (Perkal's Rolling Ball)

REFERENCE:

Perkal, J. (1965b).
ALGORITHM DESCRIPTION:
Perkal examined difficulties of length measurement and proposed a simple concept for linear generalization with the use of a circle of diameter epsilon ε. Here, the degree of generalization (smoothing) is defined by a real number ε which represents the length of a line segment. This line segment is considered to be the diameter of a circle rolling along a line. If the line as considered to be a hard surface, and the circle a wheel rolling on that surface, the circle would ride over the narrow ruts in the surface. Those points, or indentation, which are not covered or touched by the edge of the circle are eliminated. Points that are touched by the circle are retained.
GRAPHC EXAMPLE:

In the figure above, note that within a region D, some points P included within the region have the property that there exists a circle of diameter ε which lies entirely within D and which contains the point. There are, however, points Q in D, such that no circle of diameter ε can contain the point. The use of a larger ball (that is, a larger ε) would result in greater divergence and thus greater generalization.
ADVANTAGE:
Reasonable approach for line smoothing necessitated by scale reduction.
DISADVANTAGE:
Can be applied to both sides of a line and to produce two lines known as the E -generalized-boundary. The area between these two lines can be represented by a "heavy line," which would be aesthetically displeasing. Secondly, some features would be more simplified than others, and no provision is made for the graphic exaggeration of important features.

Epsilon Filtering (continued)

Epsilon Generalization (Brophy's Rolling Ball)
 REFERENCE:
 Brophy, David M. (1973).
 ALGORTTHM DESCRIPIION:

Formulated after Perkal, is a complicated, interactive algorithm designed to affect scale, line width, generalization levels, and exaggeration or elimination of features. Line smoothing algorithm is based on systematically moving each point toward the center of curvature along the radius of curvature. This is guided by the curve being represented by approximating polygon of known vertices location. The program consists of operator-controlled components:

1. Determination of a subset of equally speced points along the line on the basis of scale reduction.
2. Re-definition of the curve by connecting the coordinate pairs as a series of tungent points of finite width and equal to the line weight of the simplified line.
3. Selection of optional control points to retain critical points.
4. Elimination of unwanted features.
5. Systematic smoothing or exaggeration of non-straight sections of line.
6. Generation of ploting commends.

The smoothing operator (5), is affected by curvature. Each individual point is processed sequentially. Every $\mathrm{N}^{\text {th }}$ data point from the point under consideration defines a polygonal curve which approximates the actual curve. Around the point under consideration, A, a triangle is formed and an inscribing circle is placed within it. Simplification is achieved by moving the point toward the center of the intangent circle of the triangle. This amount of movement is proportional to N , and specified by the operator as the level of generalization.

GRAPHIC EXAMPLE:

In the figure above, an example of Brophy's smoothing algorithm shows point A being moved towards the center \mathbf{C} of the intangent circle.
ADVANTAGE:
Theory is based on sound mathematical and geographical reasoning. The interactive mode of operation is highly desirable.
DISADVANTAGE:
Very complex and high computation time.

2.2.3.4.3 Arc Substitution

Arc Substitution Routines are those in which a mathematical representation of the original line replaces the original line.

Pseudo-Hyperbola

REFERENCE:
Vanicek P. and D.F. Woolnough (1975).
ALGORITHM DESCRIPTION:
The algorithm works on the principle of expressing generalization by a theorem applicable to any arc. Essentially, the digitized line is replaced by a series of segments or ares of known radius. More specifically, the parameters of the curve are transformed into a set of pseudo-hyperbolae. Originally developed as a mathematical packing method, each digitized line is transformed into linear segments, such that no point lies outside of a given tube of tolerance epsilon (ε), surrounding the original curve. The coefficients of the pseudo-hyperbolae are determined using a set of x and y coordinates of line data, input and output scales, digitizer increment and the final required ploting accuracy ε. The equation for the coefficients of pseudo-hyperbolae may be expressed as $y=$ $\pm\left(c_{1}+c_{2}\right) /\left(x+c_{3}\right)$. By taking the average direction of the first three points in a stream of coordinates, successive points are selected undil they fail to lie within a tolerance of width $\pm 8 \varepsilon$. Using the beginning and ending points of this segment for proper direction, a check is made to determine if the intemal points lie within a $\pm 1 \varepsilon$ corridor. A new pseudo-hyperbola from this last point is defined in the direction of the previous segment, and sampling for the next segment proceeds.
GRAPHC EXAMPLE:
None provided.
ADVANTAGE:
Will pack coordinates to a minimum number required for a given resolution.
DISADVANTAGE:
The longer the segment lengths, the fewer the segments, and consequently the greater the reduction in the amount of data stored. Thus, the packing procedure produces two coordinate points and an interlying segment for storage. It will pack coordinates for curves which are to be reproduced at the same scale too. There may be more than enough points on the curve to reproduce it with a given resolution and, if so, this program will reduce the number of points to the minimum required for any given resolution. Will not work for closed loops.

Arc Substitution (continued)

Polynomial Curves

REFERENCE:
Breward, R.W. (1972).
ALGORITHM DESCRIPIION:
A polynomial is an algebraic expression having more than one term that has received a lot of attention in shape description. Shapes generally cannot be equated with single value functions, and are commonly represented in parametric form; this is where a two-dimensional shape is represented by a set of parameters t for each coordinate of a point location (x, y). Each coordinate of a point is represented by a function of one or more parameters. The line is represented by a series of polynomial equations, where the coefficients of the fited polynomial and end coordinates of the contour section are stored.
GRAPHIC EXAMPLE:

In the figure above, an example of a parametric polynomial curve is shown. Here, each point on the original line is represented by the coefficients of a polynomial. In this case, the curve shown can be represented by a polynomial equation defined by:

$$
X=\frac{1-t^{2}}{1+t^{2}} \text { and } \nabla=\frac{2 t}{1+t^{2}}
$$

ADVANTAGE:

Can save 85% in storage. To obtain the original coordinates, the polynomials are simply evaluated at successive positions along the line.
DISADVANTAGE:
Computation time is significant. Furthermore, the choice of criteria for terminating the process and the means of spliting the contour into sections is a problem. To terminate, Breward suggested that the procedure be stopped when the $\mathbf{k}^{\text {th }}$ order polynomial provides a worse fit than the \mathbf{k}-1 order equation. Spliting the contour is done by a segmentation which has optimized the savings in storage versus the possible loss of accuracy.

Arc Substitution (continued)

Bezier Curve

REFERENCE:

Bezier, P. (1971) in Clark, J.H. (1974). 38
ALGORTTHM DESCRIPTION:
A Bezier Curve is a method of curve description that is associated with the vertices of a polygon defining the curve shape. The curve can be defined by an open polygon, only the first and last vertices of which actually lie on the curve, other verices describe the order and shape of the curve. Changing the verices of this polygon will alter the curve shape in that area of the curve. Thus, the user can vary the curve shape and order by controlling the input parameets uncil the desired shape is reached. The mathematical basis of the Bezier Curve is a polynomial blending function which interpolates between the firs? and last verices, and operates globally on a curve.
GRAPHIC EXAMPLE:

In the figure above, a Bezier Curve has been generated for the 10 coordinate points on the line.
ADVANTAGE:
None.
DISADVANTAGE:
Two characteristics of Bezier Curves limit their flexibility. First, there is no local control of the curve; if one point (polygon vertex) is altered, the curve changes shape throughout its length. Second, the number of polygon verices specified fixes the order of the resulting polynomial which describes the curve. So, the only way to reduce the order of the curve is to reduce the number of vertices and, obviously, the only way to increase the order of the curve is to increase the number of verices.

Arc Substitution (continued)

B-Spline

REFERENCE:
Riesenfeld, R.F. (1972) in Clark, J.H. (1974). ${ }^{39}$
ALGORITHM DESCRIPTION:
B-Spline theory is a spline function associated with the vertices of a polygon defining the curve shape. The curve can be defined by an open polygon, only the first and last vertices of which actually lie on the curve. This theory operates in a non-global, or local, realm. Each vertex of the polygon defining the curve affects the shape of the curve only over a range or parameters surrounding it. The B-Spline also allows the order of the resulting curve to be changed without changing the number of defining polygon vertices. Similar in theory to the Bezier Curves, B-Splines are mathematically based on a polynomial blending function which interpolates between the vertices of the defining polygon. However, here the blending function is formulated differently. A B-Spline curve is a weighted average of the vertex coordinates with the basis functions as weights (each vertex is associated with a unique basis function).
GRAPHIC EXAMPLE:

In the figure above, a B-Spline Curve has been generated for the 9 coordinates.

ADVANTAGE:

B-Spline curves are more desirable for geographic data than Bezier Curves because they operate locally and will smooth a line more genly.
DISADVANTAGE:
No cartographic basis. There is little local control of the curve; if one point (polygon venex) is altered, the curve changes shape throughout its length.

2.2.3.4.4 Waveform Processing

Waveform Processing Routines are those in which the line is reated as a repetitive waveform that can be decomposed into a series of harmonic constituents with known amplitude and frequency; smoothing operates on these constituents.

Fourier Analysis

REFERENCE:
Anstey, N.A. (1965).
ALGORITHM DESCRIPTION:
The basic concept is to fiting sine waves to a curve. The principle behind Fourier analysis is that a line can be decomposed into its hamonic constituents. Thus, any repetitive waveform can be viewed as the addition of sine or cosine waves whose frequencies are integral multiples of that basic repetition. The basic repetition is called the fundamental, and the frequencies which are "x" times the fundamental, are called the harmonics. The algorithm, then, can analyze a line and break it down into a series of waves of known amplitude and frequency. For smoothing, once the harmonic constituents are calculated, the smallest can be eliminated and the others recombined to create a new line; the smallest being considered as insignificant, or noise, in the data ses.
GRAPHIC EXAMPLE:

minimn
In the figure above, an example of Fourier Analysis is shown. Here, the original line (curve) has been decomposed into 3 sine waves. The smallest frequency sine wave, C , has been omitred as noise. Sine waves A and B are recombined to produce a smoothed version of the original curve.
ADVANTAGE: None.
DISADVANTAGE:
Operates globally on the whole line at a time and therefore takes much time (and also more money) for computation. The major problem with the procedure is that it cannot cope with a line that doubles back on itself. It can only process sine waves, where for every location on the x-axis there is only one y-value. Removal of noise may, in fact, be destroying the characteristic, or shapedescribing, inflections in the line.

Waveform Processing (continued)

Hysteresis Smoothing

REFERENCE:
Ehrich, R.W. (1978).
ALGORJTHM DESCRIPTION:
Algorithm operates by passing a hysteresis cursor, or tolerance band, of known width along a line to decrease the amplitude of the peaks and troughs in the wave. The tolerance band should have a width at least equal to the longest peak or valley to be removed. As the cursor is moved along the line the cursor looksahead, and peaks and valleys whose amplitudes are smaller than the cursor size are eliminated.
GRAPHIC EXAMPLE:

In the figure above, an example of Hysteresis Smoothing is shown. As the Hysteresis cursor, or tolerance band, is moved along the line, peaks and valleys whose amplitudes are smaller than the cursor size are eliminated.

ADVANTAGE:

Simple and relatively fast method of removing minor fluctuations or noise from a random line. Has an advantage over linear or global filtering in that it can remove small waveform fluctuations without reducing resolution.
DISADVANTAGE:
Can not function on lines which double back or on lines that are extremely sinuous, thus its utility for most cartographic lines is limited.

2.2.3.5 Data Compaction

Once all the cartographic features have been smoothed to produce more aesthetically-pleasing representations, the digital data is now ready for its final stage of reduction. Compaction algorithms operate on the storage structure of the information and address the physical data formats of the logical data. Issues at this level include the degree to which logical structures are computed or encoded.

In general, compaction operations do not remove coordinates from, or adjust coordinates within, the data file. The context of this section will be to view hou compaction algorithms can be applied to MC\&G data once all the required features for a given product have been selected, simplified, and smoothed.

Vector digitization results in the collection of large volumes of data. The development of coding schemes for vector data has hinged primarily on the need for data compression, with specific concern to the type of data captured and stored, as well as the rechniques utilized wo process and manipulate the data. The most common data structure for carrographic applications is the linear list. ${ }^{40}$ The most prevalent linear-list substructure in carographic use today is chain coding. The chain code is a slope-inorinsic representation of a shape that has been used extensively for representing curves or sequences of points. Although many other types of compaction algorithms can be found in the literature, only the Chain Coding type is discussed because of is prevalence. Chain coding can have many variations, and examples of each are presented on the following pages.

2.2.3.5.1 Chain Coding

Chain Coding algorithms produce a compressed data set, which has had a compaction applied to it to reduce the amount of storage required wo represent the feature.

Basic and Differential Chain Coding

REFERENCE:
Freeman, Herben (1961). ${ }^{41}$
ALGORITHM DESCRIPTION:
The simplest way to describe a curve is to record x, y coordinate pairs for each point on the curve. This method of storage is inefficient, however, and can be improved by recognizing that any single point in a rectilinear array has only 8 possible nearest neighbors.

The chain coding scheme records x, y coordinates relative to a previous location in terms of direction. An entire curve can be described by an initial x, y position followed by a sequence of directions to adjacent points. If the $n^{\text {th }}$ point of the curve is at position (i, j), then the chain element corresponding to the change in position from $n^{\text {th }}$ point to the $(n+1)^{\text {si }}$
 point is shown in the figure to the right.

Several variations of the basic chain code have been offered to improve efficiency. One of these is a differential chain code where points are represented by a difference between two successive absolute points. The number of directions is the same as the basic chain code but are given the values; $0, \pm 1$, $\pm 2, \pm 3, \pm 4$. For smooth curves, the values $0, \pm 1$ occur more frequently. This makes it possible to utilize a variable-length encoding scheme with the differential chain code. Pavlidis has found that such an encoding usually requires no more than two bits per point on the average.
GRAPHIC EXAMPLE:
None provided.
ADVANTAGE:
Simple and relatively fast method of compacting data
DISADVANTAGE:
Ploting times are increased since data requires decompaction.

Octant and Quadrant Chain Coding REFERENCE:

Baudelair, P. and M. Stone (1980).
ALGORITHM DESCRIPTION:
Two additional variations on the differential chain code have been deseribed. The first one is based on the concept of quadrants and uses two bits $t 0$ represent the differential increment. This scheme divides the eight possible curve directions into four quadrants represented by $0,1,2$, or 3 . Within each quadrant there are three possible directions or increments which are assigned the values 1 to 3 . The encoding of a curve would start with the quadrant number (0 to 3) followed by the increment codes (1 to 3) and terminated by a 0 . The second scheme divides the set of eight possible directions into eight quadrants. Within each quadrant there are only two possible directions which can be represented by one bit. Two bit streams are used: one indicates the octant followed by the number of one-bit increments; the second holds the actual onebit increments. ${ }^{42}$
GRAPHC EXAMPLE:

In the figure above, an example of Basic Chain Coding is shown. In normal cartesian coordinates, this linear feature of 8 points would be represented as $(2,3),(3,4),(3,5),(4,5),(4,4),(3,4),(5,2),(6,2)$. In basic chain coding, the same line would be $(2,3) 1206670$. Using the variable-length differential chain code, the same line would be represented as $+1,+2,0,-2,-2,-1,0$ (which would be encoded as 010111001111011110110).

ADVANTAGE:

This basic chain code scheme only requires 3 bits to store the direction, thus providing substantial savings in storage and is computationally efficient. The octal method offers the advantage of understanding the behavior of a curve by examining the octant codes alone. The higher order chain codes appear to provide potential advantages to cartographic data because of improved efficiency in storage, smoothness, and reduced processing times.
DISADVANTAGE:
Since the chain code is a slope intrinsic representation, it is not rotation invarient. In fact, rotating a curve can even change the length of the chain code. Higher-order chain codes are more complex to encode.

2.3 Endnotes

IWhite, Ellen R. (1983).
${ }^{2}$ Robinson, Arthur H., et al. (1978).
$3_{i b i d}$ (1978), p. 150.
${ }^{4}$ McMaster, Robert B. (1983a).
${ }^{5}$ Morrison, Joel L. (1978).

${ }^{6}$ The selection process discussed previously will only be reviewed as it applies to the selection of features required for the presentation of a paricular chart product or group of products.
${ }^{7}$ The discussions on Line Simplification, Smoothing, and Compaction routines are more robust than the other areas of generalization for a number of reasons: (1) these areas have received greater attention in the literature; and (2) the algorithms and procedures are much more well defined-this report demonstrates our knowledge of the requisite subject materials, literature, and algorithms that are imporant to the development of the ANCS II.
${ }^{8}$ This form of linear point simplification is commonly referred to as line generalization. This includes all aspects of line manipulation such as simplification, smoothing, and feature displacement.
9 In computer-assisted cartography, two basic forms of computer-readable storage currently dominate: (1) data stored as strings of coordinates (as a result of lineal digiization or the conversion of raster data to vector form); and (2) data stored as picture elements (remotely sensed or scanned). While the process of generalization can operate on both types of stored data, their implementation is quite different. Cartographic feature data contained in the ANCS II MC\&G data base, however, is envisioned to be in the form of coordinate data representing vector strings; as a result, our discussion of carographic generalization algorithms in this report will focus there. Image coding techniques for pixel-based information are outside the scope of this effort.
${ }^{10}$ McMaster, Rober B. (1983a).
${ }^{11}$ McMaster, Robert B. and K. Stuart Shea (no date) are discussing these concepts in a forthcoming publication.
12F. Töpfer and W. Pillewizer (1966).
${ }^{13}$ It should be stressed to the reader that the generalization process is more complex than merely simplifying lines as is often thought to be the full extent of map generalization. ${ }^{14}$ Shea, K. Stuart (1987a).
${ }^{15}$ McMaster, Robert B. and K. Stuart Shea (no date) are discussing these concepis in a forthcoming publication.
16Monmonier, Mark Stephen (1983).
${ }^{17}$ Shea, K. Stuar (1987b) discusses these concepts in a forthcoming arricle.
${ }^{18}$ McMaster, Rober B. (1987, in press) discusses these concepts in a forthcoming article.
${ }^{19}$ McMaster, Robert B. and K. Stuart Shea (no date) are discussing these concepts in a forhcoming article.
${ }^{20}$ For the time being, then, we are limiting the analysis of the map to geomerric evaluations. Other problems-such as whether a Stranded Wreck and a Sunken Wreck is more complex than two (2) Sunken Wrecks-is beyond the scope of this analysis. These product-specific conditions must be addressed separately.
${ }^{21}$ How these measures are combined is beyond the scope of this report.
${ }^{\mathbf{2 2}}$ Here, point buffer delineates the region around a point that accounts for the symbology. The same holds true for line and area features.
${ }^{23}$ Wertheimer, M. (1958).
24As part of this effort, PGSC developed a testbed environment for the analysis of linear simplification and smoothing algorithms. A review of this software is provided in Appendix B of this report.
25Jenks, George F. (1981).
${ }^{26 J}$ Jenks, George F. (1979).
${ }^{27}$ Jenks has suggested that simplification routines may, in fact, reduce a data set by as much as 70% without changing the perceptual characteristics of the line.
${ }^{28}$ McMaster, Robert B. (1987) personal communication.
${ }^{29}$ Although the following discussion will deal primarily with the generalization (that is, simplification) of linear map features, it should be noted that features and not merely lines are generalized. The reader should be cognizant of that concept. However, a solid understanding of simplification algorithms, a main constituent of the generalization process, is mandated.
30 McMaster , Robert B. (1983b).
31McMaster, Robert B. (1983), "A Quantitative Analysis of Mathematical Measures in Linear Simplification," unpublished Ph.D. dissertation, Department of GeographyMeteorology, The University of Kansas.
$32_{\text {see also Lang, T. (1971). }}$
33see also Peucker, Thomas K. (1975), Ramer, Urs (1972), and Reumann, K., and A.P.M. Witkam (1974).
${ }^{34} \mathrm{McMaster}$, Robert B. (1983), "A Quantitative Analysis of Mathematical Measures in Linear Simplification," unpublished Ph.D. dissertation, Department of GeographyMeteorology, The University of Kansas.
35Marino, Jill S. (1978), "Characteristic Points and their Significance in Cartographic Line Generalization, unpublished Masters Thesis, Deparment of Geography-Meteorology, The University of Kansas.
36 see also Gottschalk, Hans-Jorg (1974) and Lichtner, Werner (1978).
37 see also Connelly, Daniel S. (1971).
38 see also Gordon, W.J., and R.F. Riesenfeld (1974).
${ }^{39}$ see also Rogers, D.F. and J.A. Adams (1976). In addition to B-Splines, Cubic Splines, Relaxed Splines, P-Splines, Q-Splines, and E-Splines can also be applied although their applicability to smoothing carographic feature data has not been assessed to date.
40 see also Horowitz, E. and S. Shani (1978).
${ }^{41}$ see also Pavlidis, T. (1977) and Baudelair, P. and M. Stone (1980).
42Freeman has also produced higher-order encoding schemes based upon sixteen, twentyfour, and higher chain codes.

THIS PAGE INTENTIONALLY LEFT BLANK

3.0 NȮS GENERALIZATION REQUIREMENTS

Automating nautical char production raises critical issues related to generalization including scale change, data selection, single versus multiple data bases, accuracy preservation, the role of spatial data structures, and many others. In comparison to typical mapping applications, the nautical charting situation represents a particularly problematic area for automated generalization and related issues. Nautical charts cover a wide range of scales, even over the same area of interest. Paragraph 2.2.1.1 of this repor provides a classic example for a section of Long Island, New York, in which seven (7) differentlyscaled charts ranging from 1:10,000 to 1:1,200,000 include the same geographic coverage. As stated in the Nautical Chart Manual-NOS's documentation governing all future nautical chart production-chart "accuracy of position, legibility, and uniform consistency in selection and placement of chared features, names, notes and other details are the chief requirements in nautical chan compilation."1 Unfortunately, these criteria may be conflicting and necessitate trade-offs between them and other criteria such as production time and cost.

3.1 Accuracy Constraints on Generalization in Nautical Charting

Preserving accuracy is particularly critical for nautical chars because of the need to ensure the safety of navigation by the accurate portrayal of navigationally critical elements such as physical hazards, aids to navigation, and hydrography. The nautical charts produced by the NOS are premier examples of highly accurate and dependable products. NOS's unique approach to cariography, high accuracy standards, and product liability, makes them an anomaly in the mapping community. Since the nautical chart has such a unique requirement for detailed and accurate portrayal of the coasuline and water forms, it must be considered the preeminent argument for accuracy-driven product generation. As such, the generalization process, when applied to nautical charing, obviates a need for increased awareness as to the influence of generalization on accuracy degradation. All forms of generalization, including the most radical form-scale change-must limit their influence on the accurate portrayal of features, both positionally and in atribution.

Limiting generalization's influence on accuracy preservation is not a trivial problem. Charts are reductions of reality; generalization, therefore, is inherently part of the nautical charting process. The manual production of charts present many situations where
generalization occurs. For example, NOS's guidelines require that for line data, the compiled or engraved/scribed line be within $1 / 2$ the symbol lineweight (not to exceed 0.15 mm) of true position of the line. Similar requirements exist for point data and soundings. Digital char production, however, raises the generalization process to a more critical level. The representation of cartographic information as digital entities creates an illusion of independence from scale. Mathematical transformations can create many differently-scaled products from a single digital data base, but these processes are not independent from the influence of generalization. The meaning of chared features, the graphic represenration of features, and the characterization of features is not scale free. The unique accuracy requirements for NOS products constrain the ability to (1) achieve maximum legibility across scales and (2) make use of a single or small number of source digital charting data bases to support the wide range of required scales. In a digital production environment, such as that envisioned in the ANCS II, how then will generalization affect the charting process?

3.2 Proposed ANCS II Generalization Processes

The ANCS II Draft Specification contains a high-level concept of operations for the digital compilation of a chart. Generalization requirements can be extracted from this discussion. For example, a generalized coastine is used as a background display for Source Data Index File retrievals. More directly related to chart production is the process that creates and uses the Char Edit Packet or Work File. For the area of interest identified, the Chart Edit Package contains the data base feature records along with appropriate header information. This data file is then processed to create vector nautical charting symbology. The resuling reformatted Chan Edit Packet is used to generate a Char-Specific Edit Packet for the first char to be produced. Prior to this step, the symbol coordinates are transformed into the x, y-coordinate system of the largest-scale chart within the work area.

For line features and others indicated as being modifiable, a point elimination routine will be applied to delete excessive points contained in the source data base. In addition, features represented as closed polygons that coalesce at the chart scale under consideration will be automatically converted to a suitable point symbol representaion. The Char-Specific Edit Packet for the largest-scale chart may be used as a model from which selection is made for developing Chart-Specific Edit Packets for smaller scale charts. Thus, an iterative procedure is envisioned in which processing is carried out for successively
smaller scale charss based on the results of the previous processing and resulting Edit Packet.

This conceptual processing flow for chart production clearly utilizes generalization and also makes use of some implicit assumptions regarding scale change and generalization. One assumption that may be made is that there exists a single source data base for the features to be porrayed on all charts. This source data base inclades a single, centerline representation of features at the full level of detail, resolution, and accuracy obtained during source data collection. This data is then extracted for a defined coverage area and symbolized in vector format. At this point, no generalization has occurred and the work file is product- or char-independent. (Note: this assumes identical symbclization rules for all charts.)

The conceptual chan production flow then begins to create Chart-Specific Work Files beginning with the largest scale chart(s) to be produced within the coverage area. The use of a hierarchical, incremental generalization procedure has many atrractive aspects and is appealing as a logically simple approach to the problem of producing charts at a variety of scales in the same area of interest However, it also raises some questions. For example:

- For a given coverage area, will the entire area be symbolized/processed at the largest char scale within the area? In other words, if a few isolared pockets of a very large scale coverage area is required, would the entire work file area be processed at that scale? If yes, much extra processing will be required. If no, the conceptually appealing simple iterative processing flow is impossible. That is, at any given step in the process the source work files for a particular chart scale may exist at different scales.
- Is the process of generalization strictly monotonic and incremental? In other words, is it possible that some features may have been correctly eliminated or generalized during processing for a large-scale char and does this create problems during processing for a smaller-scale chart? It may be the case that in converting the work file for a 1:40,000-scale nautical chart to the 1:80,000-scale chart, some features have been eliminated or converted from polygons to point symbols. However, in producing a $1: 100,000$-scale topographic/bathymetric chart of the same area, the eliminated feature is required or the feature converied from area to point needs to be shown as an area. The ANCS I processing flow assumes total scale dependence for all generalization processes; further analysis is needed to determine if this assumption is correct or is a good one. There may be some important product dependencies which are somewhat independent of scale.
- In certain generalization algorithms and applications, it may be beneficial to retain the most detailed version of the feature to create accurate generalized versions of the feature. The incremental approach may make this possible.
- Does this approach to scale change assume incorrectly that the same generalization algorithms/processes that are appropriate in, for example, converting a $1: 10,000$-scale work file to a $1: 20,000$-scale work file, are also the most suitable for converting a 1:675,000-scale work file to a $1: 1,200,000$-scale work file. The optimal techniques to apply at each of the scales may differ.
- Does this approach assume that the source data base, for a specified coverage area, exists at a single level of detail/resolution/scale? If not, different generalization requirements will exist over the coverage area creating a more complex processing situation than that described in the ANCS II Specification.
- Pre-generalization, one-time symbolization. It may not be appropriate for the scale-change/generalization processing to operate directly on symbolized data. Will the original centerline data be available? In many case generalization will lead to changes in symbolizations; why not symbolize following the creation of Chart-Specific Work Files?

3.3 Discussion

As one can surmise from the discussion so far, the NOS is faced with a significant problem in terms of automating this generalization process in the ANCS II. Variations in the precision and detail required to satisfy the needs of different users give rise to a requirement for a variety of chart scales. Nautical charts vary in scale with the importance of the geographic area, the purpose for which the chart is designed, and the necessity for showing clearly all dangers within that area. The NOS has the specific task of publishing and maintaining over 900 nautical charts for the safety of navigation in the coastal waters of the United States and its possessions. The nautical chars produced by the NOS are respected worldwide as an excellent display of accuracy and dependability. Any generalization process must obviously limit the degradation of that accuracy.

3.3.1 Shorelines-A Generalization Example

To limit the discussion of generalization requirements to fit within the scope of this effort, one feature type was selected for examination: Shorelines. Of the many features that appear on NOS products, the shoreline is the most prominent line on the char. This is evident for a number of reasons, not the least of which is that it forms one of the most obvious dangers to waterbome navigation. Safe navigation of our coastal areas and harbors is, in part, based upon the accuracy of shoreline portrayal. The long coastline of the United

States totals over 100,000 miles of tidal shoreline that presents many and varying problems in coastal geography. Add to this a vast array of extensive intracoastal waterways, bays, and harbors, it is obvious that shoreline portrayal represents an important constituent of modern nautical mapping.

By definition, a shoreline is the intersection of the land with the water surface. The shoreline on charts represents the line of contact between the land and a body of water at a selected water elevation. The exact location of the shoreline depicted depends, in part, on the vertical datum upon which the chart is based. This dividing line between land and water is referred to as the "Shoreline Plane of Reference" (SPOR). In areas affected by tidal fluctuations, this line of contact is usually the Mean High Water line. In confined coastal waters, where there is diminished tidal influence, a mean water level line may be used. The shoreline on charts of interior waters (rivers and lakes) is usually based on a specific river or lake datum.

The shoreline's charted position, because of its importance to navigation, must have high positional accuracy. In most cases this is true, but accuracy degradation is allowed in others. For example:
"The accurately determined shoreline reveals the physical geography of the shore. It reflects effects of prevailing currents, wave fronts, and storms. The shoreline delineates the seaward limits of both marsh and swamp areas, for to the mariner this limit appears as the visible shoreline...The seaward extent of marsh is accurately surveyed, but the inshore boundary may be generalized, as the ragged indentations into the fast land are of little importance on the naurical char...The vegetation of swamp land makes it appear as fast land to the mariner, knowledge only of its general location is sufficient for charting."

How then can generalization of the shoreline be controlled?

3.3.2 Suggested Approaches to Shoreline Generalization

Line Simplification routines, such as the Douglas (1973) corridor or the Lang (1969) tolerancing algorithms, are particularly useful for removing unnecessary coordinates from digital files. The resulting simplified representations of the shorelines will have minimal vector and areal displacement from the original lines. These routines require modifications, though, to account for the specific representations of shorelines the NOS employs. For example, shorelines are broken for soundings in narrow rivers and tributaries
where the sounding units would otherwise be obscured by the shoreline. Although this is a manual production step, the ANCS II system may use this type of digital encoding scheme for shoreline representation.

In support of scale reduction for multi-product exploitation from a single MC\&G data base, line simplification routines offer some, but not all, the requisite techniques. For small scale changes, these routines provide an appropriate method for removal of superfluous coordinates to suppor the scale reduction; for larger scale changes, however, little work has been done to determine the effects of scale change on simplification. Other routines, then, such as the epsilon filtering routines discussed by Perkal (1965), Brophy (1972), and Chrisman (1983), show promise for large scale reductions but refinements are needed to optimize their performance.

The NOS must undertake a serious study determining the specific requirements of generalization for all features, for all charts, for all circumstances, in their envisioned production scenario. The ANCS II is a promising chart production and maintenance system but to fully exploit its capabilities, more work is needed in the areas of data base structure design and data base management. Once a decision is made as to the question of separate data bases-single product versus single data base-multiple products, a better appreciation for the role of generalization within the system can be gained. The ability to generate mulaple products from a single data base is obviously a desired approach but current scale change routines are not sophisticated enough to outweigh the overhead costs of carrying multiple scale coverages. This report, however, pointed out some of the techniques, and provided a framework within which a complete generalization/scale-change system could be designed.

3.4 Endnotes

${ }^{1}$ U.S. Department of Commerce (1986), p.2-119. The Nautical Chart Manual is intended to provide a comprehensive documentation of carrographic standards, procedures, and policies for use within the National Ocean Service in the production of nautical charts.

THIS PAGE INTENTIONALLY LEFT BLANK

4.0 SUMMARY, CONCLUSIONS, \& RECOMMENDATIONS

There are a wide variety of generalization procedures and algorithms available for vector data processing. These are derived from many different disciplines and, as such, do not necessarily comply with the specific requirements of geographical/carographic data. It was shown in this report that "generalization" is a complex concern that must be addressed by NOS to reduce the size and complexity of an MC\&G data base and to suppor scale reductions for multi-product exploitation of a single data base. An integrated approach to transforming the input data-existing digital data bases, raster-scanned maps, charts, and images, as well as new lineal digitized data-into "reduced" data sets can be realized given an understanding of the techniques available. ${ }^{1}$ This report has accomplished that.

This section of the report will first provide a brief summary of the topics considered to be of importance when evaluating the effectiveness of the various algorithms for the entire range of the data reduction process.

4.1 Summary-General Observations

A number of general considerations should be made when judging the effectiveness of all generalization algorithms. For example:

- The ability of char generalization to mimic manual methods is not essential; manual methods merely provide a baseline to evaluate the automated methods. ${ }^{2}$
- The generalization practice cannot, and should nor, be carried out without adequate accompanying information to aid in the determination of the proper generalization procedures to select. This obviously raises some serious concems in an automated- or semi-automated production environment that is involved in only the product finishing stages of production. A thorough knowledge of the original distribution is required in order to accurately perform the generalization; it is inadvisable to base one generalization upon another.
- Omission of features based simply upon size is likely to be erroneous. The physical character of an area may be expressed by the domination of many like features. If smaller features were arbitrarily eliminated the resultant genralization would indicate a completely different character. Thus, the true geographical and geomorphological characteristics of areas need to be maintained, even if it requires combination, exaggeration, and displacement.
- Automated generalization routines should mimic manual methods only in terms of selecting the same characteristic, or shape-critical, spatial relationships that a cartographer, or most cartographers, would choose.
- Topological relationships should be retained even after the generalization in the event that the data is used for analytical processes.
- Different types of features may require differing generalization routines, or the same routine with different levels of generalization tolerances applied.
- Each technique has an associated impact on data set integrity-iechniques either (1) retain all data; or (2) result in the loss or modification of data. Implementation of a particular generalization algorithm must acknowledge this underlying concem by forecasting the expected usage of the data set. If the data is to be used for navigation and guidance or some other accuracy-critical function, then the technique must not cause any significant data loss that will impair the functionality of the corresponding system. This, of course, must be within the context of the scale-change required to support a particular product On the other hand, data used for merely visual reference can undergo limited loss or modification of the data as long as these changes are not at the expense of the visual integrity of the data.
- Following the assumption that some amount of data loss is inevitable (whether intentional or not), the visible affects of data reduction, either through heuristic observations or based upon statistical and quantitative support, must not be detrimental to the intended use of the product.
- Each technique has some statistical accuracy associated with the generalization process-evaluation of this supporting statistical data is warranted if data accuracy is important.
- The balance of generalization between different features needs to be carefully controlled. Thus, features which are related in some fashion-such as the form of the land surface and drainage-must be considered together.
- The temptation to under-generalize where there is available space, and to overgeneralize where features are crowded together, must be avoided; that is, generalization should be consistently applied across the chart.
- Processing times, as previously noted, are limited in the production environment. Some techniques that have an almost perfect generalization at a significantly reduced processing cost over the perfect technique might be a more logical choice.
- There are some instances where the selection of one technique may be more appropriate over another technique even within the same data type. For example, sounding data compression for display purposes obviously can undergo more significant reductions than can sounding information used for navigation purposes.
- The order of processing for each of the techniques is an area that requires much more knowledge than is currently available today. There is litule indication that there is an "average" generalization process, or even requirement, so developing a standard procedure within a serial computer can only solve a limited set of the
problems. The drive here is to solve as many of those problems with a limited number of techniques.
- Generalization can be performed in software, hardware, firmware, eic. The advantages and disadvantage of each of these should be evaluated against initial and replacement costs, implementation timelines, processor speeds, and any other factors that influence a make/buy decision. For example, are there any examples within the current market place? How cost effective are they? What are their reliability factors?
- One must consider how data base management strategies affect the selection of a particular technique. For example, do sector mapping strategies, update strip sizing trade-offs, and indexing scheme complexities affect the generalization process.
- How does the selection of particular data structures affect the generalization? Will the selection of one over another aid or hinder the generalization process? For example, will the selection of topological data structures' usefulness outweigh the overhead costs of carrying the topological pointers?
- What type of data base indexing scheme is most appropriate for storage and retrievals; that is, is an R-tree, KDB-tree, Quadree, B-tree, or some other indexing scheme most appropriate for all, or some, of the data?

4.2 Summary-Specific Observations

Simplification. When evaluating the effectiveness of simplification algorithms, the following factors should be considered: ${ }^{3}$

- Simplification algorithms should ideally reduce a data set to a minimum of points, by rejection of redundant points, or through the selection of significant points.
- Simplification algorithms should operate within the imperceptible realm, whereby map readers can perceive no difference in the line before and after simplification.
- Feature locations should not deviate significantly from their correct locations.
- Features are generalized, not lines. This implies that inter- and intrarelationships between various feature sets must be considered in the generalization process.
- Small irregularities should be removed from the lines, however, the character of the line should be maintained.

Combination. Many cartographic features will need to be combined to suppor product- or scale-change objectives. The effectiveness of combination algorithms must address the following:

- Combination of like features must obviously combine only those features that can be combined according to the specific product requirements.
- The combination of features must take into account the nature of the physical separation between features. If the atribution is simply a classification of a major element-such as small areas of forest combining into one because the forest and intervening spaces characterize different aspects of the land surface-then they can be grouped together. On the other hand, if small features are separated by different physical elements-small island (land) with intervening water-they should not generally be combined.
- Features that would otherwise be deleted from the product because of scale implications must only be combined to suit the needs of the chosen chart purpose.
- The new spatial depiction of the combined feature must be a logical extension of the individual entities grouped; that is, the general form of the features (such as shape) should be maintained.
- The measured area of the combined area should remain roughly the same as the area of the individual components.
- The implication of the combination must be assessed before the features are grouped. For instance, will the agglomeration of numerous small lakes into a single body of water violate political ownership and resulting depiction on the graphic.

Refinement. Distributions of cartographic features will need to be refined to support scale-change objectives. The effectiveness of refinement algorithms must address the following:

- In general, the original character, form, size, and spaces of the fearures should be maintained despite decreasing number.
- The generalization is not only the deletion of features but also the graphic representation of the tue distribution by fewer and coarser means.
- As less information is shown locationally, it becomes increasingly imporant for the symbology to reflect the important characteristics of the feature. This requires an understanding of the real geographic features involved. For example, during scale reduction it is not possible to shown all meanders of a river in the orue locations, but the fact that the river is characterized by meanders should not be lost.
- Spacings between features, shapes of the original features, and orientations should be maintained as closely as possible in the reduction; that is, the general impression of the black-white ratio and distributional character should be consistent between the original and reduced scales.
- Features of landmark significance must be omitted from the refinement procedure so as not to lose that significant characteristic.

Conversion. The geometric depiction of many cartographic features will need to be converted to support product-or scale-change objectives. The effectiveness of conversion algorithms must address the following:

- In the collapse of features, centerlines should be mainatained.
- Conversion of like features must obviously convert only those features that can be converted according to the specific product requirements.
- Conversion of like features must examine the specific atribution of the features to ensure that only exact features be converted.
- The conversion must not detract from the individual imporance of any significant feature.
- Relationships with other features must be assessed and evaluated against the conversion result; that is, will the aggregation of two houses into a larger house violate the ropological relationships of a road that runs between them?
- Features that would otherwise be deleted from the product because of scale implications must only be converted to suit the needs of the chosen chart purpose.
- The new spatial depiction of the converted feature must be a logical extension of the original feature or features; that is, the general form of the features (such as shape) should be maintained.

Displacement. Due to the symbolization step of product finishing, many cartographic features will need to be displaced in order to fit within the graphic constraints of a chart. The effectiveness of displacement algorithms must address the following:

- Feature associations must be considered. This is especially important in feature displacement, knowing what the spatial relationships of the features are.
- The displacement must allow not only for the printing resolution of features on the graphic, but also the visual acuity of the map readers. Features will tend to blend into others.
- The importance of features must guide the displacement process; that is, less important features must be displaced away from more important ones.
- The impact of displacement on other conflicts must be determined. Displacemement propagation needs to be evaluated.
- The creation of labelling conflicts due to feature type conversion must be addressed in the symbolization stage, not in the type placement stage.
- Features that are associated with one another (such as a road and railroad going over the same bridge) must be displaced the same relative to other features.
- Conflicts with the chart background need to be eliminated.

Smoothing. Vector data set manipulations should not cease with the simplification processes. Instead, these data can be further manipulated through effective exploitation of linear smoothing algorithms. The effectiveness of linear smoothing algorithms must address the following:

- Smoothing algorithms operate before and/or after simplification, and produce smoother, more natural-looking linear features which have been modified in their spatial locations.
- The algorithms should operate within the barely-perceptible realm, whereby map readers can perceive no major difference in the line before and after smoothing.
- The requirement for smoothing operations when dealing with raster-graphic display devices may not be warranted depending on the resolution and type of the display monitor. Raster displays will render smoothing operations ineffective due to aliasing effects. Vector-based graphic displays, however, can be improved with smoothing operations.

Compaction. The following considerations should be addressed when evaluating the effectiveness of automated linear compaction algorithms.

- If a compaction technique is chosen, speed is of the essence in the decompaction process in the production process. Compaction, on the other hand, is not as time-critical. Yet, there are implicivexplicit relationships between the compression and decompression processes. These need to be considered in the selection of a particular technique.
- The highest compaction ratios that can be expected from a particular approach are not necessarily the ideal selection. This compression ratio must be balanced with the overall encoder/decoder complexity.
- Compaction algorithms should ideally reduce the overall memory, transmission, and storage requirements of the data set without resulting in any obvious associated increase in processing times due to the compaction algorithm selection.
- Besides compressing the data sets, the compaction routines should make the processing of the data more efficient by removing the unnecessary, and somecimes arbirrary, level of detail.
- Compaction encoder complexity must consider the associated decompaction decoder complexity. A n-fold decrease in storage requirements is not an appropriate selection if there is an n-fold increase in decoding processing time or decoder complexity.
- Linear digital data sets can be compacted using a technique such as Chain Coding. It is not appropriate at this time to forecast a percentage change in the storage requirements, however, because this "increase" or "decrease" will be dependent, in part, on the overall complexity of the source material. Large numbers of point features obviously will not be affected by compaction routines. On the other hand, a greater number of linear and/or areal features will result in an associated decrease in storage using compaction routines.

4.3 Conclusions and Recommendations

Preliminary recommendations for set of integrated techniques that could together meet the requirements require that vector data sets undergo some form of carographic generalization to reduce the overall data base size. This should be an integrated process of feature selection, simplification, combination, conversion, refinement, displacement, smoothing, and compaction to suppor the generation of scale-, application-, or functionspecific data bases. Selection should be based upon the intended use of the product/data base. Simplification should be be carrographically-sound using a linear simplification algorithm such as the Lang Tolerancing or Douglas Corridor selection. Feature Conversion, Combination, Refinement, and Displacement must be performed with respect to the individual product requirements, while still maintaining the characteristics of the original information. It is here that the level of current automated generalization maturity-or, more appropriately, immaturity-must be most evident. Smoothing of the linear digital data files should be consistent with the type and resolution of the graphics display. Here, a simple weighting function should suffice. Finally, some form of compaction, such as Chain Coding, should be applied to all linear data files.

4.4 Endnotes

1"Reduced" data in this sense indicates the end-result, transformed data bases that have undergone the entire range of reduction manipulations-compression, generalization, simplification, compaction, and coding-to reduce the storage, memory, and transmission requirements.
${ }^{2}$ Caldwell, Douglas R., et al. (1984).
3Linear simplification of vector-based data is still an emerging research ropic. Even so, the cartographic community maintains that its development cycle has passed its infancy stages and is now at an overall level of sophistication whereby these techniques can be effectively applied to linear digital data sets to support the data reduction processes. At present, simplification algorithms, such as the Lang Tolerancing and Douglas Corridor, are considered to be the most cartographically-sound for point removal. The Lang algorithm is an excellent choice as an initial "cleaning" or low-pass filter, while the Douglas algorithm is more appropriate for those features requiring more stringent generalization. Both choices should be considered in the development of the ANCS II production system.

Appendix A-Bibliography

Allam, M. M. (1978), "DTM Application in Topographic Mapping," Proceedings, Digital Terrain Model Symposium, ASP-ACSM, St. Louis.
Amheim, Rudolf (1976). "The Perception of Maps." The American Cartographer, 3(1): 510.

Attenave, F. (1954), "Some Informational Aspects of Visual Perception," Psychological Review, 61:183-193.
Barrow, H.C. and R. J. Popplestone (1971), "Relational Description in Picture Processing," in B. Melizer and D. Michie, Eds., Machine Intelligence, (New York:Elsevier), 6.
Basset, K. (1972), "Numerical Methods for Map Analysis," Progress in Human Geography, 4:219-254.
Baudelair, P. and M. Stone (1980), "Techniques for Interactive Raster Graphics," Computer Graphics, 14:314-320.
Beckett, P. (1976), "Cartographic Generalization," The Cartographic Journal, 14(1):49-50.
Bie, S.W. (1980), "Map Generalization - A Statement on General Problems," in H. Opheim, Ed., Contributions to Map Generalization Proceedings, (Oslo, Norway:Norwegian Computing Center), pp. 5-10.
Blakemore, M. (1983), "Generalization and Error in Spatial Data Bases," Proceedings, Sixth International Symposium on Automated Carography, Automated Cartography: Intermational Perspectives on Achievements and Challenges, AUTO-CARTO VI, held in Ottawa, Canada, 16-21 October 1983. Banry S. Wellar, Ed., (Ontario:The Steering Committee Sixth Intemational Symposium on Automated Cartography), pp.313-322.
Bookstein, F.L. (1979), "Fitting Conic Sections to Scatter Data,". Compuzer Graphics and Image Processing, 9:56-71.
Borodin, A.V. (1974), "Quantitative Criteria for Generalisation of Contents of Geographical Maps on an Electronic Computer," in Emo Csati, Ed., Automation the New Trend in Cartography, (Budapest, Hungary:The Geocartotechnical Research Deparment), pp. 154-164.
Boyer, L. (1981), "Generalization in Semi-Detailed Geomorphological Mapping," ITC Journal, 1:98-123.
Boyle, A. Raymond (1970), "The Quantised Line," The Carographic Journal, 7(2):91-94.
Breward, R.W., (1972), "A Mathematical Approach to the Storage of Contours," The Carographic Jowrnal, 9(2):82-86.
Briggs, I.C. (1974), "Machine Contouring Using Minimum Curvature," Geophysics, 39:39-48.
Brophy, D.M. (1972), "Automated Linear Generalization in Thematic Cartography," unpublished Master's Thesis, Deparment of Geography, University of Wisconsin, 99p.
(1973), "An Automated Methodology For Linear Generalization in Thematic Cartography," Proceedings of the ACSM, Washington, D.C., pp. 300-314.
Caldwell, Douglas R., Steven Zoraster, and Marc Hugus (1984), "Automating Generalization and Displacement Lessons from Manual Methods," Technical Papers of the $44^{\text {th }}$ Annual Meeting of the American Congress on Surveying and Mapping, 11-16 March, Washington, D.C., pp.254-263.
Catlow, D. and D. Du (1984), "The Structuring and Cartographic Generalization of Digital River Data," Proceedings of the ACSM, Washington, D.C., pp. 511-520.

Chrisman, N.R. (1983), "Epsilon Filtering: A Technique For Automated Scale Changing," Proceedings of the ACSM, Washington, D.C., pp. 322-331.
Christ, Fred (1973), "Digitizing, Digitizer Editing and Graphic Output of Topographic Map Data," Informations Relative to Cartography and Geodesy, Translations, No. 30:510.
. (1974a), "Proposal of a Standard Test for the Examination of Interactive Cartographic Systems," Proceedings, Seventh Intemational Conference on Carography, Madrid, Spain, pp. 3-8.
. (1974b), "Rationalization of Map Information on a Topographic Map in Relation to Automatic Production Procedures," Proceedings of the Seventh International Conference on Cartography, Madrid, Spain, pp. 15-21.
. (1975), "Automatically Symbolized Output of Map Data Compiled and Selected From a Data Base," Informations Relative to Cariography and Geodess, Translations, 32:5-16.
(1976), "Fully Automated and Semi-Automated Interactive Generalization, Symbolization and Light Drawing of a Small Scale Topographic Map," Nachricten aus dem Karten-und Vermessungswesen, Uhersetzunge, Heft nr. 33:19-36.
. (1978), "A Program for the Fully Automated Displacement of Point and Line Features in Carographic Generalizations," Informations Relative to Cartography and Geodesy, Translations, 35:5-30.
Clark, J.H. (1974), "3-D Design of Free-Form B-Spline Surfaces," Deparment of Computer Science, University of Utah.
Connelly, Daniel S. (1971), "An Experiment in Contour Map Smoothing on the Experimental Cartographic Unit (ECU) Automated Contouring System," The Cartographic Journal, 8(1):59-66.
Cosgriff, R.L. (1960), "Identification of Shape," Ohio State University Research Foundation, Columbus, Ohio, Report 620-11, ASTIA AD 254792.
Dasgupta, Sivaprasad P. (1964), "Some Measures of Generalization on Thematic Maps," The Geographical Review of India, 26:73-78.
Davis, D.M., J. Downing, and S. Zoraster (1982), "Algorithms for Digital Terrain Data Modeling," Final Report for Contract DAAK70-80-C-0248, (Fort Belvoir, Virginia:U.S. Army Engineering Topographic Laboratories), 209p.
Davis, J.C. (1973), Statistics and Data Analysis in Geology, (New York:John Wiley and Sons), 550p.
Davis, L.S. (1977), "Understanding Shape: Angles and Sides," IEEE Transactions on Compurers, C-26(3).
Dent, Borden D. (date unknown), "A Note on the Importance of Shape in Cartographic Communication," The Journal of Carography, 71(7):393-401.
Department of Commerce (1986), "Specification for an Automated Nautical Charting System II," Cartographic Technology Programs, NOAA Charting Research and Development Laboratory, National Ocean Service.
Department of Defense (1981), Glossary of Mapping, Charting, and Geodesy Terms, 4th Edition.
Deveau, T.J. (1985), "Reducing the Number of Points in a Plane Curve Representation," Proceedings, Seventh Intemational Symposium on Automated Cartography, Digital Representation of Spatial Knowledge, AUTO-CARTO VII, held in Washingion, D.C., 11-14 March 1985. (Falls Church, VA:American Society of Phowogrammerry and the American Congress on Surveying and Mapping), pp. 152-160.
Detiori, G. (1982), "An Outline Algorithm for Polygonal Approximation of Digitized Plane Curves," Proceedings, Sixth International Conference on Pattern Recognition, Munich, Germany.

Dettori, G. and B. Falcidiena (1982), "An Algorithm for Selecting Main Points on a Line," Computers and Geosciences, 8(1):3-10.
Dougenik, J.A. (1980), "WHIRLPOOL: A Program for Polygon Overlay, Proceedings, of the International Symposium on Cartography and Computing: Applications in Health and Environment, AUTO-CARTO IV, American Congress on Surveying and Mapping and American Society of Photogrammetry, pp. 304-311.
Douglas, David H. and Thomas K. Peucker (1973), "Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or Its Character," The Canadian Carrographer, 10(2):112-123.
Duda, R. and P. Har (1973), Pattern Classification and Scene Analysis, (New York:John Wiley and Sons).
Dutton, G.H. (1981), "Fractal Enhancement of Cartographic Line Detail," The American Cartographer, 8(1):23-40.
Eastman, J. Ronald (1981), "The Perception of Scale Change in Small-Scale Map Series," The American Cartographer, 8(1):5-22.
Ecker, Max (1908), "On the Nature of Maps and Map Logic," Trans. by W. Joerg. Bulletin of the American Geographical Society, 40(6):344-351.
Ehrich, R.W. (1978), "A Symmetric Hysteresis Smoothing Algorithm that Preserves Principal Features," Computer Graphics and Image Processing, 8:121-126.
Fahey, Lawrence (1954), Generalization as Applied to Cartography. M.A. Thesis. (Columbus, Ohio: Ohio State University), 180 p.
Feder J. and Herbert Freeman (1966), "Digital Curve Matching Using a Contour Correlation Algorithm," IEEE International Convention Record, 3:69.
Floyd, A.M. (date unknown), "Generalization Problems in Derived Mapping," Symposium on Cartography, pp 47.
Freeman, Herbert (1961), "On the Encoding of Artitrary Geometric Configurations," IEEE Transactions on Computers, EC-10:260-268.
. (1967), "On the Classification of Line Drawing Data," In Wathen-Dunn, Ed.. Models for the Perception of Speech and Visual Form. (Cambridge MA), pp. 408412.
. (1969), "A Review of Relevant Problems in the Processing of Line Drawing Data," In Graselli, A., Ed., Automatic Interpretation and Classification of Images, (New York), pp. 155-174.
. (1974), "Computer Processing of Line Drawing Images," Compuring Surveys 6(1):57-97.
(1976), "Analysis of Line Drawings," In J. Simon and A. Rosenfeld, Eds., Digizal Image Processing and Analysis.
. (1978), "Shape Description Via the Use of Critical Points," Pattern Recognition, 10:159-166.
Freeman, Herbert and Jeremy M. Glass (1969), "On the Quantization of Line Drawing Data," IEEE Transactions on Systems, Sciences and Cybernetics, SCC-5(1):70-79.
Freeman, Herbert and Goffredo G. Pieroni, Eds. (1978). Map Data Processing: Proceedings of a NATO Advanced Study Institute on Map Data Processing held in Maratea, Italy, June 18-29, 1978 (New York:Academic Press, Inc.).
Gardiner, V. (1977), "On Generalizations Concerning Generalization," The Cartographic Journal, 14(2):135-136.
. (1982), "Stream Networks and Digital Cartography." Cartographica, 19(2):38-44.
Goodchild, Michael F. (date unknown), "Fractals and the Accuracy of Geographic Measures," International Associarion for Marhematical Geology Journal, 12(2):8598.
\qquad . (1978), "The Effects of Generalization in Geographical Data Encoding," in Freeman, Herbert and Goffredo G. Pieroni, eds. (1978). Map Data Processing: Proceedings of a NATO Advanced Study Institute on Map Data Processing held in Maratea, Italy, June 18-29, 1978 (New York:Academic Press, Inc.) pp.191-204.
Gordon, W.J. and Riesenfeld, R.F. (1974), "Berstein-Bezier Methods for the Computer Design of Free Form Curves and Surfaces," Journal of Association for Computer Machinery, 2(2):293-310.
Gotschalk, Hans-Jorg (1971), "Smoothing, Reduction, and Generalization of Data of Digitized Line Elements," International Cartographic Association, Commission 3, Ausomation of Cartography, pp. 1-17.
. (1973), "The Derivation of a Measure for the Diminished Content of Information of Cartographic Line Smoothed by Means of a Gliding Arithmetic Mean," Informations Relative to Cariography and Geodesy, Translations, Number 30:11-16.
. (1974a), "The Derivation of a Measure for the Diminished Content of Information of Cartographic Line Smoothed by Means of a Gliding Arithmetic Mean," in Emo Csati, Ed., Automation the New Trend in Cariography, (Budapest, Hungary:The Geocartotechnical Research Department), pp. 61-65.
. (1974b), "Aufomatic Generalization of Settlements, Traffic Lines, Contours, Drainage, and Vegetation Boundaries For a Small Topographic Map," Proceedings, Seventh International Conference on Cartography, Madrid, Spain, pp. 9-14.
. (1978), "Data Generalization and Atribute Code Schemes," Proceedings, Third International Conference on Computer-Assisted Cartography, AUTOCARTO III, San Francisco, Califomia, pp. 219-226.
Hajek, Milan (1972), "Automation and the System of Cartographic Generalization: Problems," International Cartographic Association 6ih Technical Conference, Montreal and Ottawa, August 16-25.
Hajek, Milan, Mitasova, Irena, and Sipos, Jan (1974), "The Problem of Analytical Carographic Generalization," in Emo Csati, Ed., Automarion the New Trend in Cartography, (Budapest, Hungary:The Geocarotechnical Research Deparment), pp. 177-186.
Hanan, Maurice and J.M. Kurtzberg (1972), "Placement Techniques," Design Automation of Digizal Systems, 1:213-262.
Harbaugh, J.W., and A. Merriam (1968), Computer Applications in Stratigraphic Analysis, (New York:John Wiley and Sons).
Harris, Katie M. (1981), "Algorithms for Line Simplification and Smoothing and Their Applicability to Geographic Data," Research Paper, Department of GeographyMeteorology, (Lawrence, KS: University of Kansas).
Harison, C.J. and R.F. Mercu (1979), "Two-Dimensional Recursive Filtering Using the Rotated Filter Design Technique," Mathemarical Geology 11(6):669-689.
Hershey, A.V. (1963), "The Plotting of Maps on CRT Printer," Neval Weapons Laboratory Report 1844, (Dahlgren, Virginia:U.S. Navy).
Holloway, J.L. (1958), "Smoothing and Filtering of Time Series and Space Fields," Advances in Geophysics, 4.
Hoffman, Frank (1974), "Mathematical Modelling as a Basis of Cartometrical Analysis and Automated Generalization," in Erno Csati, Ed., Automation the New Trend in Cartography, (Budapest, Hungary:The Geocartotechnical Research Deparment), pp. 53-60.
Horowitz, E. and S. Shani (1978). Fundamentals of Data Soructures, Rockville, MD:Computer Science Press).

Imhof, Eduard (1957), "Generalisierung der Höhenkurven," Kartographische Studien, Erganzungband Nr. 264 zu Petermanns Geographische Mitteilungen, 89-99.
. (1963), "Tasks and Methods of Theoretical Cartography," International Yearbook of Cartography, 3:12-25.

- (1982), Cartographic Relief Representation. (Berlin:Walter de Gruyter and Co.), 389p.
International Cartographic Association (1973), Multilingual Dictionary of Technical Terms in Carography, Franz Steiner, Ed., (Wiesbaden, Germany:Verlag GMBH).
Jancaitis, J. and J. Junkins (1973), "Mathematical Techniques for Automated Cartography," Final Technical Report for Contract DAAK02-72-C-0256, (Forn Belvoir, Virginia:U.S. Ammy Engineer Topographic Laboratories).
Jenks, George F. (date unknown), "Generalization in Statistical Mapping," Annals of Association of American Geographers, 53(1).
. (1975), "Under Generalization and Figure Ground Relationships in Statistical Mapping," ${ }^{\text {Proceedings, Second Intemational Symposium on Computer-Assisted }}$ Cartography, AUTO-CARTO II, 21-25 September 1975, (Washington, D.C.:U.S. Deparment of Commerce, Bureau of the Census and the American Congress on Surveying and Mapping), pp. 149-154.
- (1978), "Perceptual Thresholds in Linear Simplification by Computer," Paper Presented to 74 ${ }^{\text {th }}$ Annual Meeting of the Association of American Geographers.
. (1980), "Thoughts On Line Generalization," Proceedings, Fourth Intermational Symposium on Cartography and Computing: Applications in Health and Environment, AUTO-CARTO IV, American Congress on Surveying and Mapping and American. Society of Phorogrammery, 1:209-221.
(1981), "Lines, Computers and Human Frailies." Annals of the Association of American Geographers, 71,(1):1-10.
. (1985), "Linear Simplification:How Far Can We Go?," Paper Presented to the $10^{\text {th }}$ Annual Meeting of the Canadian Cartographic Association, Fredericton, New Brunswick, June 1985.
Johannsen, T. (1973), "A Program for Editing and for Some Generalizing Operations (For Derivation of a Small Scale Map From Digitized Data in $1: 50,000$)". Informations Relative to Cartography and Geodesy, Translations, 30:17-22.
(1976), "Automated Procedures With Interactive Editing, Rim-Adaption, Junction-Purging, and Lettering for a Small Scale Topographic Map," Informarions Relative so Cartography and Geodesy, Translations, 33,43-55.
Kadman, N. (1972), "Automated Selection of Settlements in Map Generalization," Cartographic Jownal, 9(2).
Kashyap, R.L. and Oommen, B.J. (1983), "A Scale Preserving Smoothing Technique," IEEE Transactions on Partern Analysis and Machine Intelligence, PAMI-S.
Keates, J.S. (1973), Carographic Design and Production. (New York:John Wiley and Sons).
Knorr, H. (1963), "Generalization, Revision, and Automation: Three Fundamental Problems in Cartography. Nachrichren aus dem Karten- und Vermessungswesen, Reihe 5, No. 4.
(1969), "Comparison of a Generalization in 1:200,000 Scale, Derived From Topographic Maps, With a Generalization Derived From Aerial Phorographs." Informations Relative to Cartography and Geodesy, German Concributions in Foreign Languages, 25:5-16.

Koeman, C. and F.L.T. Van der Weiden (1970), "The Application of Computation and Automatic Drawing Instruments to Structural Generalization," The Cartographic Journal, 7(1):47-49.
Kristoffersen, E. (1980), "Conflicting Symbol Handling by Microcomputer," in H. Opheim, Ed., Contributions so Map Generalization Proceedings, (Oslo, Norway:Norwegian Computing Center), pp. 105-109.
Laidlaw, G.A. (date unknown), "Generalization of Relief Portrayal," Symposium on Canography, pp 18-21.
Lang, T. (1969), "Rules For the Robot Draughsmen," The Geographical Magazine, 42(1):50-51.
. (1971), Computer Programs for Mapping, (London:Architectural Press).
Langridge, D. (1972), "On the Computation of Shape," Frontiers of Patrern Recognition, (New York:Academic Press, Inc.), S. Watanabe, Ed., pp. 347-365.
Leberl, F.W. (1986), "ASTRA - A System for Automated Scale Transition," Photogrammetric Engineering and Remote Sensing, 52(2):251-258.
Liao, Y. (1981), "A Two-Stage Method of Fitting Conic Ares and Straight Line Segments to Digitized Contours," Proceedings of IEEE Pattern Recognition and Image Processing Conference, Dallas, pages 224-229.
Lichtner, Werner (1978), "Locational Characteristics and the Sequence of Computer Assisted Processes of Cartographic Generalization," Nachrichten ous dem Kartenund Vermessungwegen Reike II, Ubersetzugen Heft nr.35, pp.65-75.
. (1979). "Computer-Assisted Processing of Cartographic Generalization in Topographic Maps," Geo-Processing, 1:183-199.
Long, D.E.. (date unknown), "Generalization of Culture in Derived Mapping," Symposium on Cartography, pp 12-17.
Loon, J.C. (1978), Cartographic Generalization of Digital Terrain Models, Dissertation Paper, (Ann Arbor, Michigan:University Mierofilms International), 199p.
Lundquist, Gösta (1959a), "Generalization - A Preliminary Survey of an Important Subject," Nachrichsen ous dem Karten- und Vermessungswesen: Reihe II: Deutsche Beirrage in fremden Sprachen, heft nr. 3:46-51.

- (1959b), "Generalization-A Preliminary Survey of an Important Subject." The Canadian Surveyor, 14(10):466-470.
MacKinnon, Ross D. and G.M. Barber (1970), "A New Approach to Network Generalization and Map Representation: the Linear Case of Allocation Problem," Geographical Analysis, 2:156-168.
Maling, D.H. (1963), "Some Quantitative Ideas About Cartographic Generalization," Bulletin No. 4, International Carographic Association, Sonderdruck from Nachrichten aus dem Karten und Vermessungswesen, 5(5):6-22.
. (1968), "How Long is a Piece of String?", Carrographic Journal, 5,:147-156.
Mandelbrot, B.B. (1977), Fractals: Form, Chance, and Dimension. (San Francisco:W.H. Freeman).
Marino, Jill S. (1978), "Characteristic Points and their Significance in Cartographic Line Generalization, unpublished Masters Thesis, Department of GeographyMeteorology, The University of Kansas, 92p.
McCullagh, M.J. (1981), "Creation of Smooth Contours of Irregularly Distributed Data Using Local Surface Patches," Geographical Anahsis, 13:51-62.
McEwen, R.B. and H.W. Caullins (1982), "Digital Cartography in the USGS National Mapping Division," Carographica, 19:11-26.
McMaster, Rober B. (1982), "An Examination of Line Simplification Algorithms," Paper presented at the Annual Meeting, Association of American Geographers, San Antonio, TX.
\qquad - (1983a), "A Mathematical Evaluation of Simplification Algorithms," Proceedings, Sixth International Symposium on Automated Cartography, Automated Cartography: International Perspectives on Achievements and Challenges, AUTO-CARTO VI, held in Ottawa, Canada, 16-21 October 1983. Barty S. Wellar, Ed., (Ontario:The Steering Committee Sixth International Symposium on Automated Cartography), II, pp. 267-276.
- (1983b), "A Quantitative Analysis of Mathematical Measures in Linear Simplification," unpublished Ph.D. dissertation, Deparment of GeographyMeteorology, The University of Kansas, 1983.
. (1986), "A Statistical Analysis of Mathematical Measures for Linear Simplification," The American Carographer, 13(2):103-116.
Miller, O.M. and Robert J. Voskuil (1964), "Thematic Map Generalization," Geographical Review, 54(1):13-19.
Moellering, H. and J.N. Rayner (1982), "The Dual Axis Fourier Shape Analysis of Closed Cartographic Forms," The Carnographic Journal, 19(1).
Monmonier, Mark S. (1982). Computer-Assisted Cartography: Principles and Prospects. (Englewood Cliffs,NJ:Prentice-Hall, Inc.), 214p.
Monmonier, Mark Stephen (1983), "Raster-Mode Area Generalization for Land Use and Land Cover Maps," Cartographica, vol. 20, no.4, pp. 65-91.
Montagano, G.A. (date unknown), "Generalization of Hydrographic Features," Symposium on Cartography, pp 8-11.
Montanari, U. (1970), "A Note on Minimal Length Polygon Approximation to a Digitized Contour," Communications of the ACM, 13:41-47.
Morrison, Joel L. (1974), "A Theoretical Framework for Cartographic Generalization with Emphasis on the Process of Symbolization," International Yearbook of Cartography, 13:59-67.
- (1975), "Map Generalization: Theory, Practice, and Economics." Proceedings, Second Intemational Symposium on Computer-Assisted Carography, AUTO-CARTO II, 21-25 September 1975, (Washington, D.C.:U.S. Deparment of Commerce, Bureau of the Census and the American Congress on Surveying and Mapping), pp.99-112.
Muller, Jean-Claude (1983), "Visual Versus Computerized Seriation: The Implications for Automated Map Generalization," Proceedings, Sixth Intemational Symposium on Automated Cartography, Automated Cartography: International Perspectives on Achievements and Challenges, AUTO-CARTO VI, held in Otrawa, Canada, 16-21 October 1983. Banry S. Wellar, Ed., (Ontario:The Steering Committee Sixth International Symposium on Automated Cartography), pp. 277-287.
Neumann, Joachim (1973), "Begriffsgeschichie und Definition des Begriffs Kartographische Generalisienng," International Yearbook of Cartography, 13:5967.

Nickerson, Bradford G. and Herber R. Freeman (1986), "Development of a Rule-based System for Automatic Map Generalization," Proceedings, Second Intemational Symposium on Spatial Data Handling, Seatte, Washington, July 5-10, 1986, (Williamsville, N.Y.:International Geographical Union Commission on Geographical Data Sensing and Processing), pp. 537-556.
Noton, David and Lawrence Stark (1971), "Eye Movements and Visual Perception," Scientific American, 224(6):34-43.
Oommon, B.J. and R.L. Kashyap (1983), "Scale Preserving Smoothing of Islands and Lakes," Proceedings, Sixih International Symposium on Automated Cartography. 1:243-251.

Opheim, Harold (1963), "Principles of Generalization in Cartography with Special Reference to Contours," Nachrichsen aus dem Karten- und Vermessungswesen, 5. . (1980), "A New Method for Data Reduction of a Digitized Curve." Norwegian Computing Censer Publication, Number 676, 44p.
. (1981). "Smoothing a Digitized Curve by Data Reduction Methods," EUROGRAPHICS '81, J.L. Encarnaco, Ed., (Amsterdam: North-Holland Publishing Company), pp. 127-135.
. (1982), "Fast Reduction of a Digitized Curve," Geo-Processing, 2:33-40.
Pannekoek, A.J. (1962), "Generalization of Coastines and Contours," International Yearbook of Cartography, 2:55-75.
Pavlidis. T. (1974), "The Use of Algorithms of Piecewise Approximation for Picture Processing Applicaions," Informal Proceedings of a Conference on Mathematical Software, ACM/SIAM, Purdue University, pp. 130-159.
(1977), Structural Patterm Recognition, (New York:Springer-Verlag), 302p.
. (1978), "A Review of Algorithms for Shape Analysis," Computer Graphics and Image Processing, 7: 243-258. . (1982), "Curve Fituing as a Patem Recognition Problem," Proceedings, Sixth Intemational Conference on Pattern Recognition, Munich, pp. 853-858.
(1983), "Curve Fitting with Conic Splines," ACM Transactions on Graphics, 2:1-31.
Pavlidis, T. and S.L. Horowitz (1973), "Piecewise Approximation of Plane Curves," Proceedings, First Intemational Joint Conference on Pattern Recognition, pp. 396405.

Perkal, Julian (1965a), "An Attempt at Objective Generalization," Translated by W. Jackowski from Julian Perkal, "Proba obiektywnej generalizacj," Geodezja i Kartografia, Tom VI, Zeszyt 2 (1958), pp 130-142. In Nystuen, John (ed.), Michigan Inter-University Community of Mathematical Geographers, Discussion Paper 10, (Ann Arbor, Michigan:Universiry of Michigan), 1966.

- (1965b), "On the Length of Empirical Curves." Translated by W. Jackowski from Julian Perkal, "O Dlugosci Krzywych Empiniycznych," Zastosowania Matemaryki, II, Zeszyt 2 (1958), pp 257-286. In Nystuen, John (ed.), Michigan Inser-University Community of Marhemarical Geographers, Discussion Paper 10, (Ann Arbor, Michigan:University of Michigan), 1966.
Peucker, Thomas K. (1973), "Four Methods for Quantitaive Settement Selection," (unpublished).
. (1975), "A Theory of the Cartographic Line," Proceedings, Second International Symposium on Computer-Assisted Carography, AUTO-CARTO II, September 21-25, 1975 (Washington, D.C.:U.S. Dept. of Commerce, Bureau of Census and ACSM, Cartography Division), pp. 508-518.
Philbrick, Allen K. (1953), Towards a Unity of Cariographical Forms and Geographical Content," The Professional Geographer, 5(5):11-15.
Poiker, Thomas K., R. Squirrell, and Shun-En Xie (1982), "The Use of Computer Science and Artificial Intelligence in Carographic Design," Proceedings, Fifth International Symposium on Computer-Assisted Cartography and International Society for Photogrammerry and Remote Sensing Commission IV: Carographic and Data Bank Application of Photogrammetry and Remote Sensing, Environmental Assessment and Resource Management, AUTO-CARTO V, held in Crystal City, Virginia, 22-28 August 1982. Jack Foreman, Ed, (Falls Church, VA:American Society of Photogrammery and American Congress on Surveying and Mapping).

Ramer, Urs (1972), "An Iterative Procedure for the Polygonal Approximation of Plane Curves," Compurer Graphics and lmage Processing, 1:244-256.
Ratajski, Lech (1967), "Phenomenes des points de generalisation," in Konrad Frenzel, Ed., International Yearbook of Cartography, 7:143-151.
Raudseps, J.C. (1975), "Some Aspects of the Tangent-Angle Versus Are Length Representation of Contours," Repor 1801-6, ASTIA AD 462 877. (Columbus, Ohio:Ohio State University Research Foundation).
Reumann, K., and A.P.M. Witkam (1974), "Optimizing Curve Segmentation in Computer Graphics," International Computing Symposium, (Amsterdam: North-Holland Publishing Company), pp.467-472.
Rhind, David W. (1973). "Generalization and Realism within Automated Cartographic Systems," The Canadian Cartographer, 10(1):51-62.
Robinson, Arthur H., Randall Sale, and Joel L. Morrison. (1978). Elements of Carography, Fourh Edicion, (NY:John Wiley and Sons, Inc.).
Rogers, D.F. and J.A. Adams (1976), "Mathematical Elements for Computer Graphics, (NY:McGraw-Hill Book Co.), 239p.
Rosenberg, B. (1972), "The Analysis of Convex Blobs," Computer Graphics and Image Processing, 1:183-192.
Rosenfeld, A. and E. Johnston (1973), "Angle Detection on Digital Curves," IEEE Transactions on Computers, C-22:875-878.
Rosenfeld, A. and J. Weszka (1974), "An Improved Method of Angle Detection on Digita Curves," IEEE Transaction on Computers, C-24,:940-941.
Ruckowski, W.S. (1981), "Shape Segmentation Using Are/Chorc Properties," Computer Graphics and Image Processing, 17:114-129.
Salichtchev, Konstantin A. (1976), "History and Contemporary Development of Carographic Generalization," International Yearbook of Carnography, 16:158-172.
Saloritskiy, B.V. (1974), "Some Possibilities for Automaric Generalization of Outlines," Geodesy, Mapping, and Photogrammetry, 16:187-189.
Sampson, P.D. (1982), "Fitting Conic Sections to Very Scattered Data: An Iterative Refinement to the Bookstein Algorithm," Computer Graphics and Image Processing, 18:97-108.
Sankar, P.V. and C.U. Sharma (1978), "Parallel Procedure for the Detection of Dominant Points on a Digital Curve," Compuler Graphics and Image Processing, 7:403-412.
Sarvarayodu, G.P.F., and I.K. Sethi (1983), "Walsh Descriptors for Polygonal Curves," Pattern Recognition, 16(3):327-336.
Schittenhelm, R. (1976), "The Problem of Displacement in Cartographic Generalization Attempting a Computer Assisted Solution," Informations Relative so Cartography and Geodesy, Translations, 33:65-74.
Selden, David D. and Michael A. Domaratz (1983), "Digital Map Generalization and Production Techniques," Proceedings, Fifth International Symposium on Computer-Assisted Cartography and Intemational Society for Photogrammetry and Remote Sensing Commission IV: Cartographic and Data Bank Application of Photogrammetry and Remote Sensing, Environmental Assessment and Resource Management, AUTO-CARTO V, held in Crystal City, Virginia, 22-28 August 1982. Jack Foreman, Ed., (Falls Church, VA:American Society of Photogrammery and American Congress on Surveying and Mapping), pp. 241248.

Shea, K. Stuart (1987a), "Cartographic Data Entry Through Automatic Feature Tracking," Proceedings, Eighth International Symposium on Computer-Assisted Cartography, AUTO-CARTO VIII, Nicholas R. Chrisman, ed., Baltimore, MD, March 30 April 2, 1987, pp. 660-669.

Shea, K. Stuart (1987b, currently under review, The American Cartographer), "Dot Size Differentiation and Region Perception."
Sklansky, J. and V. Gonzalez (1980), "Fast Polygon Approximation of Digitized Curves," Pattern Recognition, 12:327-331.
Smka, Erhart (1970), "The Analytical Solution of Regular Generalization in Cartography," International Yearbook of Cartography, 10:48-60.
_ . (1974), "Mathematico-Logical Models in. Cartographic Generalization," in Emo Csati, Ed., Automation the New Trend in Cartography, (Budapest, Hungary:The Geocartotechnical Research Departuent), pp. 45-52.
Stegnena, Lajos (1974), "Tools for the Automation of Map Generalization: The Filter Theory and the Coding Theory," in Emo Csati, Ed., Automation the New Trend in Cartography, (Budapest, Hungary:The Geocartotechnical Research Department), pp. 66-95.
Steward, H.J. (1974), "Cartographic Generalization, Some Concepts and Explanation," The Canadian Cartographer, Supplement, 11:77p.
Strahler, A.N., (1952), "Hypsometric (area-altitude) Analysis of Erosional Topography," Bulletin of Geographical Society of Anerica, 69:279-300.
Sukhov, V.I. (1970), "Application of Information Theory in Generalization of Map Contents," International Yearbook of Cartography, 10:48-62.
Tai, H.T., C.C. Li, and S.H. Chiang (1982), "Application of Fourier Shape Descriptors to Classification of Fine Particles," Proceedings, Sixth Intemational Conference on Pattern Recognition, Munich, Germany, pp. 748-751.
Taketa, R.A. (1979), Structure and Meaning in Map Generalization, Dissertation Paper, (Ann Arbor, Michigan:University Microfilms International), 207 Pages.
Tamigochi, R., M. Yokota, E. Kawaguchi, T. Tamati (1982), "Picture Understanding and Retrieving System of Weather Charts," Proceedings, 6th Intemational Conference on Pattern Recognition, Munich, Germany, 1982, pp. 803-805.
Taylor, D.R. Fraser, Ed. (1980), The Computer in Contemporary Cartography. Volume I. Progress in Contemporary Cartography, (Chicester: J. Wiley and Sons), 252p.
Tobler, Waldo R. (1964). "An Experiment in the Compurer Generalization of Maps," Technical Report No. 1, Office of Naval Research Task No. 389-137, Contract No. 1224(48), Office of Naval Research, Geography Branch, 35p.
_. (1965), "Automation in the Preparation of Thematic Maps," The Cartographic Journal, 2(1):32-38.
. (1966), "Numerical Map Generalization," In John Nystuen, Ed., Michigan Inter-University Community of Mathematical Geographers, Discussion Paper 8, (Ann Arbor, Michigan:University of Michigan), 25 p.
Topfer, F. (1962). "Das Wurzelgesetz und seine Anwendung bei der Reliefgeneralisierung," Vermussungstechnik, 10(2):37-42.
. (1963). "Untersuchungen zum Anwendungsberich des Wurzelgesetzes bei Kartographischen Generalisierung," Vermessungstechnik, 11(5):179-186.
Töpfer, F. and W. Pillewizer (1966). "The Principles of Selection, A Means of Cartographic Generalisation," Carographic Jowrnal, 3(1):10-16.
Traylor, Charles T. (1979). "The Evaluation of a Methodology to Measure Manual Digitization Error in Cartographic Data Base," unpublished Ph.D. Dissertation, Deparment of Geography-Meteorology, The University of Kansas.
United Nations (1964), "Generalization and Omission of Detail: an Economic Approach to Chart Maintenance Problems," Proceedings, Fourth UN Regional Cariographic Conference for Asia and the Far East, II: 242-249.
Van Hom, E.K. (1985), "Generalizing Cartographic Data Bases," Proceedings, Seventh International Symposium on Automated Cartography, Digital Representation of

Spatial Knowledge, AUTO-CARTO VII, held in Washington, D.C., 11-14 March 1985. (Falls Church, VA:American Society of Photogrammerty and the American Congress on Surveying and Mapping), pp. 532-541.
Vanicek, P. and D.F. Woolnough (1973), "A Program Package for Packing and Generalizing Digital Cartographic Data," Technical Repor Number 23, Deparment of Surveying Engineering, University of New Brunswick.
(1975), "Reduction of Linear Cartographic Data Based on Generalization of Pseudo-Hyperbolae," The Cariographic Journal, 12(2):112-119.
Watson, W.C. (1970), "A Study of the Generalization a Small-Scale Map Series," International Yearbook of Cartography, 10:24-32.
Weber, W. (1980), "An Information Science Approach to Map Generalization," in H. Opheim, Ed., Contributions to Map Generalization Proceedings, (Oslo, Norway:Norwegian Computing Center), pp. 31-52.
Wertheimer, M. (1958), "Principles of Perceptual Organization," in Readings in Perception, D. Beardsley and M. Wertheimer, Eds. Princeton, N.J.:Van Nostrand.
White, Ellen R. (1983), "Perceptual Evaluation of Line Generalization Algorithms," unpublished Masters Thesis, Deparment of Geography, Virginia Polytechnic Insciture and State University, 133p.
Wright, John K. (1942), "Map Makers Are Human," Geographical Review, 32:527-544.
Wofendale, P.C.F. (1967), "Machine Accuracies in Automatic Cartography," The Carrogrophic Journal, 4(1):24-28.

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix B-Software Overview

B. 1 Introduction

As part of the CARTOGEN program, PGSC designed and developed a Line Simplification Shell to support the test and performance of various software algorithms for line simplification, smoothing, and measurement. The shell allows for cycles of simplification, smoothing, and measurement to be performed (and their results evaluated) repeatedly until the Quit option is selected. It was developed and programmed in C and consists of 2783 lines of executable code. ${ }^{\text {T The Shell runs on Sun workstations under }}$ SunView's windowing environment.

The shell is invoked by entering the linesimp command at the Unix ${ }^{\text {M }} \mathrm{C}$ shell prompt. After initialization, the shell's icon is displayed in the upper left comer of the screen. "Opening" this icon by selecting it with the left (selection) mouse button brings up the shell's Control Panel, which allows for the interactive selection of the shell's various algorithms and options. The Conrol Panel is explained in detail in Appendix B. 2 of this report. The shell also provides a Display Window to graphically present the original (input) line and the modified (output) line. The input line can be drawn from scratch using the mouse. This window is further explained in Appendix B. 3 of this report. Finally, a Coordinates Window is provided for actual line coordinate data, which can be examined and saved to a file and, in the case of the input line, entered manually or loaded from an existing file. This window is fully explained in Appendix B. 4 of this report

B. 2 Control Panel

The basic event flow for the Line Simplification shell is as follows:

- Select or verify the coordinate data for algorithm execution. If desired, enter or load new data into the input coordinates side;
- On the Control Panel, select an algorithm to be performed for simplification, smoothing, or measurement,
- Execute the algorithm and examine its results.

The following figure explains the Control Panel.

B.2.1 Algorithm Selection Using Pop-up Menus

The currently selected methods for simplification, smoothing, and measurement are displayed in bold face on the control panel. To change an individual senting, bring the mouse pointer to point to any of the following: the method burron (shown in oval on the left), ritle (in the middle), or current name (in boldface on the right). Then press and hold the right (menu) mouse button, which pops up the top-most menu for that method set (see figure below).

Any item on the menu which has a right arrow at its right indicates the existence of a subordinate menu for that item. These "pull-right" menus are then displayed by-while
still holding down the mouse menu button-moving the mouse pointer over to the right arrow until the pull-right menu pops up, as in the figure below.

These subordinate menus may have pull-rights of their own, allowing an extensive hierarchy to be displayed in a neat and concise manner without permanenly tying up screen space (this is why these menus are often referred to as "walking" menus for the step-like method used to display them).

Actual algorithm names are at the botom end of the menu structure, and are separated by lines within their menus. Once the desired algorithm is selected (highlighted) within this bottom-level menu, releasing the mouse menu bution now sets the actual algorithm name for that method on the Control Panel. This remains in effect until explicitly changed later. This menu selection process is similar for all menus in the SunView environment.

There is a menu structure for each of simplification, smoothing, and measurement, independent from each other, that is, setting the simplification method has no effect on the smoothing method, etc.

B.2.2 Executing the Desired Algorithm

Once set using the walking menus, the desired algorithm is executed by pointing to the method button (in the oval) and selecting it with the mouse. Again, executing one has no effect on the other methods; that is, selecting the Simplify buton strictly performs the simplification with no smoothing and no measurements. In the case of Simplify or Smooth, the results are displayed, after automatically clearing any previous output, on the Display and Coordinates Windows' output sides. Some algorithms require user input for parameter values, such as a zolerance. If so, a "pop-up" window is displayed to allow entry'
of the required value. Then select the OK button to continue. In the case of Zeasure, the results are shown at the bottom of the Control Panel.

B.2.3 Reset and Qult Buttons

Selecting the Reset button resets the three method names to their respective default. Selecting the Quit button exits the shell.

B.2.4 Show/Hide and Overlay/\$o Overlay Buttons

If either the Display or the Coordinates Window is not visible on the screen, selecting the appropriate Show button on the Control Panel displays that window. Once either window is shown, its Show button then toggles to Elde, so you can control what is being displayed on the screen at any time. Of course, these windows behave in otherwise standard SunView fashion by providing the standard "window" menu shown when pressing the mouse menu button anywhere along the window's frame.

The Overlay button is provided to allow you to examine the modified line overlaid on top of the original line. Once the lines are overlaid, this button toggles to No Overlay, allowing you to reset the input display.

B. 3 The Displays Window

As mentioned above, this window allows graphical representations for the original and modified lines. This window is made up of two "canvases" on which the lines are drawn, each of which is fully scrollable. Currently, they default to 1000×1000 pixels in size, partially shown in a window 500×500 pixels wide. These parameters are, however, easily modified. An example of the Display Window is shown below.

The cursor here is made up of two fine "cross-hairs," shown here in white, which allows precise alignment while creating input lines.

B.3.1 Creating an Input Line

In addition to loading an existing line from a standard Unix file, you can create or modify the current input side of the display by using the mouse. ${ }^{2}$ Simply clicking the left, or selection, mouse butuon anywhere in the input canvas creates a new coordinate. Creating new coordinates then draws vectors between each pair of coordinates, building the line segment by segment. You can also "drag" the mouse (while holding the mouse selection button down) creating a sequence of more finely spaced coordinates. This method allows a smoother line shape, but creates coordinates more rapidly. Notice that each line point is drawn enlarged and of a different color than the line segments. These colors can be controlled as explained below.

B.3.2 Using the Display Menu

There is a menu shared between the left and right sides of the Display Window. This menu is shown by pressing and holding the mouse menubutton within the borders of
either display. The available options, which generally apply to the side where the menu is popped up, are:

- Clear
- Zoom
- Color

The Clear option simply clears the appropriate canvas, along with its corresponding coordinate matrix in the Coordinates Window. If selected on the input side, the output side is additionally cleared.

The Zoom option allows the capability to 200m in on a small area of the canvas, enlarging each pixel in that area. This option does not presently exist in the software, but, if it did, could provide for several levels of 200ming-such as 2X, 4X, 10X, etc.

The Color option has a pull-right menu which controls the color of Points, Lines, Areas, Foreground, and Background, each of which has a pull-right for selecting from a set of actual display colors. Note that choosing a color for the foreground (cross-hairs and scrollbars) and background applies to both canvases simultaneously.

B. 4 The Coordinates Window

The Coordinates Window displays the X, Y, and Z coordinate values for each point on the input and output lines. The \mathbf{Z} coordinate is provided to accomodate data which contains the third dimension. Be aware however that some algorithms are not affected by the \mathbf{Z} values! Each side of the window contains a file and button panel at the top, and a spreadsheet-like matrix for the actual coordinates below. The Coordinates Windows consist of two parts: (1) the File Panels; and (2) the Coordinate Matrices. An example of the Coordinates Window is illustrated below.

Original (input) and modified (output) coordinates sher

B.4.1 The File Panels

You can Save and, for the input side, Load the coordinate data using standard Unix files. The Load button is shown only when the input side is empty, while the Save buntons are shown only when the appropriate side contains coordinate data. There is also a

Clear button, provided for each side when data exists, duplicating the function of the Clear menu choice described in Appendix B. 3 above.

In order to load or save data, the appropriate file name (and full or partial Unix path name, if applicable) must be entered in the spaces provided. This must be an existing file for the input Load option, while it may be a new or existing file for the Save option. A shor message is displayed below the file name indicating the status of the Load or Save action when the appropriate button is selected with the mouse.

B.4.2 The Coordinate Matrices

Each coordinate matrix simply displays the X, Y, and Z values for the lines, if any, shown in the Display Window. In addition, the input matrix can be used as a standard spreadsheet to enter coordinate data (this is why the cursor takes the shape of a cross in this panel). The current cell contains a blinking caret, indicating where data entered from the keyboard will be applied. A value is entered by typing it and hitting Tab or Return, advancing the caret to the next cell in the matrix. You can also use Shift-Tab or ShiftRetum to "backspace" the caret to the previous cell in the marix. Finally, you can use the mouse cursor by pointing at and selecting any cell in the marix, thus making it the current cell. Note also that each coordinate matrix can be scrolled individually in the vertical direction. As each set (X-Y-Z) of coordinates is entered, the line segment corresponding to the line between the new point and the last is drawn on the input canvas.

B. 5 Current System Implementation

The software shell currently includes menu support to Simplify, Smooth, and Measure lines. The following figure illustrates the overall menu structure with those items that are currently implemented, shaded ${ }^{3}$

B. 6 Conclusion

The Line Simplification Shell provides NOS with a cohesive testbed environment in which to design, implement, and evaluate linear simplification and smoothing algorithms for application to nautical charting data. This tool provides a plaform from which an intelligent assessment can be made of the performance of generalization algorithms and their applicability to NOS products.

B. 7 Endnotes

1The source code is included at the end of section B. 7 of this report.
${ }^{2}$ An existing line may have been previously digitized or entered manually.
3It should be noted that the breakout of smoothing algoritms does not parallel that which is presented in section 2.2.3.4 (Feature Smoothing) of this repor. During the evolutionary process of developing this software shell, an initial breakout was used to prepare the menu structure. After some further work in the generalization study effort, this decomposition was updated and is reflected so in the text. The software, however, remains in the original form.


```
    * Lin@ simplification (ganeralization) procesa shell
```

 * Lin@ simplification (ganeralization) procesa shell
 - by Yvon Perreault, PAR Covermmant systems Corp.
- by Yvon Perreault, PAR Covermmant systems Corp.
* April-May 1987.

```
* April-May 1987.
```



```
|include <बuntcol/बunview.h>
```

|include <बuntcol/बunview.h>
|inelude <gunteol/panel.h>
|inelude <gunteol/panel.h>
|include <auntcol/eanvas.h>
|include <auntcol/eanvas.h>
|include <aunteol/scrollbar.b>
|include <aunteol/scrollbar.b>
|inelude <atdio.b>
|inelude <atdio.b>
|include <math.h>
|include <math.h>
/*
/*
- Simplilieation manu constants
- Simplilieation manu constants
*/
*/
4deZine SIMP_NrH_PT II
4deZine SIMP_NrH_PT II
4define SIKP_RANDOM_PT }1
4define SIKP_RANDOM_PT }1
}define SIMP_LENE_WIDTH 21
}define SIMP_LENE_WIDTH 21
|deIine SIMPEDCIIDENS }2
|deIine SIMPEDCIIDENS }2
4define SIMP_PERPENDIC 23
4define SIMP_PERPENDIC 23
|define SIMP_NNGOLAR 24
|define SIMP_NNGOLAR 24
4deEine SIMP_DIST_NNGLS 25
4deEine SIMP_DIST_NNGLS 25
Adefine SIMP REUMNN }3
Adefine SIMP REUMNN }3
4define SIMP_ROBERCE }3
4define SIMP_ROBERCE }3
Idefine SIMP_INNG 41
Idefine SIMP_INNG 41
|define SIMP_JOHANNSEN 42
|define SIMP_JOHANNSEN 42
Ade{ine SIMP_OPHEIM 43
Ade{ine SIMP_OPHEIM 43
|define SIMP_DODGRAS 51
|define SIMP_DODGRAS 51
/*
/*
*' Smoothing menu constants
*' Smoothing menu constants
*/
*/
Udefine SHOO_SIMPIE_AVE }1
Udefine SHOO_SIMPIE_AVE }1
4define sMOO_WEIGHT_AVE }1
4define sMOO_WEIGHT_AVE }1
|define SMCO_FWD_LOOK 13
|define SMCO_FWD_LOOK 13
|define sm00_pERTALS }2
|define sm00_pERTALS }2
*define SMOO_BROPHYS 22
*define SMOO_BROPHYS 22
1de\&ine SMOO_CUBIC_SP 32
1de\&ine SMOO_CUBIC_SP 32
|define sMOO PNRAB SP }3
|define sMOO PNRAB SP }3
0de{ine SMOO_B_SPLIME 33
0de{ine SMOO_B_SPLIME 33
|define sMOO_BEZIER_COR 34
|define sMOO_BEZIER_COR 34
/*
/*
* Measuremant menu conotanta
* Measuremant menu conotanta
*/
*/
|deEine mIRAS_NBS 2
|deEine mIRAS_NBS 2
\deEine MinAS_ANGG}
\deEine MinAS_ANGG}
IdeEine MmAS_SIN \&
IdeEine MmAS_SIN \&
/*
/*
* Display masu conotante
* Display masu conotante
|
|
4define DISP_CRFNR , 2
4define DISP_CRFNR , 2
|define DISP_200M 2
|define DISP_200M 2
|define DISP_COLOR 3
|define DISP_COLOR 3
1*
1*
Contzol panel conatants
Contzol panel conatants
*/
*/
\de{ine CONIROL_WIDTR_1 36
\de{ine CONIROL_WIDTR_1 36
Idefine COITROL_WIDTR_2 30
Idefine COITROL_WIDTR_2 30
|deEine 8IMP_ROW 0

```
        |deEine 8IMP_ROW 0
```

```
64 flefine EMOO_RON I
```

64 flefine EMOO_RON I
65 define MTRS_ROW 2
65 define MTRS_ROW 2
66 fdefine BOTTON_ROW 3
66 fdefine BOTTON_ROW 3
67 define DIST_ROW 0
67 define DIST_ROW 0
68 Idefine COOR_ROW 1
68 Idefine COOR_ROW 1
69 Tdefine SIMP_DEFAOLT "Douglas-Paucker"
69 Tdefine SIMP_DEFAOLT "Douglas-Paucker"
70 Edefine SMOO DEFAJLT *None"
70 Edefine SMOO DEFAJLT *None"
71 Adefine Misas_DEFAOLT "Absolutes"
71 Adefine Misas_DEFAOLT "Absolutes"
72 define SIRP_DEFAOLT_VALOE SINP_DODGLAS
72 define SIRP_DEFAOLT_VALOE SINP_DODGLAS
73 Adefine SHOO_DEFAOLT_VNLOE SHOO_HONE
73 Adefine SHOO_DEFAOLT_VNLOE SHOO_HONE
74 define ripAS_DEFAOLT_VALOE RIBAS_ABS
74 define ripAS_DEFAOLT_VALOE RIBAS_ABS
73 Idefine MRX_MiSASORES 5
73 Idefine MRX_MiSASORES 5
76 Idefine DPI 87.0 /* rounded (pixels in 1 inch ("Dota Per Inch") */
76 Idefine DPI 87.0 /* rounded (pixels in 1 inch ("Dota Per Inch") */
77 Idefine TOL_DEFAOLT "10"
77 Idefine TOL_DEFAOLT "10"
78
78
79 /4
79 /4
- Graphica canvases conatants
- Graphica canvases conatants
*/
*/
|define CNNVAS_MAX_X 1000
|define CNNVAS_MAX_X 1000
fdefine CANVAS_MAX_Y }100
fdefine CANVAS_MAX_Y }100
|define IMIT_MIDTH 500
|define IMIT_MIDTH 500
Adefine INIT_HEICHT 500
Adefine INIT_HEICHT 500
86
86
87
87
88 Color map constants
88 Color map constants
89 / /
89 / /
90 OdeEine R O
90 OdeEine R O
91 tdefine G I
91 tdefine G I
92 Idefine B 2
92 Idefine B 2
93 ldafine COLOR_map_sIRE
93 ldafine COLOR_map_sIRE
94 Idefine BACRGROOND. 0
94 Idefine BACRGROOND. 0
95 Adefine FOREGRODND 1
95 Adefine FOREGRODND 1
96 Idefine IN_POINI_COLOR 2
96 Idefine IN_POINI_COLOR 2
97 Idefine IN_LINE_COLOR 3
97 Idefine IN_LINE_COLOR 3
98 define IN_NREA_COLOR 4
98 define IN_NREA_COLOR 4
99 ddefine oot_pOINT_COLOR 5
99 ddefine oot_pOINT_COLOR 5
100 define ODT_LINE_COLOR 6
100 define ODT_LINE_COLOR 6
101 dde{ine OUT_ARSN_COLOR 7
101 dde{ine OUT_ARSN_COLOR 7
102 /*
102 /*
103. Color monu conotants
103. Color monu conotants
104 /
104 /
105 1de\&ine WHITE . 1
105 1de\&ine WHITE . 1
106 define GREEN 2
106 define GREEN 2
107 define RED 3
107 define RED 3
los define blUE 4
los define blUE 4
209 tdefine yExTOW 5
209 tdefine yExTOW 5
110 define CYAN 6
110 define CYAN 6
121 taefine MagEmTA 7
121 taefine MagEmTA 7
2.2 flefine bracx 8.
2.2 flefine bracx 8.
113 Adefine Gray ?
113 Adefine Gray ?
114 idofine LICHT_RED io
114 idofine LICHT_RED io
115 ddefine IICHT_GREEN 11
115 ddefine IICHT_GREEN 11
126 dofine LIcar_bl\sigmae }1
126 dofine LIcar_bl\sigmae }1
117
117
118
118
119
119
220
220
121
121
122
122
123
123
124
124
125
125
226
226
/*
/*
- Coordirate panel convtants
- Coordirate panel convtants
*/
*/
Mdefine max_coords - }25
Mdefine max_coords - }25
*define cookDs_cois }3
*define cookDs_cois }3
ddefine coords_ROWS 25
ddefine coords_ROWS 25
define label_IEm 4
define label_IEm 4
Odefine vNLOEIEN 5
Odefine vNLOEIEN 5
*define manc_\Sigmaman}2

```
    *define manc_\Sigmaman}2
```

6/4/87	11:02 AM	linesimp.e	Page 3
127	Pdefine X	0	
128	4defino Y	- 1	
129	4define 2	2	
130			
131	1*		
132	- Serollbar	constanta	
133	-1	,	
134	-defise Vertien	EnL_LOC serotr_east	
135	Adefine yorjzos	SNTA_ IOC SCROLI_SOOHH	
236	4define Bubsis	[PREIE 1	
137			
138	- catic		
139	Frame	control_frame,	
140		coordinate_frame.	
141		dieplay_trame.	
142		tolarance popup:	
143			
144	etatic		
145	Panel	control panel.	
146		bottom_parel.	
147		ceasuramente panel,	
148		cilo_in panel.	
149		2ile_out panel.	
150		coord_in_panal,	
151		coord_out panel.	
152		tolerance_panel:	
153			
154	teatic		
155	Panel_itam	simplify_button,	
156		oimplification_mehod,	
157		current_implification.	
158		amoothe_button,	
159		moothing_method,	
160		eurrent_amoorhing.	
161		seasure_button,	
162		maxurement_method,	
163 .		current_meagurament.	
164		zeset button,	
165		quit_buston.	
166			
167		dieplay_titla.	
168		diap_ehow_hide_butten,	
169.		diap_overlay_butten,	
170		coordinate_title,	
171		coor_abow_hide_buteon.	
172			
173		meamurement_1ine [RAX_girastres],	
174			
175	.	path_in_itam,	
176 177		Eile_in_item,	
178		coox_in_load_button,	
179		coer_in_clear_buteon,	
280		eoor_in_seve_button,	
181		Limput headar.	
182		coord_in_header,	
183		ccosd_in_label (RAX_COORDS).	
184		coord_in_cell [MAX_COORDS] [3].	
285		coord_in_ender [Max_coords) .	
186			
187 188		path_out item,	
188 189		2ile_out item.	

190

191
192
193
194
195
196
197
198
199
800
202
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

```
    co0r_out_clear_button,
```

 co0r_out_clear_button,
 000x_Out_save_button.
 000x_Out_save_button.
 output header.
 output header.
 ccord_out_beadex.
 ccord_out_beadex.
 ccord_out_label [MNX_COORDS].
 ccord_out_label [MNX_COORDS].
 ccord_out_utart [MNX_COORDS][3].
 ccord_out_utart [MNX_COORDS][3].
 coord_Out_cell [MAX_COORDS] [3],
 coord_Out_cell [MAX_COORDS] [3],
 coord_out_ender [MNX_COORDS] .
 coord_out_ender [MNX_COORDS] .
 tolerance_text_Item,
 tolerance_text_Item,
 toleranee_ok_button;
 toleranee_ok_button;
 atatic
atatic
Canvas input_canves,
Canvas input_canves,
output_canvas:
output_canvas:
atatic
atatic
Pixwin * input_pw,
Pixwin * input_pw,
*output_pw;
*output_pw;
atatic atruct
atatic atruct
pixrect aimplify_button_image,
pixrect aimplify_button_image,
*moothe_button_Image,
*moothe_button_Image,
*mmanure_button_image.
*mmanure_button_image.
- reset button_image.
- reset button_image.
"quit_button_Image.
"quit_button_Image.
* bhow_butcon_inage.
* bhow_butcon_inage.
-hide_button_image.
-hide_button_image.
*overlay_button_image,
*overlay_button_image,
*no_overlay_button_image.
*no_overlay_button_image.
*load_button_image.
*load_button_image.
-clear_button_image.
-clear_button_image.
*gave_button_image:
*gave_button_image:
static otzuct
static otzuct
gect Canvas_fect = {0, 0, CNNNAS_MNX_X, CNNVAS_MNX_Y}:
gect Canvas_fect = {0, 0, CNNNAS_MNX_X, CNNVAS_MNX_Y}:
mtatic
mtatic
Cura0r . coord_eurser,
Cura0r . coord_eurser,
draw_curaox:
draw_curaox:
atatic
atatic
Manu aimplilication_menu,
Manu aimplilication_menu,
aimp_indep_pt_menu,
aimp_indep_pt_menu,
aimp_local_manu.
aimp_local_manu.
aimp_uncons_local_menu.
aimp_uncons_local_menu.
a<m_cona_local_menu.
a<m_cona_local_menu.
odur_global_manu,
odur_global_manu,
mmoothing_manv,
mmoothing_manv,
emoo_avoraging_manu,
emoo_avoraging_manu,
amoo_opailon_menu,
amoo_opailon_menu,
0moo_oplining_manu,
0moo_oplining_manu,
amoo_eplining_local_menu,
amoo_eplining_local_menu,
amoo_oplining_extended_manu.
amoo_oplining_extended_manu.
gmoo_oplining_global_manu,
gmoo_oplining_global_manu,
mmeauroment_maru.
mmeauroment_maru.
angulax_meamure_manu,
angulax_meamure_manu,
ainuous_meamure_manu,
ainuous_meamure_manu,
diaplay_manu,
diaplay_manu,
color_typea_many,
color_typea_many,
back_color_manu,
back_color_manu,
colox_manu;

```
        colox_manu;
```

```
    253 statie
    254 Icon
    255
    256
    257
    258
    259
    260
    261
    262
    263
    264
    265
    266
    267
    268
    269
    270
    271
    272
    273
    274
    275
    276
    277
    278
    279
    280
    281
    282
    283
    284
    285
    286
    287
    288
    289
    290
    291
    292
    293
    294
    295
    296
    297
    298
    299
    300
    301
    302
    303
    304
    303
    306
    307
    308
    309
    310
    311
    312
    313
    314
*incIude "../cursors/eroes"
    seatie
    char
        * in_Pomat - - 85u 45u 65u",
        *out_format - - 85u 45u 45u ce".
        "read_mode = "r".
        *mzite_mode = "w".
        *coord_colunn_headar = "Coosd| -X-\infty - \-- m-2--";
    atatle
    etzuct meamuses 1
        Sloat total_lengeh,
        total_aתgularity.
        right angularity.
        10ft_angularity.
        atd_angulazity_ineh.,
        num_coordinates,
        total_guns:
            1:
    atatic atruct
    ainglecolor
        control_bq_eolor = (255, 255, 255), /* white */
        control_fgccolor = (000, 000, 255). /* blue */
        popup_bg_eojor = {255, 255, 255}, /* white %/
        popup_fq_color = 1255, 000, 000): /* red */
    static atruct
    colommapseg
        ema;
    seatic atruct
    cun_map
        map;
    erarie
    unsigned ehar
        RCB[3][COLOR_WNP_SINE]:
    acatic
    ahort Mairs_image [256] - 1
|inciude "../cursors/haira"
                                    1:
    mpr_statie (haira_pixrect, 16. 16, 1, hairg_image):
    eratic
    ehort crose_image[256] = 1
1:
```

6/4/87	11:02 AM	linesimp.c		Page 6
326	mpr_atatic (cross_pixrect, 26, 26, 2, crose_image):			
317 - -				
318 static				
319	chort ic	inage [256] - 1		
320 tinclude "../icons/lineaimp"				
321		1:		
322 mpr_static (icon_pixrect, ICOM_DEFAOT_WIDTH, ICON_DEFAOLT_GEIGET, 1, icon_image):				
323				
324 /* Internal procedures 6 functions */				
325	double	calc_distance	(1):	
326	void	clear_coordinates	$11:$	
327	void	dofine_manus	()	
328	void	dofine_windows	():	
329	void	do_color.choice	():	
330	void	do_display_choiee	():	
332	void	do_done	():	
332	void	do_douglan_peucker	():	
333	void	do_measure_absolutes	():	
334	void	do_measure_right_left_ang	():	
335	void	do_measure_atandardized_ang	():	
336	void	do_measure_total_ang	(1)	
337	void	do_masure_total_rus	():	
338	void	do_measure_total_sin	(1)	
339	void	do_measurement_choice	():	
340	void	do_process	():	
341	void	do_quit	(1)	
342	void	do_reset	()	
343	void	do_simplification_choice	():	
344	void	do_smoothing_choice	(1):	
345	void	dram_eanvas	(1):	
346	void..	dram-point	();	
347	Panel_setting	enter_coord_ehar	(1):	
348 349	void	enter_in_coordinate	():	
349	void	-nter_now point	():	
350	void	enter_Out_coordinates	():	
351	void	2110_1_0	():	
352	void	handie_canvas_ovent	()	
353	void	locate_itam	():	
354	void	make_colos_map	():	
355	void	Ok_button	(1):	
356	void	overlay_displaya	():	
357	void	sot_point_coordinates	(1):	
358	void	sot_color	(1):	
359 360	void	showbutton_monu	(1):	
361	void	shom_hide_displays	():	
362				

\square

```
6/4/87 11:02 AM

385 386 387 390 10
388 389 390
\(391 / 0\)
392
393 394 395
396 397
398 399
400 401 402 403 404 405

\section*{double}
\(1 *\)
* 1

1
eale_distance (p1, p2)
int pl[3]. p2[3]:
- Calculate distance betwean pl and p2
int \(\quad\) a, b;
double d;
\(a=p 1[X]-p 2[X]\) :
\(b=p^{2}[X]-p^{2}[Y]\); \(d=\) aqgt ( (double) \((a \cdot a)+(b\) b) ): saturn (d):
| /* cale_distance */

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
```

vosd
cleaz_coordinates (item, evant)
Panel_item 1tem;
Event ement;
/*
Cleaz the curgent dngut coosdinates
|/
l
if (item - coos_in elear button) f /* elear input aide */
pm_loek (input_pu, ccanvae_rect):
pu_mritchackground (input_pN, O, O, CNIVAS_MNX_X, CNNVAS_MNX_Y, PIX_SRC):
pu_unlock (ingut_pw):
IOE (i - 0; i < MNX_coonds \&f icoord(i)[X) >e 0; i++)
/* elear the input coordinates */
ZOE (j - X; J << 2; j+H) (
panel_set_value (coord_in_eell(i)(j), "m):
iceord[i][y] - -1:
|
Eax_seached - FARSE: /* meset */
zow - 0; /* zoset */
col - X; /* seset */
mindow_ant (coord_in_panel. PNIBL_CNEEI_ITEM, coord_in_cel1[row][col]. 0):
/* hide loput "eleaz" and "aave" option= */
panel_cot (ceor_in_cleaz_button. PNNH__SHOM_IFKM, FALSE. 0);
panel_cet (ceos_da_cave_button . PNuEL_SmON_IFEM, 7RTSE, 0):
... panel_cot.(Eile_in_meseage. PNMEL_INPII_SIRING. "0. 0):
1/4 clear input side*/
/* clear output ajde in either case "/
pw_lock (output pw, ceanvas_rect):
pu_wrieabackground (output_Pw, 0, O, ONNNAS_MNX_X, CANVAS_MNX_Y, PIX_SRC):
pu_unlock (output_pu):
for (i - 0; L < MNX_COORDS ce ocoord(i][X] >0 0; i++) {
/* elear the output eoordinates */
LOE (I - X; J << 2; j+t) 1
panol_eat (coerd_out_cell[i][j]. PNNEL_INBEI_STRING, mo. 0);
ocoord[i][j] - -1;
1
if (i < MNX_NENSORES) /* Eecet manauromenta */
panel_get (macouremant_Iine{i], PANEL_INEEL_SIRIMG, ".. 0):
1
/* bude output "eloar" and "gave" options */
panel_aut (coor_out_clear_button, PNNET_SBOM_IIES, MRISE, 0);
panel_cet (coor_out_eave_button . PNMIL_SHON_ITKM, TMLSE. 0):
/* regat output 2ile mesaage */

```

```

 /* seset overlay etatu* */
 panel_mot (diup_overlay_button, PNDBI_INBEL_IMMCE, overlay_button_image, 0):
 overlaid - rarsm;
 mindow_cot (manauromanta_panel, WIK_ROWS, 0. 0):
 window_lit haight (masuremants_panel):
 window_&it (control_framo):
 if (itam - coor_in_cleax_button) /* Einally. show input "load" option |/
 ganel_sot (ceos_in_load_button, PNTEL_SHON_ITMM, IROE, 0):
 | /% cleax_coordinates */
    ```
void
define_manus ()
475 * Define requifed "walking" menus
476
    */

MENO_SIRING_ITEM, \(\quad\) NTH POInt". MENO_SIRING_ITEM, "Random". SIMP_RNDOM_PT, do_eimplificarion_ehoice. TRUE,
"Line Midth". SIMP_LIME_WIDTR, EucIidean Diatance". SIMP_EDCLIDEAN,
"Perpendicular Distance",
SIMP_PERPENDIC.
"Angular Change".
SIMR_ANGULAR,
\({ }^{\text {adiatance }} \mathrm{f}\) Angle".
SIMP_DIST_RNGLE,
do_(Euplification_choice,
TROE,
-Reuman-Witkan". SIMP_REOMN, "Roberge". SIIP_ROBERGE, do_inalification_choice. TRUE.
"Lang"
SIKP_INNG.
"Johannaen".
SIMP_JOMANNSEN,
"Opheim".
SIMP_OPREIM,
do_simplification_choice.
RRUE.
"Douglas-Peucker". SITP_DOUGLAS, do_simplification_ehoice. EROE.
```

"Indepandent Point Processing".
aimp_indop_pt_manu,
"Locel Procesting".
ad"__local_menu.

675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713.

714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730

- 731

732
733
734
735

```
/\#
void
dafina_windowe (arge, axgv)
int arge;
char **azer []:
/*
Define neaded SunViow frames, panele, eanvases, ete.
- 1
1
```

```
Iinesimg_icon = /* control_frame (sheli) icon */
```

Iinesimg_icon = /* control_frame (sheli) icon */
icon_create (ICOM_IMACE, Gicon_pixrect,
icon_create (ICOM_IMACE, Gicon_pixrect,
0):
0):
/*
/*
* Define main controd panel, with process control panel and data control panel
* Define main controd panel, with process control panel and data control panel
*/
*/
control_frame -
control_frame -
windOw_create 1 WOLL, ERNNE,
windOw_create 1 WOLL, ERNNE,
ERANE,ARGS, arge, exgv,
ERANE,ARGS, arge, exgv,
FRNNEIICON, linesimp_icon,
FRNNEIICON, linesimp_icon,
FRNLIE_BACRGRODND_COIOR, GCOntFOI_bg_color,
FRNLIE_BACRGRODND_COIOR, GCOntFOI_bg_color,
MRANE_FOREGROUND_COLOR, CcOntrol_Iq_color,
MRANE_FOREGROUND_COLOR, CcOntrol_Iq_color,
FRNME_IMELRIT_COIORS, TAISE,
FRNME_IMELRIT_COIORS, TAISE,
MRAME_LMBEL, . . "Line Simplification Control".
MRAME_LMBEL, . . "Line Simplification Control".
WIM_X, - O,
WIM_X, - O,
WIN_X.
WIN_X.
WEN_SEOW,
WEN_SEOW,
0L:
control panel =
window_create (control_Erame, PNEL,
WIN_COLDLNS. CONIROL_WIDTRA_1+CONTROL_WIDTH_2,
01:
aimplify_button_image -
panel_button_image (control_panel, "simplify". 10, (%OLu);
amoothe_button_image -
panel_button_image (control_panel, "Smoothe" . 10, NOLI);
measure_button_image -
panel_button_image (control_panel, maasure", 10, NOLU):
reset_button_image =
panel_button_image (control_panel, "Reset" . 10, KOLI):
quit_button_image -
panel_button_image (control_panel, "Ouit" . 10, voLL):
simplify_button -
panel_creace_item (control_panel, PNNEI_BOTTOR,
PNNEL_LABEL_IMMGE. simplify_button_image,
PNNEX_ITEM_\overline{x}
PANER_ILTM_Y. MTHR_ROW (SIMP_ROW)-2,
PNNEL_ROTIFY_PRCC, do procens,
PNNEL_EVENT_PROC, show_button_menu,
0):
eimplification_method -
panel_crente_item (control_panel, PNNEL_RISSSNet,
PNNILL LNBEL_SIRING, -Simplification Mathod:",
PNNEL_ITEMXX. ATMR_COL (13).
PNNEL_ITEMY. ASTR_RON (SIMP_ROW),
PNTEL_EVENY_PRCC. shom_button_menu.
0):
evrrent_aimplifieation -
paraI_create_itam (control_panel. PNiEl_nisSSMGE,

```
\begin{tabular}{|c|c|c|c|}
\hline 738 & & PANEL_LABEI_STRING, & \\
\hline 739 & & PANEL_INBEL_BOLD, & \\
\hline 740 & & PANEL_ITEM_X, & \\
\hline 741 & & PANEL ITEM \(\%\), & \\
\hline 742 & & PANET_EVENT PROC, & \\
\hline 743 & & 0): & \\
\hline 744 & aimplification_value - & SIMP DxFAUET_VINE: & \\
\hline 745 & & & \\
\hline 746 & amoothe_button - & & \\
\hline 747 & panel_create_item ( & control panel. PRIEP & \\
\hline 748 & & PRNEL_LABEL_IMMES. & \\
\hline 749 & & PNTE_ ITMM_X. & 2 \\
\hline 730 & & PNIEX_ITEM_Y, & \\
\hline 731 & & PANEL_NOTIFY_PROC. & \\
\hline 752 & & PANEY EVENT PROC, & \\
\hline 753 & & 0): & \\
\hline 754 & amoothing_method - & & \\
\hline 755 & panel_create_dtem 1 & control panel, pariel & E, \\
\hline 756 & & PANEL LABEL STRING. & \\
\hline 757 & & PNNEX_ITEM_X. & \\
\hline 758 & & PNNEX ITEM \(X\), & \\
\hline 759 & & PANET_EVENT_PROC, & \\
\hline 760 & & 0): & \\
\hline 761. & current_smoothing - & & \\
\hline 762 & panel_create_item 1 & control panel. PAMEX & E. \\
\hline 763 & & PNNE_ FABEH_SIRING. & sarco \\
\hline 764 & & PNTET_LABET_BOLD. & \\
\hline 765 & & PANEL ITEM X. & \\
\hline 766 & & PANEL_ITEM_Y. & \\
\hline 767 & & PANEL_EVENT PROC. & \\
\hline 768 & & 01: & \\
\hline \[
\begin{aligned}
& 769 \\
& 770
\end{aligned}
\] & moothing_value - 8m00_ & Dratali_vasoe: & \\
\hline 771 & messure_button - & & \\
\hline 772 & pancl_ereate_item 1 & control panel. PNiEs & . \\
\hline 773 & & PANES LABEL_IMAEE, & \\
\hline 774. & & PNTEL_ITEM_X, & \\
\hline 775 & & PNITS ITEM_Y. & \(1{ }^{\text {a }}\) \\
\hline 776 & & PNTEL_MOTIFY_PROC, & \\
\hline 777 & & PANEL EVENT.PROC, & \\
\hline 778 & & 0): & \\
\hline 779 & masurament_method - & & \\
\hline 780 & panel_create_iten ( & control penel, paiter & \\
\hline 781 & & PNNEL_LABEI_STRIMG, & \({ }^{-1}\) \\
\hline 782 & & PNTEL_ITRM_X, & \\
\hline 783 & & PANEL_IEEX \(y\), & \\
\hline 784 & & PNREL_EVENT_PROC, & \\
\hline 785 & & 0): & \\
\hline 786 & curient_meadurnanat o & & \\
\hline 787 & panel_create_item ( & control panel, pNise PNIEL LABEL 5TRIMG. & \\
\hline 789 & & PNVELINBEE BORD. & \\
\hline 790 & & PNTEX_ITMM_X, & \\
\hline 791 & & PNTEL_ITEM_Y. & \\
\hline 792 & & PNTEL EVEAT PROC. & \\
\hline 793 & & 0): & \\
\hline 794 & mensurament_value - me入 & S_DEATOLTMAEE: & \\
\hline 795 & & & \\
\hline 796 & sesot_button - & & \\
\hline 797 & panel_crinte_1tem ( & control panel. PNTES & \\
\hline 798 & & PANEI_LABEL_IMAGE, & 2 \\
\hline 799 & & \begin{tabular}{l}
PNTEI_ITKM_X, \\
(COHTHOR WIDIR_2
\end{tabular} & 17 \\
\hline
\end{tabular}
802

802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
833
856
857
858
859
860
862
862
863
```

PNTEL_ITEM_Y,
PANEL_MOTITY_PROC,

```
0):
quit button -
panel_create_item ( control panel, PNiLSI_BOTYON, PANEL_LABEL_IMREE, quit_button_inage, PANEL_ITEM_X, ATIR_COL (
(CONTROL_WIDTM_2+CONIROZ_WIDTH_2)/2+1).
PATEL_ITEM_ \(\bar{Y}_{1}\) AIIR_RON (BUIION_RON)-2. PAMEL_MOTIEY PROC; do_quit. 0):
```

vindow_\&it_beight (control_panel):

```
bottom panel -
    window_ereate ( eontrol_frame, gAMEL,
        WIX_COLULNS. CONTROL_WIDTH_1+CONTROI_WIDTH_2,
        WIN_BETON.
        WIN_X.
        0):
diapley_title \(=\)
    paneI_create_item ( bottom_panel, pANEL_nESSACE,
        PANEL_WAEL_STRING, "Displays:",
        PANEL_ITEM_X, AITR_COL (O),
        PANEL_ITEM_X. ATIR_ROW (DISP_ROW).
        0) ;
-how_button_image -
    panel_button_image (bottom pancl, "Show" . 10, wUKI):
hido_button_image -
    panel button_image (bottom pasel. "Ride" . 10, घणJI);
overlay_button_image -
    panel_button_image (bottom_pancl, ooverlay" . 10, घULK).
no_overlay_button_image -
    panel_button_image (botitom_panel, "Mo Overlay", 10, \&OKL).
disp_show_hide_buteon -
    panel_Create_item 1 bottom panel. PANPI_BOTION,
                                    PANEL_INBEL_IAREE, show_button_image.
                                    RANEL_ITEM_X, ATMR_COL (13).
                                    PNNEL_ITEM_X. ATIR_ROW (DISP_ROW)-2.
                                    PANEL_KOIITY_PROC. show_hide_displays.
                                    0):
disp_overlay_button -
    panel_create_item ( bottom_paned, PANEL_BOTYON,
                                    PANEL_IABEL_IKRGE, overlay_button_image,
                                    PNIEI_IIEM X. ATIR_COL (25).
                                    PANEL ITEM Y .
                                    AITR_COL (25),
ATIR ROW (DISP ROW) -2.
                                    PANL_MOTIFY_PROC, overlay_displays,
                                    \(0)\) :
coordinate_title -
    panel_create_item ( bottompanel. PNTEI_MESSACE,
                PANEL_IABEI_STRIMG, "Coordinates:".
                PNNEX_ITEM_ \(\bar{X}\), ATTR_COL ( 0 ).
                PANEL_IFLM_X, ATIR_ROW (COOR_ROW).
                    0) :
coor_chou_hido_bution -
    panel_ereate_item 1 bottom_pane1, PNIDI_BOTYON,
                                    PANEL_IABEL_IMCE. Bhou_buteon_image,
                                    PANEI_ITEM_ \(\bar{x}\). AITR_COL (13).
                                    PANEI_ITLM_X. ATMR_ROW (COOR_ROW)-2.
                                    PNTEL_MOTIFY_PROC, show_hide_coordinates,
                    0):
window_fit_beight (bottom_panel):
macuramente_panel o

sile_in panel -
window_ereate 1 coordinate_frame, phikh. PAREL_LABEL_BOLD, EROE. MIM_COLULNS, . COORDS_COLS. WIR_ROWS. 6.
    load_button-imege \(=\)
        panel_button_iminge (Eile_in_panel, "Load". 8, wOLF):
    clear_button_image -

    savo_button_image -
        panel_button_image (Eile_in_panel. "save". 8, घOLI):
    path_in_item -
        panel_create_iton ( Eile_in_panel. PANTL_TEXI,
        PANEI_LABEL_SIRING, \(\quad\) Path: ".
        PANEI_VALOE_DISRLAY_LSNCTR, WNKE_IEN.
        PANEL_VALOE:
        PNNEL_ITEM_X, ATIR_COL (0).
        PRNEL_ITEMEY. ATTR_RON ( 0 ).
    Eile_in_item \(=\)
    panel_ereate_iten ( sile_in_panel, parri_TEXT,
                                PANEL_LABEL_STRING, Frile: ".
                                PANEL_VALOE_DISPLAY_ISNGKH, RANE_IEN,
                                PANEL VALOE, - m .
                                PNNTI_ITEM_X, MTIR_COL ( 0 ).
                                PNEEL_ITEK_Y, ATYR_RON (1).
        \(01:\)
    Eile_in_mesage -
    panel_craate_item ( Eile_in_panel. PANEL_MESSAGE,
        PANEI_ITEM_X, ATIR_COC ( 0 ).
        PANEL_ITEM_Y, ATTR_RON (2).
        PANEL_VALOE_DISPIAY_LBNGIR, HANE_LEN+6.
        0):
    coor_in_load_button -
    panel_create_item ( Eile_in panel. PNREL_BUTION,
        PANEL_LABEL_IMRGE, load_button_image,
        PANEL_ITEM_ \(\bar{X}\), AKTR_COL ( 0 ).
        PANEL_ITEM_Y, AITR_RON (3).
        PANEL_NOTIFY PROC, Eile_i_o,
        01:
    coor_in_clear_button -
    panel_create_item ( Eile_in panel, PNEL_BUKION,
        PAKEL_LABEL_IKAGE, cleax_button_image,
        PANEL_SHON_ITEM, TALSE.
        PANEL_ITEM_X, ATIR_COL (11),
        PANEL_ITEM_Y, MITR_ROW (3).
        PREL_HOTIEY_PROC. elear_coordinates.
        \(0)\) :
    coor_in_save_button -
    panel_create_item ( file_in_panel, PNREL_BOTION.
                                PANEI_INBEI_IMREE, eave_button_image,
                                PANEL_SHON_ITKM, FARSE.
                                PANEL_ITEM_X, ATMR_COL (22).
                                PANEX_ITEH_Y, ATIR_RON (3).
                                PNTEL_EOTITY_PROC, Eile_i_o.
                                0) :
    input_header \(=\)
    pañel_create_item (
        Eile_in panel, paniex_Messnce,
        PANEE_LABEI_STRIEG.

        PNREI_ITHM_X. ATIR_COI (COORDS_COLS/2-5).
        PNTEL_ITEM_Y. ATTR_ROW(4).
        0):
```

 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
1002
1002
1003
1004
1005
1006
1009
1008
1009
2010
1012
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1032
1032
1033
1034
1035
1036
1037
1038
1039
2040
1041
1042
1043
1044
1045
2046
1047
1048
1049
2050
1052
2052

```

990
```

coord_in_beader e
panel_create_item (Eile_in_panel, PNNEL_NTSSNEE,
PNNEI_LABEL_STRING, coord_columm_header,
PANLLIIEM_\overline{X. ANTR_COL(O).}
PANEL_ITEM_Y. ATIR_ROW(5).
0):
vindow_Eit_height (Eile_Ln_panel);
Eile_out_panel -
window_ereate (coordinate_2rame, PNNDL,
PANLI_IABEZ_BOLD, - EROE.
WIN_RICRT_OF. Eile_in_panel.
WIM_Y.
WIn_COLONAS, COORDS_COLS.
WIM_ROWS, 6.
0):
path_out_item -
panel_create_itum (Eile_out_panel, PNNEL_IEXT.
PNNEL_LNBEL_STRING. "Path:",
PANEL_VALOE DISPLAY LENGTH, KNIE IEN,
PANEL_VALUE.
PANRI_ITEM_X. AITR_COL(0).
PANEL_ITMESY. ATHR_ROW(0).
0):
8ile_out_dtem -
panel_ereate_dtem (Eile_out,panel, PNNII_TEXY,
PANEL_LABEK_SIRING, FFide:N,
PANEL_VALOE_DISPLAY_LENGTH, WNYE_LEN,
PaNEL_value, -0.
PANEI_IFEM_X. ATMR_COL(0).
PNNTL_ITEM_X. MTKR_ROW(I).
0):
8ile_out_message -
panel_create_item (Eile_out_panel, PMMEI_vissSAcE,
PNNED_ITKM_X. ATTR_COL (0).
PNNEL_ITEM_Y, NTIR_RON(2).
PANEY_VALOE_DISPIAY_INNGTH, MNNE_IEN+6,
0):
coor_out_clear_button -
panel_create_item l Eile_out_paned. PNTIL_BOTION,
PNNEL_LNBEL_IMRCE, elear_button_imaga,
PANEL_SHON_ITMM, TRISE.
PNNEL_ITEM_X. AFIR_COL(12).
PNNEL_ITEM_Y. AITR_RON (3).
PNNEI_HOTIFY_PROC. Clea\tilde{_coordinates,}
0):
coox_out_mave_button =
panel_creaze_item (
\&ile_out_panel. PANEL_BOCTON,
PNTEI_LABEL_IMACE, cave_buteon_image,
PNNEY SHON_ITTM, . TALSE.
PNNEI_ITEM_X, MITR_COR(22).
PANEL_ITKMY, MSTR_RON(3).
PNTEL_MOTIFY_PROC. Eile_i_o.
0):
outplut header -
paned_excate_item (Eile_out_panel, PMiEI_vessace.
PNNEL_LNBEL_STRIMG, OO OTPOEN.
PNTII_ITEM_\overline{X}
PNNEL_ITEM_Y. . ATIR_ROW(4).
0):
coosd_out_header -
pañ1_ercate_dte\ (Elle_out_panel, parin_urssace.
PNIEI_LNBEI_STRING, . CoOFd_columm_header.
PNIEI_LNBEI_SIPING. . . MSTR_COL (0).

```
\begin{tabular}{|c|c|c|c|c|}
\hline 6/4/87 & :02 AM & \multicolumn{2}{|l|}{linesimp.c} & Page 20 \\
\hline 1053 & & PNAEL_ITM_Y。 & ATIR_RON (3). & \\
\hline 1054 & & \[
01:
\] & & \\
\hline 1055 & window_Eit_height ( & _out_panel) : & & \\
\hline 1056 & & & & \\
\hline 1057 & coord_euraor \(=\) & & & \\
\hline 1058 & cursor_create ( & CURSOR IMACE, & cerose pixrect. & \\
\hline 1059 & & CURSOR-xHOT, & 8. . & \\
\hline 1060 & & CURSOR YRIOT, & 8. & \\
\hline 1061 & & CORSOR_OP. & (PIX_SRC | PIX_DST), & \\
\hline 1062 & & 0) : & & \\
\hline 1063 & & & & \\
\hline 1064 & coord_in panel - & & & \\
\hline 1065 & window_create ( & coordinate_Erame, PNNEL, & & \\
\hline 1066 & & PANEL LIBEEL_BOLD. & TROE。 & \\
\hline 1067 & & WIN_EETOW, & Eile_in_panel. & \\
\hline 1068 & & WIN_X, & 0. & \\
\hline 1069 & & WIN_WIDTE, & & \\
\hline 1070 & & (int) mindow_got (Eil & ingpanel, WIK_WIDTH, 0). & \\
\hline 1071 & & WIN_RONS, & COORDS_ROWS, & \\
\hline 1072 & & WIN_ISFT RARGIN, & 4. & \\
\hline 1073 & & WIN_RIGHT MARGIN, & 4. & \\
\hline 1074 & & WIN_TOP_MARGIX, & 4. & \\
\hline 1075 & & WIN_BOTTOM_MRRGIN, & 0. & \\
\hline 1076 & & WIn_CURSOR. & coord_carsor. & \\
\hline 1077 & & WIN_VERTICAL_SCROLTEAR, & acrollbar_create ( & \\
\hline 1078 & & SCROLI PLACEMENT, & VERTICAL_LOC, & \\
\hline 1079 & & SCROLI_BUBBLE_MRRGIM. & BUBELE_MARGIN, & \\
\hline 1080 & & 01. & & \\
\hline 1081 & & \(01:\) & & \\
\hline 1082 & coord_out panel - & . & & \\
\hline 1083 & mindow_ereate ( & coordinate_frame PANEL. & & \\
\hline 1084 & & PANEL LABEL_BOLD, & TROE, & \\
\hline 1085 & & WIn_BELON, & 2ile_out panel, & \\
\hline 1086 & & WIN_RICHT_OF. & coord_in_panel. & \\
\hline 1087 & & WIN_WIDTA, & & \\
\hline 1088 & & (int) window_got (Eil & out panel. WIN_WIDTH, 0), & \\
\hline 1089 & & WIN_ROWS, & COORDS_ROWS, & \\
\hline 1090 & & WIN_LEFT MARGIN, & 4. & \\
\hline 1091 & & WIN_RICHI MARGIN, & 4 & \\
\hline 1092 & & WIN_TOP_MARGIM, & 4. & \\
\hline 1093 & & WIN_BOTTOM EARGIN, & 0. & \\
\hline 1094 & & WIE_VERTICNI_SCROLTEAR, & scrollbar_create ( & \\
\hline 1095 & & SCROLI, PLACEHENT. & VERTICAL_LOC. & \\
\hline 1096 & & SCROLI_BOBBLE_MARGIN, & EOBBLE_MARGIN, & \\
\hline 1097
1098 & & 0): \({ }^{0)}\) & & \\
\hline 1099 & for (i - 0: \(i<m \times 1\) & ODS; 1++1 1 & & \\
\hline 1100 & char labe & BEL_LEN]: & & \\
\hline 1201 & oprintf (label. & ". \(i+1)\) : & & \\
\hline 1102 & coord_in_2abel [i] & panel_ereate_itom 1 & & \\
\hline 1103 & & coord_in panel. PNibl_hes & Ace, & \\
\hline 1104 & & PANEL_LABEL_SIRING, & label. & \\
\hline 1105 & & PATEL_ITEM_X,- & ATER_COL (0). & \\
\hline 1106 & & PNTEI_ITEM_Y. & ATHR_ROW (i). & \\
\hline 1107 & & 0): & & \\
\hline 1108 & coord_out_label [ & panel_create_item 1 & & \\
\hline 1109 & & coord_out panel. PNAEL_ & SAGE. & \\
\hline 1110 & & PNNEL_LABEL_STRIXG. & label. & \\
\hline 1111 & & PNiEL_ITEM_X, & 2TER_COL (0). & \\
\hline 1112 & & PNIPS_ITEM_Y. & ATER_ROW (i). & \\
\hline 1113 & & 0): & & \\
\hline 1114 & Eor (y - X: \(\}\) < & j++1 1 . & & \\
\hline 1115 & iecord[i][j] & & & \\
\hline
\end{tabular}
```

 0coord(i)(j) - -1;
 ccord_in_cell[i][j] - panol_crento_item (
 coord_in_panel. PNMEL_2HET,
 PANEL_INBET_SIRIKG, -10.
 PNNELYNLOESTORSD LPNGTH, VALOE LEN,
 PANEL_VALOE_DISPLNX_LENGTH, VALOE_LEN,
 PANIL_ITEM_X,
 AILR_COL (INBET_LNN+1+(J* (VNLOE_LMN+3))).
 PNIIX_ITEM_Y. AITR_RON (i).
 PNTELHOTIFY_LEVEL. PANEL_AEL.
 PNNEL_BOTIKY_PROC. enter_coord_chax.
 PNTEL_EvMIT_PROC, locate_itam,
 0):
 coord_out_menzt [i]{j] - panel_ereate_item (
 coozd_out panol. RATEL_RESSACE,
 PNNEL_IAREI_SIRING. -1".
 PANEX_ITEM_X,
 ANTR_COL (INBER_LEN+1+(y* (VALOE_LEN+3))).
 PNTEL_ITEM_Y, AIMR_RON(i).
 0):
 coord_out_cell[i][j] - panel_create_item (
 coord_out panel. PANEL_MISSSAGE.
 PNRLINESL_BOLD, FALSE,
 PNTEX_ITEM_X,
 ANTR_COI (INAES_LNS+3+(y* (NLIOE_LEN+3))).
 PANTL_IETM_Y, MTIR_ROW (i).
 0):
 }
 coord_in_ender[i] - panel_create_item (
 coord_in_pancl. PANTL_ HisssAGE.
 PANEL_工NBEL_STRING, -I".
 PANEL_ITEM_\overline{X, .. AIIR_COL (29),}
 PANEL_ITEM_X. ATIR_ROW(i).
 0):
 coord_out_ender[i] - panel_ereate_item (
 coord_out panel. RAREL_RESSACE,
 PNNEI_LABEL_SIRIMG. -1",
 PNNEL_ITEM_X. ATIR_COZ (29).
 PNIKLITEM_Y. AITR_ROW(i).
 0):.
 }/*-for i |/
 window_Eit (ccozdinate_Eramo):
 /*
- Input c output canvases for graphie repreaentatione of oxigirnal and modified lines
|
diaplay_\&rame -
mindou_ereate (control_Erame, MRNY,
MRNFE LNBIN,
"Oziginal (input) and modified (output) line:".
TPNEE_DORE_PROC,
do_dene.
WIX_\mp@subsup{x}{0}{\prime}
WIH_SHON, TMESE,
0):
draw_cuzsor -
-Cursor_cseaze (
CURSOR_IMAES,
cursor_yaOt, B,
CORSOR_SHON_CROSSHAIRS, LROE,
cunsOR_crossmaIR_eap. 20.
0):
input_canvas -

```

\section*{6/4/87 11:02 AM}
linesimp.c

1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
-1211.
1212
1213
.1214
1215
. 1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1179 viadow_ereate ( dioplay_fram, canvas.
    output_canves -
        window_crate 1 display_frame, canvas.
0):
    mindow_fit (dioplay_Erame):
        input_pw - canvas_pixwin (input_canvas):
    output_pu = canvas_pizwin (output_canvas):
    make_color_map (1):
    \(1 / *\) deEine_mindowa */
```

caplay_2mam,
CNNVASMIDTH,
Canvas_hercer.
CNNDS_AOTO_SHRIMR,
WIN_WIDTH,
WIM_EEICET,
WIB_CORSOR,
WIN_VERTICNI_SCROLTBNR,
SCROLI PLICCBMENT,
ECROLI_BOBELE_RNRGIN,
0).
WIR_BORIZONINL_ECROLIEAR;
8CROLL_DIRECTION,
SCROLL_PLACENENT,
ECROLL_BUBELE_GNRGIN,
0).
/* need all mouse buttona for acrolling! */
WIn_CONSOIE_PICR_EVENTS. WIN_MODSE_BOITONS,
IOC_DRAG,
0.
WIN_EVENI_PROC.
0):
canvas_max x. CANVAS_MAX_Y. TALSE. INIT_WIDTH, INIT_HEICHT. draw_curaor. scrollbar_create (VERTICAL_IOC, BUBBIE MARGIN.
scrollbar_erante (8CROLI_HORIZONTAL, HORIZONTAI_LOC. BUBBLE_MARGIN,
0 .
handle_canvas_event. WIN_EVENI_PROC, I

```
        CNiVAS_MIDTH,
                CANVAS_BEIGAT.
                CANVAS_AOTO_SHRIMR,
                WIN_RIGHT_OF.
                WIA_WIDTH,
                WIM_EEICHT,
                WIM_CORSOR.
                WIs_VERTICAI_SCRORTBAR,
                SCROLL_PIACEMENT.
                SCROLI_BUBELE MRRGII,
                        \(0)\),
                                WIA_BORIZONTAL_SCROLTARR.
        SCROLL_DIRECTION,
        SCROLI_PLACENTEIT.
        SCROLL_BOBBLE_MREIN.
        \(0)\).
/* need all mouse buttons for ecrolling! */
WIN_CONSUN_PICK_EVENTS, WIN_MODSE_BOTTONS, 0.
WIM_IGNORE_PICR_EVENT. LOC_DRAG,
WIN_EVENT_PROC, handle_canvas_event,
diaplay_frame, canvas. CANAS_MIDTH, CANVASAOTO_SHRINR, WIN_RIGHT_OF. WIN_WIDTH, WIn_CURSOR. WIs_VERTICRI_SCROLTRAR, SCROLL_PIACEMENT. SCROLL_BUBBLE_MNRGIM, 0) , WIN_BORIZONTAL_SCROLTBAR. SCROLL_DIRECTION, SCROLI_ PLACEMENT, SCROLL_BUBBLE_RMRGIN.

CANVAS_mAX_X. CRNAS_MAX_Y. EALSE, input_ennvas, IMIT_WIDTH, IAIT_BEICHT, draw_cursor. ecrolibar_create ( VERTICAL_JOC, BUBEIE MARGIN,
acrollbar_create ( SCROLL_BORIZONTAL. BORIZONTAL_LOC, BOBBLE_MARGIN, or ecrolling! */ WIN_MODSE_BOTTONS, 0 . LOC_DRAG, handle_canvas_ovent,

1233
1234
1235
1236
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
2257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
2268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
void
do_color_choice (manu, menu_itam, np)
    Manu manu:
    Menu_item Ena_dtem;
    caddr_t (inp) (1):
1
- Precest the desired color ehoiee
- 1
1
    int color:
    color - (int) Banu_get (manu_item, MENO_VIDE):
    11 (many_gat (manu, Mindo_parent) -
            manu_find (color_types_manu, MENO_STRING, Pointe", 0) )
        set_color ( (input) 7 IN_POINI_COLOR : OOT_POINT_COLOR, cOLOI):
    -180
    12 (manu_get (manu, Mend_parent) -
            menu_find (color_types_mang, MENO_SIRING, mines", 0) )
        set_color ( (input) 7 IM_IINE_COIOR : OUT_LIEE_COLOR, color):
    -1se
    12 (manu_got (menu, MEND_PAREMT) -
            menu_find (color_types_manu, MENO_STRING, "Areas", 0))
        ser_color ( (input) \(\%\) IR_AREA_COIOR : OUT_AREA_COLOR, coLor):
    -1se
    if (manu_got (menu, nisand_parent) -
            . man_Eind (color_typer_manu, MEINO_STRING, "Foreground", 0) )
            set_color (TOREGROUND, color):
    -180
    if (manu_gat (menu, mand_parcint) -
            man_find (color_types_manu, MENO_STRIMG, "Background". 0) 1
        cet_color (BACRGROUND, color):
    /* set up new colormip for the canvae */
    18 (土npue) 1
        pr_sotemanase (input_pu, ems.ems_nane):
        pm_putcolosap (imput_pw, 0, COLOR_RNP_SIEE, RGB[R], RGB[G], RGB[B]):
    )
    -1se 1
        pm_aotemaname (output_pu, ems.ems_nasm):
        pm_putcolormap (ovieput_pw, O, COLOR_MP_SIVE, RGB[R], RGB[G], RGB[B]):
    1
| /* do_colox_ehoice *


1315 1316
1317
1310 2329 1320 1321 1322 1323 1324 1325
void
do_done (window, event, arg)
Window window:
Event evont:
caddr_t arg:

1
Panel_dtem button; window_eet (window, WIN_SRON, FALSE, 0): /* cloce window "/
button - (window - coordinate_Irame) 2 coor_ehou_hide_button
: diap_ahow_hide_button: pancl_eat (button, PNEEL_LABEL_IMNGE, chou_button_dmage, 0): 1/* do_dose */
```

 clear_coordisates (coor_out_elear_button, event):
    ```
void
do_douglae_poucker (ovent)
Event event;
/*
- Perform Douglas-Peucker aimplification algorithm on coordinates
*/
1
lat 1, ent, tol:

if (ocoord[0][X] > 0) /* elear old output data * / -
ent - (max_reached) 7 sowt 1 : sow;
ent - Douglas_Paucker (tol, ent): /* aimplify itl */
\(\operatorname{sor}(1-0 ; 1<\) ent; \(i+t)\) |
ocoord[i][2] = icoord[i][2]; /* 2 exis not handled by this algorithm */
enter_out_coordinates (i): /* draw new ijne segment \({ }^{(/ /}\)
1
\} /* do_douglas_peucker */
void

1*

1 static
double atatic
        1
    ,
            1
        1
do_meature_absolutes ()
- Measure number of coordinates, totel length, total runs of a line int i. ient, oent: char measurement [80]. number (8):
window_eat (measuremente_panel, wIM_ROWS, 3, 0):

        - Humber of coosdinates

    measurement (0) = '10'; /*. reset */
    otreat (measuremant, "Yumber of coordinates: i):
    if (icoord(0)[x] \(x\) 0) (

        etrcat (meagurement, " In \(\rightarrow\)-);
        oprinte (number, -nsu", ient):
        atreat (moasurement, number);
        if (ocoosd[0][x]>0) 1
            for (oent - 0; oent <max_Coosds ic ocoordloentl(x). > 0; ocnt+t);
            atreat (meesurament, "; OUTS m> "):
            sprinte (number. "tsu", oent):
            stricat (measuremant, number):
    parel_sot (maseuremant_line [0], PANEI_INBEI_STRING, meesurament. 0):

        - Total length in incbes
    manaurament (0) - '10'; /* reser */
    atreat (masurament, "Total length (Inchea): "):
    if (icoord 0 ) \([x] \geqslant 0) 1\)
        ilen - 0.0:

            ilen thealc_diatance (iccord(i-1), icoord(il):
            ilen - (ilen / DPI) + 0.005; /* rounded */
            atreat (moasurmant, " If \(\rightarrow\) ");
            eprinet (number, "tie.2f", (float) ilen):
            atricat (moasurement, number):
            if (ocoord \([0][\mathrm{X}]>0) 1\)
                olen - 0.0;

                    olen \(+=\) celc_distance (ocoord(i-1), ocoord(i)):
            olen - (olen / DPI) + 0.005; /* rounded */

            sprintf (numbar, "48.25", (1100t) olen):
            atreat (moasuramone, aumber);

```

6/4/87 11:02 AM linesimp.c. Page 28

```

1426
1427
1428
1429
1430
1431*
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
2447
1448
1449
1450 3 /* do_meaaure_ebsolutes */

1452
1453
1454
1455
1456
1457
1458
1459 -/
1460
1461 i
2462
2463
1464
1465
1466
2467
void
/*

1
```

 1
 panel_set (meacurament_line[0], PNNEL_LABEL_STRING, measuremant. 0);
 /* right angularity */
 macauremant[0] - '\0': /* secat */
 etzeat (measuremant, Might Angularity: N):
 otzeat (meamurcmant. © IN \longrightarrow "):
 eprinty (number, "&8.2F", imean.right_angularity):
 streat (measurement, number);
 if (ocoord[0][X] > 0) (
 atreat (manmurement, ": OUI M ");
 eprint& (aumber, "&8.21", omacs.zight_angularity):
 gtrent (meamurament. number):
 1
 panel_eet (measurement_line[1], PNREL_INREL_STRING, maasurament, 0);
 /* left angularity */
 measurement[0] - '\0': /* resot */
 etrcat (maaurement, mlaft Angularity: e):
    ```

```

 oprint2 (number, "&8.28", {meas.1eft_angularity);
 etrcat (meanurament, number);
 if (occord[0]{X] > 0) (
 etrcat (measurement, "; OUT m 0);
 oprintf (number, at8.22*. omacs.laft_angulacity);
 etreat (meamuramant, numbar);
 1
 panel_set (meaøurament__line[2], PNREL_INBEL_ETRRING, measuremant, 0):
 /* atandardized angulazity per inch */
    ```
do_meaaure_angularity ()

Measure angularity of a line
seatic
char masurament \{80\}. number [8]:
static atzuet
mesures imean, omeas;
window_set (manauroments_panel. WIN_ROWS, 5, 0):
12 (icoord[0][X] >0) 1 measure (icoord, simeas): if (occord (0) [X] >0)
mearuxe (ocoord, fomear):
/* rotal angularity */
measurement[0] © 'V0': /* zecot - /
otreat (maauremant, Cotal Angulazity: 0):

eprintf (number, "88.2t", imeas.total_anguiarity):
etrcat (manaurcmant, number):
if (ocoord \([0][x]>0\) ) (
atreat (moasuramant. "; OVT \(\rightarrow>\operatorname{mj}^{\circ}\)
eprinte (number. "88.2f". omana.total_angulazity);
atreat (manaremant, number):
1515 measurement [0] - • 10 ': /* zeset */
atreat (masuramant, " IN \(\rightarrow\) "):
etreat (masurament, number):
if (occord[0][X]>0) 1
atreat (moasuremant, number):

\section*{1}
/* total zans */
masurament[0] - 'VO': /* zeset */
streat (measurement, " IN \(\rightarrow{ }^{-1}\) );
atrcat (measurament, number):
if (ocoord(0)[X]>0) 1
strcat (measurement, number);
1 1
window_fit_height (measurements_panel): window_fit (control_Erame):
atreat (measurement, "Standardized Angularity/Inch:");
sprintf (number. -38.2f", imeas.std_angularity_inch):
atreat (measurement, \({ }^{\circ}\); OUT \(\longrightarrow{ }^{->}\));
aprintl (number, -88.22in, omeas.std_angularity_inch):
panel_set (mearurament_1ine[3], PNEL_IMBEL_STRING, measuremant, 0):
atreat (masurement, Total Pans: "):
oprintf (number, "8u", (int) imeas.total_runs);
streat (measurament, "; OUI ma):
oprintf (number, "f8u", (int) omeas.total_zuns):
panel_set (measuremant_line[4], PANEL_LABEL_STRING, measurement, 0 ):

1549 do_measure_sinuosity

2552 : Masure sinvosity of a line
1533 -/

1557 / /* do_measure_ainuosity */
2558
```

6/4/87 11:02 AM linesimp.c Page. 32

```

1559 1560 1561


```

void

```
void
do_measurement_choice (manu, menu_item, mp)
do_measurement_choice (manu, menu_item, mp)
        Menu - monu;
        Menu - monu;
        Monu_item wenu_item;
        Monu_item wenu_item;
        caddr_t (*np) ():
        caddr_t (*np) ():
/*
/*
    - Sot up the desired measuroment mothod
    - Sot up the desired measuroment mothod
    */
    */
I
I
    menu_get (menu_item, MEND_VNLOE): /* Foree ovaluation of pullrights */
    menu_get (menu_item, MEND_VNLOE): /* Foree ovaluation of pullrights */
    measurement_value - (int) menu_get (manu_item, MGNO_VAIOE);
    measurement_value - (int) menu_get (manu_item, MGNO_VAIOE);
    /* display the measurement method on the control panel */
    /* display the measurement method on the control panel */
    panel_set (eurrent_mmasurament, PANEL_LABEL_STRING,
    panel_set (eurrent_mmasurament, PANEL_LABEL_STRING,
        manu_gat (manu_item, MBNU_SIRING), 0):
        manu_gat (manu_item, MBNU_SIRING), 0):
| /* do_mmasuromant_choice */
```

| /* do_mmasuromant_choice */

```
```

1581

```
1581
2582
2582
1583 void
1583 void
1584 do process (item, event)
1584 do process (item, event)
2585 Parel_itam 1tam;
2585 Parel_itam 1tam;
1586 Event levent:
1586 Event levent:
1587
1587
2588 /
2588 /
2589 - Process the coordinatea according to the eurrent control mathod mettings
2589 - Process the coordinatea according to the eurrent control mathod mettings
2590 */
2590 */
2591
2591
2592
2592
2593
2593
1594
1594
1595
1595
1596
1596
2597
2597
1598
1598
1599
1599
1600
1600
1601
1601
1602
1602
1603
1603
1604
1604
2605
2605
2606
2606
1607
1607
2608
2608
2609
2609
1610
1610
1621
1621
2612
2612
1613
1613
2614
2614
1615
1615
1616
1616
1617
1617
1618
1618
1619
1619
1620
1620
1621
1621
1622
1622
1623
1623
1624
1624
2625
2625
1626
1626
1627
1627
1628
1628
1629
1629
1630
1630
1632
1632
1632
1632
1633
1633
1634
1634
1635
1635
2636
2636
2637
2637
1638
1638
1639
1639
1640
1640
2642
2642
2642
2642
1643
1643
if (itam - aimplify_button) 1.
if (itam - aimplify_button) 1.
        if (overlajd)
        if (overlajd)
            ovorlay_diaplay= (); /* reser ovoxlay */
            ovorlay_diaplay= (); /* reser ovoxlay */
        owiteh (si#plification_value) {
        owiteh (si#plification_value) {
            Case SIIP_NTH_PI:
            Case SIIP_NTH_PI:
                    break;
                    break;
            case SINP_PNNDOM_PT:
            case SINP_PNNDOM_PT:
                break;
                break;
            case SIEP_IINE_WIDTH:
            case SIEP_IINE_WIDTH:
                    break:
                    break:
            eace SIMP_EOCHIDRNN:
            eace SIMP_EOCHIDRNN:
                break;
                break;
            Cace SIMP_PMRPENDIC:
            Cace SIMP_PMRPENDIC:
                break;
                break;
            cade SIMP_NNGOTNR:
            cade SIMP_NNGOTNR:
                break;
                break;
            case SIMP_DIST_NHELE:
            case SIMP_DIST_NHELE:
                - break;
                - break;
            cace SIMP_REUNAN:
            cace SIMP_REUNAN:
                    break;
                    break;
            CABe SIHP_ROARRGE:
            CABe SIHP_ROARRGE:
                break;
                break;
            cace SIMP_INNG:
            cace SIMP_INNG:
                break;
                break;
            case SIMP_JORNMNSEN:
            case SIMP_JORNMNSEN:
                break;
                break;
            Case SIMP_OPREIM:
            Case SIMP_OPREIM:
                break;
                break;
            case SIMP_DODGNAS:
            case SIMP_DODGNAS:
                do_douglas_peucker (event):
                do_douglas_peucker (event):
                break;
                break;
            defaule:
            defaule:
                breek:
                breek:
        } /* switch */
        } /* switch */
    } /* aidiplify |
    } /* aidiplify |
    else
    else
    12 (1tam - amoothe_button) {
    12 (1tam - amoothe_button) {
        if (overlaid)
        if (overlaid)
            overlay_diaplaye (): /* zeset overlay */
            overlay_diaplaye (): /* zeset overlay */
        awiteh (owoothing_value) {
        awiteh (owoothing_value) {
            ease 8MOO_BINMIE_AVE:
            ease 8MOO_BINMIE_AVE:
                break;
                break;
            case 8MOO_WEIGRT_AVE:
            case 8MOO_WEIGRT_AVE:
                    break;
                    break;
            eace sm%O_TN_ LOOR:
            eace sm%O_TN_ LOOR:
                break;
                break;
            ease 8m00_PMRRNIS:
            ease 8m00_PMRRNIS:
                break:
                break:
            cace 8HOO_Bropirs:
            cace 8HOO_Bropirs:
                break;
                break;
            cace 8MOO_COBIC_EP:
```

 cace 8MOO_COBIC_EP:
    ```
```

1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656

- }265
1658
1659
1660
1661
1662
1663
. }166
1665
1666

```
                break;
```

 break;
 Case SNOO_PARAB_8P:
 Case SNOO_PARAB_8P:
 break;
 break;
 eace SMOO_B_SPLINE:
 eace SMOO_B_SPLINE:
 break;
 break;
 ease SMCO_BELIER_CUR:
 ease SMCO_BELIER_CUR:
 break;
 break;
 default:
 default:
 break;
 break;
 1/* awitch |/
 1/* awitch |/
 1 /* asoothe */
 1 /* asoothe */
 else
 else
 if (item - measure_button)
 if (item - measure_button)
 ewitch (measurement_value) {
 ewitch (measurement_value) {
 ease MiPAS_ABS:
 ease MiPAS_ABS:
 do_measure_absolutes ():
 do_measure_absolutes ():
 break;
 break;
 case RRAS_NNG:
 case RRAS_NNG:
 do_measura_angularity ():
 do_measura_angularity ():
 break;
 break;
 case MEAS_SIR:
 case MEAS_SIR:
 do_measure_sinuosity ();
 do_measure_sinuosity ();
 break:
 break:
 default:
 default:
 break;
 break;
 | /* switch */
 | /* switch */
 }/* do_procesa */
    ```
    }/* do_procesa */
```

1673 2674
1675
1676 do_quit ()
2677
1678 /
1679 * Ouit the ahell
1680 */
1681
1682 1
1683
1684 1685 1686 1687

1710
1711
1712
2713 do_simplification_choice (manu, menu_itom, np)
1714 Menv Eenu:
2715
1716
1717
1718
1719 。

- set up the desired eiaplilication method
*/

1

aimplification_value ((int) menu_got (manu_item, rinvo_VALUE);
/" diaplay the aimplikieation method on the contzol panel "/
pancl_set (eurient_oinmilikieation, PNTEL_IABEL_SIRING. manu_get (manu_item, yEND_STRIMG), 0);
| /* do_simpli\&ication_choice */

1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
ped
void
do_moothing_choice (manu, manu_item, np)
Man
Menu_item Eenu_item;
caddr_t (*np) ():
1

- Set up the desired amoothing mathod
-/
1
menu_gat (menu_itam, nExD_varie): / Force ovaluation of pullrights */ amoothisq_value - (int) manu_got (menu_itam, RSNO_VALOE):
/* display the amoothing method on the contzol panel -/ panel_set (current_amoothing, PNNEL_INBEL_STRING, menu_get (menu_item, MENO_STRING), 0):
) /* do_moothing_choice */

1754
1735
1756
1757
8757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781 / /* draw_eanvas */
1782
void
draw_canves (pw, inpur)
pixwin tpw;
int input:
1
15 (input) de ($1>0$)

1
-1se
if (i>0)

1

draw point (pw, icoord[i][X], iecord[i][Y]. IN_POINI_COLOR]:
pr_vector (pw, icoord(i-1) [X], icoord(i-1) [Y]. ieoosd[i $\mid[X]$. icoord[i][Y]. PIX_SRC. IE_LINE_COIOR) ;

cecord[i][Y] >e $0 ; i++1$ |
draw point (pw, ocoord[i][X], ocoord[i][Y]. OUT_POINT_COLOR):
pw_vector (pw, ocoord[i-1][X], ocoord[i-1][Y]. ocoordli $][X]$, ocoordli $][Y]$. PIX_SRC. OUT_ITRE_COLOR):

```
6/4/87 11:02 AM linesimp.C

1783
1784
1785
1786
1787 1788
1789
1790
1791
1792 1793
void
draw_point (pw, \(x, y\), color)
Pixwin \(\quad\) per
int \(x, y\), color:
/*
- Draw a \(3 \times 3\) pixel aquare of color around \(x, y\) on pw to hilite a geographic point -/

1 .

provector ( \(\mathrm{PN}, \mathrm{x}+1, y-1, x+1, y\). PIX SRC, color): pr_rector (PN, z+1, \(y+1, x, y+1\), PIX_SRC, color);
Pw_vector (Pw, \(x-1, y+1, x-1, y\). PIX_SRC, color);
| /* draw_point */



1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
18821
1883 int save [3]:
1884
1885
1886
1887
1888
1889
1890
1892
1892
1893
1894
1895
1896
1897
1898
1899
1900
2901
\(1902^{\circ}\)
1903
1904
1905
1906
1907
1908
1909
1920
1911
1912
1923
1914
1915
1926
1917
2918
2929
1920
1922
1922
1923
1924
1925
1926
1927
1928
1929
1930
2931
1932
1933 1934
void
enter_in_coordinate (1. J. Valuo)
        int 1, J. Value:
10
- 1
1
    char etring [VALOE_LNS]:
        if \((j) Y\) Et \(i>0)\)
                iceord \((i)[X]=-\overline{1}\) :
            50w-:
            col - X:
            coturn;
        1
    if (!max_reached) 1 /* enter it */
        for (k - X; k < 2: k+t)
            eave[k] - deoord \([i)(k]\) :
        iecord[1][j] - تัaue;
        aprintf (atzing, "t5u", value):
        pr__lock (input_pw, beanvas_zect):
        if (i>0)
            1
        12 (1 < MNX_COORDS-2)
- Enter a coordinate velue in en input coordinate cell
            if (icoord \([i)[x]\) - iccord \([i-1][x]\) et

                panel_ser_value (coord_in_celdili] [X]. (n):
                panel_set_value (coord_in_cell(i)(2), ""):
                panel_aet (coord_in_panel, PANEL_CARET_ITEM, coord_in_coll[i][X], 0):
        /* provide right-justified feedback to user */
        panel_set_Falue (ccord_in_celd(i)[j), etring):

        draw point (imput pw, ceve \([X]\), cave [Y], BackGROOSD):

            dram_point (input_pw, icoord[i][X], icoord[i][Y]. IN_POINr_COLOR):

                /* check to erese old line between old and precoding coordinates •/
                if (cave [X] > 0 is cave \([Y]>0\) )
                    pu_vector (input pw, icoord[i-1] \((X)\). ieoord \([i-2][Y]\).
                        aeve [X]. aave [Y].
                        PIX_SRC, BACKCROOND):
                /* draw line between aew and preceding coozelinates "/
                12 (iceord [i) \([X]>0\) iceord[i] \([Y]>0\) )
                pu_vector (input pu, icoord(i-1) \((X)\). icoord(i-1) \([Y]\).
                                    ieoord(i j[X]. Leoord(i J[Y].
                                    PIX_SRC. TM_LINE_COLOR):

                if (nave \([X]>0| |\) cave \([Y] \sim 0 \mid\)
                pw_vector (input_pw, icoord[i+1][X], ieoosd[i+1][Y].
                        eave. [X]. eave [Y].
                            PIX_sRC, BACREROONDI:
                /4 cbeck to draw sew line between mew and following coordinate: */
```

6/4/87 11:02 AM linesimp.c Page 44

```

1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
```

 if (icoord[i][X] >0 0 66 icoord[i][Y] > 0)
 pu_vector (input pw, icoord[i j[X], icoord[i][Y],
 icoord(i+1)[X], icoord[i+1][Y].
 PIX_SRC, IN_LINE_COLOR):
 J
 PM_unlock (input_pu):
 | /* max not reached */
 if ((int) panel_gat (coox_in_load_button, PANEL_SHON_ITEM)) |
 /* elimisate input "load" option, allow "clear" and "ave" options "/
 panel_set (coor_in_load_button . PANEL_SHON_ITEM, FALSE, 0):
 panel_set (coor_in_elear_button, PNNEL_SHON_ITEM, TROE . 0):
 J
 | /* enter_in_coordinate */

```
```

1953

```
1953
1954
1954
1955 void
1955 void
1956 enter_new_point (evant)
1956 enter_new_point (evant)
1957 Event event:
1957 Event event:
1958
1958
1959
1959
1960
1960
1961
1961
1962
1962
1963
1963
1964
1964
1965
1965
1966
1966
1967
1967
1968
1968
1969
1969
1970
1970
1971
1971
1972
1972
1973
1973
1974
1974
1975
1975
1976
1976
1977
1977
1978
1978
1979
1979
1980
1980
1981
1981
1982
1982
1983 ) /* enter_new_point * /
1983 ) /* enter_new_point * /
1984
```

1984

```
*/
```

1985
1986
1987
1988 anter_out_coordinates (i)
1989 ine i:
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
/*

1
char utring [VRLOE LENT:
pw_lock (output_pw, scanvas_rect):
if (i > 0)
pw_unlock (output pu):
for (j = X; j < 2: j++) (

1

1
1/* anter_out_coordinates */

- Enter coordinate values in output coordinate cells
if (ocoord[i][X] > 0 ct ocoord[i][Y] $2=0) / 4$ draw the point * draw_point (output_pw, ocoord[i][X], ocoord[i][Y], OUT_POINT_COLOR):
/* check if a line can be drawn between the previous two coordinates */
if ((ocoord[i-1)[X] >= 0 ce ocoord[i-1][Y]>0) 06
(occordil $j[X]>=0$ cif ocoordili $][Y]>0)$)
pw_vector (output_pw, ocoord $[i-1][X]$, ocoord $[i-1][Y]$,
ocoord[i l[X], oceord[i J[Y]. PIX_SRC, OUT_LINE_COLOR):
/* provide right-juatified feedback to user in coordinate panel */
sprinte (atring, "t5u", ocoord[il[j]):
panal_set (coord_out_ceilli] [j]. PANEL_IMBEL_SIRING, atring, 0):
if (! (int) panel_get (coor_out_clear_button, PNEL_SHOW_ITEM)) 1 /* allow output "elear" and "aave" options */
panel_set (cooz_out_clear_button, PNNEL_SHOW_IIEM, IRUE, 0):
pancl_sot (coor_out_save_bution. PNREL_SHON_IEEM, TRUE, 0):

2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056 .
2057
2058
2059
2060
2062
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089

```
void
sile_i_o (item, ovent)
Panel_item deam;
Event eevent:
1*
- Load/save the coordinates Irom/to apecified Iile
- 1
1 seatie char *anter_meg - Center a filo name.", - open_mag = Mrile OpEN errer.". -loaded ming - "rilo loaded.".
- eaved \(\overline{\text { mag }}\) a Frile maved.":
FILE -Eile_ptr:
char *path.
- Eide.
mami [80]:
name[0] - ' 10.0 ; yeset */ if (item - coor_in_load_bution) (
            path - (chax ") panal_get_valve (path_in_item);
            Iile - (char *) panel_get_valve (Iile_in_item):
            if (Eile m - - ) (
            panel_cet (Eile_in_meseage, PNNEL_LNBEL_STRIMG, enter_mag. 0);
            vindou_bell (IiIe_in_panel):
            | -
            else 1.
                atreat (name, path):
                streat (name, Eile):
            d& ( (Iile_ptr = Eopen (name, rand_mode) ) - woll) {
                    /* open error of some sort */
                    panel_cot ({ile_in_message, PNTEL_INBEL_STRIMG, open_mag, 0);
                    vindow_bell (Eile_in_panel):
            I
            -28e 1
                    int io_reaule - 0;
```



```
                    do_reaule - Eacan{ (file_pty, in_fosmat.
                    Giccord[row][X], ciccord[row][Y]. Gicoord[row]{Z]):
                    if (do_seaule i= EOF)' | /* anter d draw coordinates */
                    entex_in_coordinate (row, X, icoord[row][X]):
                    enter_in_coosdinate (row, Y, ieoozd[row][Y]);
                    anter_in_coosdinate (row, 2, icoord[row)[z]):
                    1
                    1
                    Ielose (Eile ptr):
                    12 (io_sesult i= EOF)
                    max_yenched - TROE;
                    cow--: /- adjugt after loop */
                    panel_set (coord_in_panel. PNNIL_CNPET_ITEM, coord_in_ceII{row] (X), 0);
                    panel_set (Iile_in_meseage. PNNEI_INEI__STRING, loaded_mag, 0):
            |
        |
    |/* coox_in_load_button */
    else
    if (item - coor_in_cave_button) (
        path - (char i) panel_get_value (path_in_item):
        8ile - (ehar *) panel_get_value (Eile_in_icem):
        12 (2120 - - ) 1
```

2090	
2091	
2092	1
2093	

```
        panel_set (Iile_in_mesaage, PNNEL_LABEL_STRING, enter_meg, 0);.
```

 panel_set (Iile_in_mesaage, PNNEL_LABEL_STRING, enter_meg, 0);.
 vindow_bell (Iile_in_panel):
 1
 else I
 atrcat (name, path);
 strcat (name, file):
 if ((file_ptr - Iopen (name, vrite_mode)) = &|LN) (
 /* open error of some sort */
 panel_set (file_in_message, PMNEL_LABEL_SIRIMG, open_meg, 0):
 vindow_bell (tile_in_panel):
 |
 elae 1
 for (i - 0; icoosd[i][X] >e 0; i++)
 fprint! (fileptr, out_format.
 iceord[i][X], iceord[i][Y], icoord[i](Z], '(n'):
 fclose (file_ptr);
 /* eliminate the input "anve" option */
 panel_set (coox_in_aave_button, PANEL_SHON_ITEM, FALSE, 0):
 panel_set (1ile_in_measage, PANEL_LABEL_STRING, saved_msg, 0);
 |
 |
 | /* coor_in_save_button */
 else {
 /* coor_out_mave_button */
 path = (chaz *) panel_get_value (path_out_item);
 8ile - (char i) panel_get_value (file_out_item);
 if (&ile m - - (
 panel_set (Eile_out_meseage, PNNEL_IABEL_SIRING, enter_msg, 0):
 vindow_bell (file_out_panel):
 l
 else \
 atreat (name, path);
 etreat (name, file);
 if ((file_ptr - fopen (name, vrite_mode)) em NUIN) (
 /* open ercor of some sort */
 parel_cat (Eile_out_message, PNNEL_LNBEL_STRING, open_msg, 0):
 vindow_bell (fi\@_out_panel):
 |
 elee 1
 YOF (i = 0; ocoord(i)[X] >e 0; i++)
 fprint{ (file_ptr, out_lormat.
 ce00rd[i][X], ecoord(i)[Y], ecoord[i][2], '\n');
 felose (2ile_ptr):
 /* eliminate the output "aave" option */
 panel_met (coor_out_avve_button, PNNEL_SHON_ITEM, FRLSE, 0);
 panel_aet (file_out_masage, PNNEL_LNBEL_STRING, aavod_msg, 0):
 }
 l
 }
 | /* Eile_i_o*/
    ```

2142
2143
2144
2145
2146
2147
2148
2149
.2150
2151
2132
2153
2154
2155
2156
2157
2158
2159 2160
2161
2162
2163
2164
2165
2166
2167
2168
- 2169

2170
void
    handle_canvas_ovent (canvas, evont. axg)
        Canvas canvan;
        Event . eovent:
        eaddr_t arg:
    /"
    - Bandle eanvas pick ovent
    *
    1
        awitch ( ovant_jd (ovent) ) (
        cese MS_RIGT:
            input - (eanvas eo input_eanvas). 7 TRDE : FALSE;
            manu_show (dioplay_zanu, canvas, ovent. 01:
            break:
        case MS_23FT:
        case LOC_DRAG:
            if (canvas - input canvas)
                entex_new_point (event):
            break;
        detault:
            break:
        1 /* awiteh */
    1/* handle_canvas_ovent */

2171
2172
2173
2174 locate_itom (item, event)
2175
2176
2177
2178
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
```

vold
locate_item (item, event)
Panel_itam . item;
Event- Pevent;
/*

- Iocate newly picked input coordinate cell, set row and col to lea position
*/
I
/* perform atandard processing firat */
panel_dafault_handle_event (item, event):
12 (ovent_id (ovent) - MS_LERT)
SOE (5OW 0 0; sow < MRX_COORDS; sow++) 1
LOr (col - X; col <e 2; col++)
12 (item me coord_in_cell[row] [col])
break:
12 (item - coord_in_cell[row][col])
break;
| /* for sow */
| /* locate_item */

```
```

1
void
make_coloz_map ()
$1 *$

- Define color map for canvases
- $/$
1
ems.ema_aise o COLOR_MP_sI2E:
etrepy (em, ems name, "linesimp colors"):
map.en_red - ROB [R];
map.em_ctean - RGB[G]:
ap.em_blue - RGB[B]:
pw_sotdefaulteme (fems, smap): /* sot default color mpp to ours / /
eat_color (EMCRGRODND - GRAY):
cet_color (FORECROUSD , CYAN):
cet_color (IX_POINI_COIOR, CRSEN):
Eet_colot (IN_LINE_COLOR, RED);
cot_color (Im_AREA_COLOR, MACENTA):
set_color (OUS_POIMI_COIOR, YRLIOW):
ant_color (OUT ETNE_COLOR, BLUE):
EOt_color (OUS_AREA_COLOR. WHITE 1:
pr_cetemaname (input_pu. eme. ams_rame):
PW_putcolormp (input_m, D, COLOR_MNP_SITE, REB[R], REB[G], REB (B]):
pw_setemsname (output_pw, cma, cmaname);
PN_putcolosmap (outputipu, 0 , COLOR_MAP_SI2E, RGB[R]; REB[G]. RGB[B]):
1/* make_color_map */

```

\section*{2232 \\ 2233}

2234 void
2235 ok_bution (item, ovent)
2236
2237
2238
2239 /*
2240 - OR button has been pressed in tolerance popup
2241
2242
2243 1
2244 window_rotum (panel_get_value (tolerance_text_item) ):
```

6/4/87 11.02 AM

2247
2248
2249
2250 void
2250
2252
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
void
$1 *$

- 1

1

J

J


```
overlay_dimplays (1)
- Overlay the output eanvas on top of the input canvas, or reset the input canvas
12 (loverlaid) ( / overlay them */ 11 (ocoord \([0][X]<0) / *\) nothing to overlay! */ yatuen; pr_lock (input pw, ceanvas_sect): draw_canvas (input_pw, FATSE): pw_unlock (input_pw):
panol_sot (diap_overlay_button, PANEL_LABEL_IMAGE, no_overiay_button_image, 0); ovezlaid - EROE;
-18e ( /* exase */
pm_lock (input_pw, (canvas_rect):
gw_writebackground (ingut ju, 0,0 , CaNVAS_MAX_X, CNNAS_MAX_X, PIX_5RC) ; draw_eanvas (input pw, 2ROE):
pu_uniock (input_pw):
panal_nat (diap_overlay_button, pANEL_LABEL_IMACE, overlay_button_igage, 0): overlaid - FARSE;
| f" ovexley_diepleys */
```

2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
. 2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2312
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326

- 2327

2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339

void
set_color (index, color)
int index, color:
1
awitch (color) 1
case WHITE:
RGB[R] [index] - 255;
RGB (G) (index) - 255;
RGB [B] (index) - 253;
break:
cace RED:
RGB (R) (index) - 255:
RGE [G] [index] - 0 ;
RCB [B] [incex] - 0 :
break:
case GREEN:
RGB (R) [index] - 0 ;
RGB[G][index] - 255;
RGB [B] [index] - 0 ;
break;
case blot:
REB (R] [index] - 0;
RGB [G][indax] - 0;
RGB [B] [index] - 255;
braak:
cese YELIOW:
RGB (R) [indax] - 255;
RGB [G] [indax] $=255$;
RGB [B] [indax] - 0:
break:
case cyas:
RGB [R][index] - 0 ;
RGB[G][index]-255;
RGB [B][indox] = 255;
break:
case MAGENTA:
ReB [R] [index] - 255;
RGB[G][index] - 0;
RCB [B] [index] - 255;
becak;
case IICHT_RED:
RGB[R][index] - 235;
RCB (G][index] - 225:
REB [B] (index] - 225;
break:
case LIGKT_GREEN:
RGB (R] [index] - 225;
RCB [G] (index] - 255;
RCB (B) (index) - 225;
break;
case LICET_BLUE:
RGB [R][index] - 225;
REB (G)[index] - 225;
RCB [B][index] - 255;
break:
ease GRAY:
RGB [R][inclex] - 128;
RGB [G][index] - 128;
Res [B] (index) - 128;
break:

2340
2341
2342
2343
2344
2345
2346
2347
2348
2349 | / * set_coler *
2350

void
chow_button_menv (item, ovent)
Panel_item item:
Event tevent:
1

- Display appropriate control panel menu upon RIEHI mouse butten down
- /

1
if (event_id (event) CMS_RIGAT)
if (item en simplify_button ||
item en simplification_mothod \|

- item = currant_eimplification)
menu_ghow (aimplification_menu, control_panel, ovent, 0):
else
if (item $=$ amoothe_button II
item =amoothing_uethod ||
item e- eurrent_amoothing)
menu_show (smoothing_menu, contzol panel, event, 0):
else
if (item measure_bution 11
item = mpasurament_method $\mid 1$
item - current_measurement)
manu_ahow (measuramant_menu, control_panel, event, 0): else
panel_default_handle_evant (item, event):
-1se
panel_default_mandle_ovent (item, event):
| /* show_button_manu */

```
void
    show_hide_coordinates (item, ovent)
        Panel_Item item;
        Evant-evant;
    /*
        - ghow or hide the coordinates as currently appropriate
        */
        1
        if (window_get (coordinate_frame, WIN_SEON) = FNLSE) /* mhow! | | {
            window_sot (coordinate_frame, WIN_SRON, TROE, 0):
            panel_EOt (cOOt_show_hide_button, PANEI_LNBEI_IMAGE, hide_butEon_image, 0):
        1
        0lse /* hide! */ 1
            mindow_set (coordinate_lrame, WIN_SHON, FALSE, 0):
            pasel_Bet (cOor_show_hide_buezon. PANEL_IABEI_IMAGE, show_button_image, 0):
        ]
    | /* show_hide_coozdinates * /
```

2410 void
2411 show_hide_diaplays ()
2412
2413 /*
2414 * Show or hide the display canvases as eurrently appropriate
2415 */
2416
2417 1
2418 if (window_get (diaplay_{rame, WIN_SHOW) - FALSE) /* show! * |
2419 window_set (diaplay_frame, WIN_SHOW, TROE, 0):
2420 panel_sot (disp_show_hide_button, PNNEL_LABEL_IMAGE, hide_button_image, 0):
2421)
2422 else /* hide! */ |
2423 window_set (diaplay_frame, WIN_SHON, FAISE, 0);
2424 ; panel_cot (disp_show_hide_button, PANEL_LABEL_IMAGE, show_button_image, 0);
2425 1
2426
2427 / /* show_hide_displays */

```
```

- Liro aimplification (generalization) process ahell
- by Yvon Perreault. PaR Govermment Syatems Corp.
 - April-May 1987.

```

```

 Binelvde <aunecol/Eunview.b>
 |include <sunteol/panel.h>
 include <aunteol/eanvas.h>
 Oinclude <auntcol/acrollbax.h>
 |inelude <atdie.b>
 |inelude <mach.a>
 /*
 - Simplilication manv conatante
 |
 |de{ise SIMP_NIH_PT 21
 Odefine SIMP_RNNDOMPT }1
 |define SIMP_LINE_WIDTH 21
 \de&ine SIMP_EOCIFDEN }2
 \define SIMP_PERPENDIC }2
 OdeZine SIMP_NNGORNR }2
 |define SIMP_DIST_NMGIF 25
 |defise SIMP_REUNN 31
 Idofine SIMP_ROMNRE: }3
 \de{ine SIMP_2NGG 41
 fdefise SInp_soHNMNSEN }4
 \de{iתe SIMP_OPHEIM 43
 tdefine SIMP_DOOGLAS 51
 1*
 * Smoothing manu constants
 */
 |de{ine sH00_SIMpLE_AVE 11
 4de&ine sMOO_WEIGHT_AVE }1
 Ude{ine 5M00_FND_LOOK }1
 \define SH00 prernas 21
 |deline 5m00 BROPHYS }2
 Udefine sm00_CDBIC_SP 31
 4de&ine sm00_PNRNB_5P 32
 |de&ine SMOO_B_SPIINE }3
 Ide{ine SMOO_BELIER_COR 34
 /*
 - Maeguremant menu constanta
 -/
 tdefine mrNs_ABS 2
 |define MEAS_ANG 3
 |define masc_SIN |
 /*
 - Diaplay maxu conotanes
 |
 AdaEine DISP_CRENR I
 4de{ine DISP_200M - 2
 |dnEine DISP_cOROR 3
 /*
 - Control panol conatants
 |
 Odefine CONIROL_WIDTR_1 }3
 4define COMrROL_WIDIR_2 30
 |defise EINT_RON - 0
    ```
\begin{tabular}{|c|c|c|c|c|}
\hline 6/4/87 & 11:02 AM & & Unesimp.e & Page 2 \\
\hline 61 & define smoo_row & 1 & & \\
\hline 65 & Odefine reas_row & 2 & & \\
\hline 66 & fdefine Butron_Row & 3 & & \\
\hline 67 & Tdefine DISP_ROW & 0 & & \\
\hline 68 & -define COOR_RCN & 2 & & \\
\hline 69 & Odefine SIMP_Drradur & -Douglas & -Paucker" & \\
\hline 70 & -define SmOO_DEFAdLT & "Mone" & & \\
\hline 71 & -define rixas_Deratis & -absolut & 8" & \\
\hline 72 & Idefine sinp_DEradis_vas & LTE SIMP_ & douglas & \\
\hline 73 & -define smoondxradis_va & LOE sM00- & MONE & \\
\hline 74 & -define riens_dxradis_vo & Loe rimas_ & abs & \\
\hline 75 & ddefine max prastres & 5 & & \\
\hline 76 & -define DPI & \[
87.0
\] & /* sounded & \\
\hline 77 & Adefine tor_derauly & \[
{ }^{-10 "}
\] & & \\
\hline 78 & & & & \\
\hline 79 & 14 & & & \\
\hline 80 & - Graphics canvasea co & constanta & & \\
\hline 12 & \(\bullet 1\) - & & & \\
\hline 82 & - dofine Canvas_max_X & 1000 & & \\
\hline 63 & fdefine Canvas_max_y & 1000 & & \\
\hline 84 & -doรine ImIT_WIDTH & 500 & & \\
\hline 85 & idefine InIt_aEIGHT & 500 & & \\
\hline 86 & & & & \\
\hline 87 & 1. & & & \\
\hline 88 & - Color anp constants & & & \\
\hline 89 & */ & & & \\
\hline 90 & -dofine R & 0 & & \\
\hline 91 & -dafine 6 & 1 & & \\
\hline 92 & Adefine \(B\) & 2 & & \\
\hline 93 & -define COIOR_rNP_sIzE & 8 & & \\
\hline 94 & ddefine mackeroond & 0 & & \\
\hline 95 & -define forsgrotnd & 1 & & \\
\hline 96 & fdefine In_pOINT_COLOR & 2 & & \\
\hline 97 & Idefine Im_IIME_COLOR & 3 & & \\
\hline 98 & -derine in_AREA_COLOR & 4 & & \\
\hline 99 & Pdefine 00T_POINT_COLOR & & & \\
\hline 100 & edeline OUT_LINE_COLOR & 6 & & \\
\hline 102 & odeline Oot_Area_color & 7 & & \\
\hline 102 & 1* & & & \\
\hline 103 & - Color many conatant & & & \\
\hline 104 & * & & & \\
\hline 105 & -define MHITE & 1 & & \\
\hline 106 & vdefine Grism & 2 & & \\
\hline 107 & -define red & , & & \\
\hline 108 & -define blue & S & & \\
\hline 209 & dofofine rexiow & 5 & & \\
\hline 110 & dofofine CYAN & 7 & & \\
\hline 212 & dofine macrita & 7 & & \\
\hline 112 & tdefine black & 8 & & \\
\hline 213 & Pdofine cray & 9 & & \\
\hline 214 & Sdefine LICHE_pLD & 10 & & \\
\hline 125 & Ode\&ine LTCHT_Crins & 11 & & \\
\hline 216
217 & Sdafine Licts_blot & 12 & & \\
\hline 218 & /* & & & \\
\hline 129 & - Coordinate panel con & anatants & & \\
\hline 120 & -1 & & & \\
\hline 121 & idafine max_coords & 250 & & \\
\hline 122 & deiline COORDS_cors & 32 & & \\
\hline 123 & ddefine coords rows & 25 & & \\
\hline 124 & -define lanel_İN & & & \\
\hline 125 & -define vaios rin & 5 & & \\
\hline 126 & Odefine maxtima & 25 & & \\
\hline
\end{tabular}


190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
                    coox_out_elear_button.
ccor_out_aave_button.
out put header,
ceord_out header.
coord_out_label [Max_cooros).
coord_out_atart (MNX_COORDS! \{3).
coord_out_cell [MNX_CCORDS) (3).
coosd_out_ender [MNX_COORDS).
tolerance_text_item,
tolerance_ok_button;
static
Canvas inpue_eanvas,
    output_eanvas:
atatic
Pixwin e input pw,
    - outpue pw;
otatic atruct
pixract eimplify_button_image.
    - amoothe_button_image.
    - meaure bute on_inage,
    - reser_butten_dinage.
    -quit_button_image.
    - show_buteon_inage.
    -hide_button_imege,
    -overlay_button_image.
    * no_overiay_buteon_image,
    - load_butron_image.
    - clear..button_izaga,
    - save_button_iange:
atatic atruct
rect eanvas_sect - \(\{0\), 0 . Canvas_max_x, Canvas_max_y :
static
Cursor coord_eussor,
        dran_eursor:
seatic
Manu aimplification_man.
        oinp_indep_pt_menu.
        cimp_loeal_mañ.
        oinip_uncons_local_manu,
        simpcona_local_manu.
        -imp_global_monu.
        amoothing_manu,
        amoo_avaraging_mas.
        amoo_opailon_man,
        amoo_pplining_menu.
        omoo_oplining_local_menv,
        amoo_rplising_oxtended_menu.
        amoo_oplisisg_global_อau.
        measurament_manu,
        angulaz_measure_manu.
        cinuous_maasuรe manu,
        display_manu.
        color_types_manu.
        back_color_man.
        colox_man:



```

/* Measure routine by Robert B. McMaster, DCLA, April 1987. //
/* Adapted 2zom FORTRAN by Yvon Perrmault, PAR Gov't Sys. Corp.. May 1987. */

```

```

|define X O
|define Y I
|inelude <math.h>
stsuct
measures (
Eloat total_langth.
total_angularity.
Eight_angularity.
left_angularity.
atd_angularity_inch,
num_coordinates.
total_runs;
1:
static
float
pi - 3.1415927;
Eloat get_angle ():
2loat get_length ():

```

```

void
measure (coord, meas)
int coozdft[3]; /* coordinate array */
|tzuct
measures \#meas; /* mea|urements to be computed */
/*
- Compute the following measuremants on the line in array coord:
- Total length
- Total angulariey
- Righe c left angulaziey
- Standardized angrlazity per inch
- Number of coordinates
- Total sun!
|/
1
float pl{2}, p2{2}, p3{2}, angle,
pos_ent, neq_ent.
pos_ang, neg_ang, tot_ang,
tot_len, tot_man,
zun_len, \Sigmaun_len_oum, sun_len_eq_sum, sun_mean, zun_std,
cin, cin_avg. cin_aum, cin_eq_aum, cin_maan, cin_atd,
zone. 22, 83, 54, zscose,
diat2, temp1, teamp2:
int i, laet,
p_mon, n_mun,
p_ant, n_ent.
p_ain, n_ain;
/* initialize counters */
pos_ang = neg_ang - tot_ang = tot_len = 0.0;
zun_len = zun_len_mum = mun_len_eq_oum - 0.0;
cin}\mp@subsup{}{}{-}=1.0

```
    64 cin_avi = cin_eq_oum \(=0.0\)
    65 last - P_ran - a_run
last - P_tian a_min - Of

/* proceas each tyiad - agaume unused array entries are set to (-1. -1) ©/
for (i - 0; coord \([i+2][X]>0 ; i++\) ) 1 .
    /* asaign pointa e/
    P1 [X] - ecord[1 \(][X]\);
    pl [Y] - ceord[d \(][Y]:\)
    \(p 2[X]=\operatorname{cocsd}(1+1][X] ;\)
    \(p 2[Y]=\) ecord[i+1)[Y]:
    P3 [X] - coord \([1+2][X]\);
    \(\mathrm{p} 3[\mathrm{Y}]=\) ecosd \([1+2][Y]\) :
    f* ealeulate and aceumulate both lengths in the triad \(/ f\)
    tot_len to get_lengeb (p1. p2):
    diet2 - get length (p2, p3):
    tot_len to diet2:
    /* aceumulate for coordinatea per inch */
    \(1 f\) (tot_2en \(2 \infty\) cin) 1
        templ - (E10et) (i+1 - Lest):
        last - i+1:
        cin_urim te teapl:
        ein_oq_an to teupl * taupl:
        cin+t:
    1
    /* compate angle */.
    angle = gat_aggle (pl. p2, p3):
    /t detemine if angle is poaitive or megative and incranent counters //
    15 (angle < 0.0001 \& 5 angle > -0.0001 ) /* approximately zero /
        angle \(=0.0\) :
    -1 10
        if (angle > 0.0 ) \(1 / *\) poaitive */
            pea_ang te angle:
            P_ent+t;
            P_sin+t;
            if (n_ain > 0) \(1 /\) wrapup previous nogative zan */
                n_7un++:
                a_ein - 0;
                zin_lan_aum to sun_len:

                2un_len - 0.0;
            J
        1
        -1se (/* negative */
            meg_ang to angle:
            a_ent+4:
            D_OLat+;
            15 (P_sin > 0) \(1 / *\) wrap-up previoun positive ann \(/\) /
                P_Funt+:
                P_eln - 0;
                xun_len_oum te man_lea:

                zun_len - 0.0:
            1
        1
    sun_len to diset2:
1/*E021*/

127 2 +m 2: /* adjuat after loop */
128

```

129 /* check Lor last zun */
130 i\& (p_ain > 0)
131 P_zunt+:
132
133
134
135
136
237
138
239
140
141
142
143
144
145
146
147
148
149
150 z4 (2108t)
252
152
153
154
155
156
. }
158
159. 1* coordinntes per inch */
160 cin=0;
161 ein_maan - (2loat) 1 / tot_len;
162 temp2 - ((ein ein_uqgum) - (ein_oum ein_oum)) / (ein * (ein - 2.0));
163 ein_med - (Eloat) eqre (temp2):
164
165 /* setuzn measuzemants */
166
167
268
169
170
171
172
173
174

```
175177
```

Eloat
get_angle (p1, p2, p3)
Eloat pl[l, p2[l, p3[]:
/*
. Compute the angle of change batween two connected vectors
*/
\
tloat . angle.
p4[2]. p5[2]:
p4[x] = pl(x) - p2[X];
p4[Y] = p1[Y] - p2[Y];
p5[X] - p3[X] - P2[X];
p5[Y] - p3[Y] - p2[Y];
/* check for negative infinity */
11 (p4[X] = 0.0)
p4[x] = 0.000000001;
if (p4[Y] = 0.0)
P4[Y]=0.000000001:
if (p5[X] 0.0)
P5[X] - 0.0000000001;
if (pS[Y] - 0.0)
p5[Y] = 0.000000001:
/* compute angle |/
angle = atan2 (p4[Y], p4[X]) = atan2 (p5[Y], p5[X]);
angle -r-(angle < 0.0) 7-pi - angle : pi - angle;
zatusn (angle):
| /* get_angle */

```

10
Elat
216 gat length (pl, p2)
217
Eloat
218
219 /
220 - Compute the eagment lengeh Erom pl to p2
221
- /

222
223 1
224
225
226
227
228
229
230
1.1* get_1ength */
```

AdaEine 8sITE

```
AdaEine 8sITE
200
200
Adazine X 0
Adazine X 0
Gdeisine I I
Gdeisine I I
fdefine 8 2
fdefine 8 2
Ginclude <math.h>
Ginclude <math.h>
    extegn
    extegn
    Lne ieoosdll[3].
    Lne ieoosdll[3].
    ocoord[][3]:
    ocoord[][3]:
    Lat Douglag Pauekex (1).
    Lat Douglag Pauekex (1).
        perp_dist (I:
```

 perp_dist (I:
    ```


```

Lnt

```
Lnt
Douglas Peuckez (tol, ent)
Douglas Peuckez (tol, ent)
    int tol. /t tolezence (pixels) //
    int tol. /t tolezence (pixels) //
                        ent: /* input point eount //
                        ent: /* input point eount //
/*
/*
    Douglas-Peucker line simglifiention algorithm
    Douglas-Peucker line simglifiention algorithm
    |/
    |/
i
i
    int anchor[3]. /* evrrent anchor point */
    int anchor[3]. /* evrrent anchor point */
                                Elonez[3]. /* eurcent &loatas point */
                                Elonez[3]. /* eurcent &loatas point */
                                A_Btack[SSI25]{3]. /e anehor seack */
                                A_Btack[SSI25]{3]. /e anehor seack */
                                E_utack[ssI25] [3). /* &1oarer arack */
                                E_utack[ssI25] [3). /* &1oarer arack */
                ipt[3]. . /* point being tested */
                ipt[3]. . /* point being tested */
                a. /e anchor utack pointer */
                a. /e anchor utack pointer */
                8. /t Lloat reack poincer */
                8. /t Lloat reack poincer */
                i. /* genezal index */
                i. /* genezal index */
                a1. /* anehor index |/
                a1. /* anehor index |/
                    Ii. /* Eloarer Index */
                    Ii. /* Eloarer Index */
                mi. /P point index vieh max pesp diacance /
                mi. /P point index vieh max pesp diacance /
                Enx_dist. /* maximum parp diatanee caleulated */
                Enx_dist. /* maximum parp diatanee caleulated */
                diat; /* pezp distanco ealculated (pixels) %/
                diat; /* pezp distanco ealculated (pixels) %/
    dE (1eoord[0][X] - deoord{ent-1] [X] }4
    dE (1eoord[0][X] - deoord{ent-1] [X] }4
        deoord[O][Y] - icoord[ent-1][Y])
        deoord[O][Y] - icoord[ent-1][Y])
        zetu\Sigman (-1):
        zetu\Sigman (-1):
    1-ad - - E 0:
    1-ad - - E 0:
    m_meack[a J[X] - deoord[ai J[X]:
    m_meack[a J[X] - deoord[ai J[X]:
    a_seack[a+t][Y] - icoord[ai ][Y];
    a_seack[a+t][Y] - icoord[ai ][Y];
    E_seck[{ ]{X] - 1eoord(ent-1][X];
    E_seck[{ ]{X] - 1eoord(ent-1][X];
    E_steek[8++1{Y] - deeord[ent-1]{Y];
    E_steek[8++1{Y] - deeord[ent-1]{Y];
        whie (&) ( f* flonter steck is not aupty */
        whie (&) ( f* flonter steck is not aupty */
        anehor[X] a_otaek[a-I] [X]:
        anehor[X] a_otaek[a-I] [X]:
        anchor[{] m atack[e-1][Y]:
        anchor[{] m atack[e-1][Y]:
        Eloner[X] - &_reck[{-1) [X]:
        Eloner[X] - &_reck[{-1) [X]:
        Eloatr[\] - E_oteek[{-1][Y]:
        Eloatr[\] - E_oteek[{-1][Y]:
        f* ndjust index Eor eusrent Eloater */
        f* ndjust index Eor eusrent Eloater */
        Eos (Ei - .ai+1: Leoerd[{i][X] Io ElontE[X] ||
        Eos (Ei - .ai+1: Leoerd[{i][X] Io ElontE[X] ||
                decosd[E&][Y] [क E\onts[Y]: E{4*);
                decosd[E&][Y] [क E\onts[Y]: E{4*);
        d: [ELantz[X] - 1eoord[ai+1] [X] }
        d: [ELantz[X] - 1eoord[ai+1] [X] }
            ILoatr[Y] deoord{ad+1][X]) ( /* anchor and ELeater ere adjacent */
            ILoatr[Y] deoord{ad+1][X]) ( /* anchor and ELeater ere adjacent */
            _meack[a \[X] - E_meack[-5][X]: /* pop Eloater onto anchor atack */
            _meack[a \[X] - E_meack[-5][X]: /* pop Eloater onto anchor atack */
            Emeack[at+][Y] - E_atack[ . &][X]:
            Emeack[at+][Y] - E_atack[ . &][X]:
            C\+4+:
            C\+4+:
                    /* murp anchor index */
```

 /* murp anchor index */
    ```
```

64 |
65 else (/* not adjacent */
66 max_dist. = 0;
67
68
69
7 0
71
72
7 3
74
7 5
76
7 7
78
7 9
8 0
81
82
8 3
84
85
86
87
88
89
90
91
92
93
94
95
96
97

```
(6)```


[^0]:    Cartograpfic Generafieation Report Tage 22

[^1]:    CARTOGEN Program
    Trepared by PAR Government System Corporation

[^2]:    - Tolerance Band is seleced by a earographer, ahown as a shaded area on the figure below. B. This colerance band is the computed distance in length either side of the line constructed berween the curtent anchor point and the foater point. In this case, the anchor is P1, the floater is P31.
    - Push Pl on menchor ginck.
    - Push P31 on flouler atack.
    - Calculate perpendicular distance to all intermediary points from the imaginary vector drawn between anchar P1 and Doater P31 (reference the figure below, B).
    - Son for maximum perpendieuler disunce. In this ease P12.
    - Push P12 on flonter stack.
    - Caleulate perpendicular dietence to all intermediery points from the imaginary vector drawn berween anchor P1 and Doaler P12 (reference the figure below, C).
    - Son for maximum perpendicular disunce. In thir case, P6.
    - Compare maximum peppendiculer disance to tolerance. Disunce is preater than tolerance.
    - Push P6 on Donuer stack.
    - Calculate perpendiculer disunce so all intermediery points from the imaginaty vector drawn between mehor P1 and flonter P6 (reference the figure below, D).
    - Sort for maximum perpendiculer distance. In thir case, P3.
    - Compare maximum perpendieuler disunce to tolerance. Disunce is preater than tolerance.
    - Push P3 on flower streck.
    - Calculate perpendiculer diatence to all intermediery points from the imaginery vector dramb belween anchor P1 and Dlonter P3 (reference the figure below, E).
    - Son for maximum perpendicular dirunce. In this ease. P2.

