Skip to main content

Modeling with Pictogrammic Languages

  • Reference work entry

Synonyms

Spatial modeling language extension; Spatio‐temporal modeling language extension; Perceptory pictograms

Definition

“Spatial databases” consist of large groups of data structured in a way to represent the geographic features of interest to the users of a system. Spatial database models are schematic representations of these data. Database models are created to design and document the system, to facilitate communication and to support programming. They are created using CASE tools (computer‐assisted software engineering). CASE tools support schema drawing, dictionaries and code generation. Database schemas are typically represented with a graphical language such as UML (Unified Modeling Language; see http://www.uml.org and [11]).

“Database models” can represent (1) users' real-life views of the data of interest, (2) developers' views of the potential organization of these data for a family of technologies, or (3) their final implementation on a specific platform. For example, in...

This is a preview of subscription content, log in via an institution.

Recommended Reading

  1. Bédard, Y., Larrivée, S., Proulx, M.-J., Nadeau, M.: Modeling Geospatial Databases with Plug-Ins for Visual Languages: A Pragmatic Approach and the Impacts of 16 Years of Research and Experimentations on Perceptory. In: Wang, S. et al. (eds.): Conceptual Modeling for Advanced Application Domains. Lecture Notes in Computer Science, Vol. 3289, pp. 17–30. Springer-Verlag, Berlin/Heidelberg (2004)

    Chapter  Google Scholar 

  2. Bédard, Y., Proulx, M.-J., Larrivée, S., Bernier, E.: Modeling Multiple Representations into Spatial Data Warehouses: A UML-based Approach. ISPRS WG IV/3, Ottawa, Canada, July 8th–12th, p. 7 (2002)

    Google Scholar 

  3. Bédard, Y.: Visual Modeling of Spatial Database, Towards Spatial PVL and UML. Geomatica 53(2), 169–185 (1999)

    Google Scholar 

  4. Bédard, Y., Caron, C., Maamar, Z., Moulin, B., Vallière, D.: Adapting Data Model for the Design of Spatio‐Temporal Database. Comput., Environ. Urban Syst. 20(l), 19–41 (1996)

    Article  Google Scholar 

  5. Bédard, Y., Pageau, J., Caron, C.: Spatial Data Modeling: The Modul-R Formalism and CASE Technology. ISPRS Symposium, Washington DC, USA, August 1st–14th (1992)

    Google Scholar 

  6. Bédard, Y., Paquette, F.: Extending Entity/Relationship Formalism for Spatial Information Systems. AUTO-CARTO 9, 9th International Symposium on Automated Cartography, ASPRS-ACSM, Baltimore, USA, pp. 818–827, April 2nd–7th (1989)

    Google Scholar 

  7. Bédard, Y., Larrivée, S.: Développement des systèmes d'information à référence spatiale: vers l'utilisation d'ateliers de génie logiciel. CISM Journal ACSGC, Canadian Institute of Geomatics, Canada, 46(4), 423–433 (1992)

    Google Scholar 

  8. Brodeur, J., Bédard, Y., Proulx, M.-J.: Modeling Geospatial Application Database using UML-Based Repositories Aligned with International Standards in Geomatics. ACM-GIS, Washington DC, USA, 36–46, November 10th–11th (2000)

    Google Scholar 

  9. Brodeur, J., Bédard, Y., Edwards, G., Moulin, B.: Revisiting the Concept of Geospatial Data Interoperability within the Scope of Human Communication Processes. Transactions in GIS 7(2), 243–265 (2003)

    Article  Google Scholar 

  10. Filho, J.L., Sodre, V.D.F., Daltio, J., Rodrigues Junior, M.F., Vilela, V.: A CASE Tool for Geographic Database Design Supporting Analysis Patterns. Lecture Notes in Computer Science, vol. 3289, pp. 43–54. Springer-Verlag, Berlin/Heidelberg (2004)

    Google Scholar 

  11. Fowler, M.: UML 2.0, p. 165. Campus Press, Pearson Education, Paris (2004)

    Google Scholar 

  12. Frankel, D.S., Harmon, P., Mukerji, J., Odell, J., Owen, M., Rivitt, P., Rosen, M., Soley, R.: The Zachman Framework and the OMG's Model Driven Architecture. Business Process Trends, Whitepaper (2003)

    Google Scholar 

  13. Miller, J., Mukerji, J.: MDA Guide Version 1.0. In: Miller, J., Mukerji, J. (eds.), OMG Document: omg/2003-05-01. http://www.omg.org/mda/mda_files/MDA_Guide_Version1-0.pdf (2003)

  14. Miralles, A.: Ingénierie des modèles pour les applications environnementales. Ph.D. Thesis, Université des Sciences et Techniques du Languedoc, p. 338. Département d'informatique, Montpellier, France (2006)

    Google Scholar 

  15. Naiburg, E.J., Maksimchuk, R.A.: UML for Database Design. Addison‐Wesley, p. 300 (2001)

    Google Scholar 

  16. Pantazis, D., Donnay, J.P.: La conception SIG: méthode et formalisme, p. 343. Hermès, Paris (1996)

    Google Scholar 

  17. Parent, C., Spaccapietra, S., Zimányi, E.: Conceptual Modeling for Traditional and Spatio‐Temporal Applications: The MADS Approach, p. 466. Springer, Berlin/Heidelberg (2006)

    Google Scholar 

  18. Sowa, J.F., Zachman, J.A.: Extending and Formalizing the Framework for Information Systems Architecture. IBM Syst. J. 31(3). IBM Publication G321–5488 (1992)

    Google Scholar 

  19. Tryfona, N., Price, R., Jensen, C.S.: Conceptual Models for Spatio‐Temporal Applications. In Spatiotemporal Databases: The CHOROCHRONOS approach, Lecture Notes in Computer Science, vol. 2520, Chapter 3. Springer-Verlag, Berlin/Heidelberg (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Bédard, Y., Larrivée, S. (2008). Modeling with Pictogrammic Languages. In: Shekhar, S., Xiong, H. (eds) Encyclopedia of GIS. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-35973-1_812

Download citation

Publish with us

Policies and ethics