Skip to main content

Microwave Subsurface Propagation and Scattering

  • Reference work entry
  • First Online:
  • 239 Accesses

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definitions

Subsurface. Natural materials (soils, rock, snow, ice) below air–ground interface.

Ground-penetrating radar. Radar for subsurface sensing. It locates, images, and characterizes changes in electrical and magnetic properties of subsurface materials.

Introduction

The first description of microwaves use for subsurface sensing is attributed to a German patent by Leimbach and Löwy from 1910 (Daniels, 2004). In this patent, propagation of microwaves between pairs of vertically buried dipole antennas has been used to detect any subsurface objects with higher conductivity than the surrounding medium. Only monochromatic electromagnetic waves have been considered in this patent. The first use of electromagnetic pulses with a broad spectrum to determine the structure of buried objects is attributed to Hülsenbeck (Hülsenbeck et al., 1926). It was noted that any dielectric variation, not necessarily involving conductivity, would also produce reflections. The first ever experiments with...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   329.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Bogorodskii, V., Bentli, C., and Gudmandsen, P., 1983. Russian Radio Glaciology. Leningrad: Gidrometeoizdat. In Russian.

    Google Scholar 

  • Bojarskii, D. A., Tikhonov, V. V., and Komarova, N. Y., 2002. Model of dielectric constant of bound water in soil for applications of microwave remote sensing. Progress in electromagnetic Research, 35, 251–269.

    Google Scholar 

  • Boyarskii, D. A., and Tikhonov, V. V., 1994. Microwave effective permittivity model of media of dielectric particles and applications to dry and wet snow. In Proceedings of Geoscience and Remote Sensing Symposium. Vol. 4, p. 2065.

    Google Scholar 

  • Cole, K. S., and Cole, H. R., 1941. Dispersion and absorption in dielectrics – I. Alternative current characteristics. Journal of Chemical Physics, 9, 341.

    Google Scholar 

  • Cook, J., 1975. Radar transparencies of mine and tunnel rocks. Geophysics, 40, 865.

    Google Scholar 

  • Daniels, D. J. (ed.), 2004. Ground-Penetrating Radar, 2nd edn. London: The Institution of Electrical Engineers.

    Google Scholar 

  • De Loor, G. P., 1983. The dielectric properties of wet materials. IEEE Transactions on Geoscience and Remote Sensing, 21, 364.

    Google Scholar 

  • Dobson, M. C., Ulaby, F. T., Hallikainen, M. T., and El-Rayes, M. A., 1985. Microwave dielectric behavior of soil – part II: dielectric mixing models. IEEE Transactions on Geoscience and Remote Sensing, 23, 35.

    Google Scholar 

  • Elachi, C. H., Roth, L. E., and Schaber, G. G., 1984. Spaceborne radar subsurface imaging in hyperarid regions. IEEE Transactions on Geoscience and Remote Sensing, 22, 383.

    Google Scholar 

  • Fung, A. K., 1994. Microwave Scattering and Emission Models and Their Applications. Norwood: Artech House.

    Google Scholar 

  • Grosch, T. O., Lee, C. F., Adams, E. M., Tran, C., Koening, F., Tom, K., and Vickers, R. S., 1995. Detection of surface and buried mines with an UHF airborne SAR. Proceedings of SPIE, 2496, 110.

    Google Scholar 

  • Hallikainen, M. T., Ulaby, F. T., Dobson, M. C., El-Rayes, M. A., and Wu, L. K., 1985. Microwave dielectric behaviour of wet soil – part I. Empirical models and experimental observations. IEEE Transactions on Geoscience and Remote Sensing, 15, 25.

    Google Scholar 

  • Heimovaara, T. J., 1994. Frequency-domain analysis of time-domain reflectometry waveforms 1. Measurement of the complex dielectric permittivity. Water Resources Research, 30, 189.

    Google Scholar 

  • Heimovaara, T. J., Bouten, W., and Verstraten, J. M., 1994. Frequency domain analysis of time domain reflectometry waveforms 2. A four-component complex dielectric mixing model for soils. Water Resources Research, 30, 201.

    Google Scholar 

  • Hellsten, H., Ulander, L. M., Gustavsson, A., and Larsson, B., 1996. Development of VHF CARABAS II SAR. Proceedings of SPIE, 2747, 48.

    Google Scholar 

  • Hipp, J. E., 1974. Soil electromagnetic parameters as functions of frequency, soil density and soil moisture. Proceedings of the IEEE, 62, 98.

    Google Scholar 

  • Hoekstra, P., and Delaney, A., 1974. Dielectric properties of soils at UHF and microwave frequencies. Journal of Geophysical Research, 79, 1699.

    Google Scholar 

  • Hülsenbeck, R., et al., 1926. German patent No. 489434.

    Google Scholar 

  • Kovacs, A., Gow, A. J., and Morey, R. M., 1995. The in-situ dielectric constant of polar firn revisited. Cold Regions Science and Technology, 23, 245.

    Google Scholar 

  • Olhoeft, G. R., 1987. Electrical properties from 10–3 to 10 + 9 Hz – physics and chemistry. In Banavar, J. R., Koplik, J., and Winkler, K. W. (eds.), Physics and Chemistry of Porous Media II. New York: American Institute of Physics.

    Google Scholar 

  • Or, D., and Wraith, J. M., 1999. Temperature effects on soil bulk dielectric permittivity measured by time-domain reflectometry: a physical model. Water Resources Research, 35, 371.

    Google Scholar 

  • Sen, P. N., Scala, C., and Cohen, M. H., 1981. A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophysics, 46, 781.

    Google Scholar 

  • Shutko, A. M., and Reutov, E. M., 1982. Mixture formulas applied in estimation of dielectric and radiative characteristics of soil and grounds at microwave frequencies. IEEE Transactions on Geoscience and Remote Sensing, 20, 29.

    Google Scholar 

  • Simmons, G., Strangway, D. W., Bannister, L., Baker, R., Cubley, D., La Torraca, G., and Watts, R., 1972. The surface electrical properties experiment. In Kopal, Z., and Strangway, D. W. (eds.), Lunar Geophysics. Dordrecht: Reidel, p. 258.

    Google Scholar 

  • Stern, W., 1929. Versuch einer elektrodynamischen Dickenmessung von Gletschereis. Gerlands Beitrage zur Geophysik, 23, 292.

    Google Scholar 

  • Stern, W., 1930. Uber Grundlagen, Methodik und bisherige Ergebnisse elektrodynamischer Dickenmessung von Gletschereis. Zeitschrift Gletscherkunde, 15, 24.

    Google Scholar 

  • Topp, G. C., Davis, J. L., and Annan, A. P., 1980. Electromagnetic determination of soil water content: measurement in coaxial transmission lines. Water Resources Research, 16, 574.

    Google Scholar 

  • Wang, J. R., and Schmugge, T. J., 1980. An empirical model for the complex dielectric permittivity of soils as a function of water content. IEEE Transactions on Geoscience and Remote Sensing, 18, 288.

    Google Scholar 

  • Wobschall, D., 1977. A theory of the complex dielectric permittivity of soil containing water: the semidisperse model. IEEE Transactions on Geoscience and Remote Sensing, 15, 49.

    Google Scholar 

  • Yarovoy, A. G., de Jongh, R. V., and Ligthart, L. P., 2000. Scattering properties of a statistically rough interface inside a multilayered medium. Radio Science, 35, 455.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Yarovoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Yarovoy, A. (2014). Microwave Subsurface Propagation and Scattering. In: Njoku, E.G. (eds) Encyclopedia of Remote Sensing. Encyclopedia of Earth Sciences Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36699-9_103

Download citation

Publish with us

Policies and ethics