Skip to main content

Radiative Transfer, Solution Techniques

  • Reference work entry
  • First Online:
Encyclopedia of Remote Sensing

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Barker, H. W., Goldstein, R. K., and Stevens, D. E., 2003. Monte Carlo simulation of solar reflectances for cloudy atmospheres. Journal of the Atmospheric Sciences, 60(16), 1881–1894.

    Google Scholar 

  • Battaglia, A., and Mantovani, S., 2005. Forward Monte Carlo computations of fully polarized microwave radiation in non isotropic media. Journal of Quantitative Spectroscopy and Radiative Transfer, 95, 285–308.

    Google Scholar 

  • Berk, A., Bernstein, L. S., and Robertson, D. C., 1989. Modtran MODTRAN: A Moderate Resolution Model for LOWTRAN 7. Burlington: Spectral Sciences.

    Google Scholar 

  • Bohren, C. F., and Clotiaux, E. E., 2006. Fundamentals of Atmospheric Radiation. Weinheim: Wiley.

    Google Scholar 

  • Chandrasekhar, S., 1960. Radiative Transfer. New York: Dover.

    Google Scholar 

  • Cornet, C., C-Labonnote, L., and Szczap, F., 2010. Three-dimensional polarized Monte Carlo atmospheric radiative transfer model (3DMCPOL): 3D effects on polarized visible reflectances of a cirrus cloud. Journal of Quantitative Spectroscopy and Radiative Transfer, 111, 174–186, doi:10.1016/j.jqsrt.2009.06.013.

    Article  Google Scholar 

  • De Haan, J. F., Bosma, P. B., and Hovenier, J. W., 1987. The adding method for multiple scattering calculations of polarized light. Astronomy and Astrophysics, 183, 371–391.

    Google Scholar 

  • Goody, R. M., and Yung, Y. L., 1989. Atmospheric Radiation Theoretical Basis. New York: Oxford University Press.

    Google Scholar 

  • http://code.google.com/p/i3rc-monte-carlo-model/

  • IAMAP Radiation Commission, 1975. Standard Procedures to Compute Atmospheric Radiative Transfer in a Scattering Atmosphere. Boulder: NCAR, Vol. I.

    Google Scholar 

  • IAMAP Radiation Commission, 1980. Standard Procedures to Compute Atmospheric Radiative Transfer in a Scattering Atmosphere. Boulder: NCAR, Vol. II.

    Google Scholar 

  • Iwabuchi, H., 2006. Efficient Monte Carlo methods for radiative transfer modeling. Journal of the Atmospheric Sciences, 63(9), 2324–2339.

    Google Scholar 

  • Kneizys, F. X., Shettle, E. P., Abreu, L. W., Chetwynd, J. H., and Anderson Lowtran, G. P., 1988. Users Guide to LOWTRAN 7. Hanscom AFB: Air Force Geophysics Lab.

    Google Scholar 

  • Kondratiev, K. Y., Kozoderov, V. V., and Smokty, O. I., 1992. Remote Sensing of the Earth from Space: Atmospheric Correction. Heidelberg: Springer.

    Google Scholar 

  • Lenoble, J., 1985. Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures. Hampton: Deepak Publishing, p. 300.

    Google Scholar 

  • Lenoble, J., 1993. Atmospheric Radiative Transfer. Hampton: Deepak Publishing, p. 532.

    Google Scholar 

  • Levoni, C., Cervino, M., Guzzi, R., and Torricella, F., 1997. Atmospheric aerosol optical properties: a data base of radiative characteristics for different component and classes. Applied Optics, 36, 8031–8041.

    Google Scholar 

  • Levoni, C., Cattani, E., Cervino, M., Guzzi, R., and Di Nicolantonio, W., 2001. Effectiveness of the MS-method for computation of the intensity field reflected by a multilayer plane-parallel atmosphere: results from an accelerated yet accurate radiative transfer code. Journal of Quantitative Spectroscopy and Radiative Transfer, 4, 636–649.

    Google Scholar 

  • Liou, K. N., 1980. An Introduction to Atmospheric Radiation. New York: Academic.

    Google Scholar 

  • Liou, K. N., 1992. Radiation and Cloud Processes in the Atmosphere. New York: Oxford University Press.

    Google Scholar 

  • Marchuk, G., Mikhailov, G., Nazaraliev, M., Darbinjan, R., Kargin, B., and Elepov, B., 1980. The Monte Carlo Methods in Atmospheric Optics. Berlin: Springer, p. 208.

    Google Scholar 

  • Marshak, A., and Davis, A. B. (eds.), 2005. 3D Radiative Transfer in Cloudy Atmospheres. Springer: Berlin, p. 686.

    Google Scholar 

  • Mayer, B., Emde, C., Buras, R., Hamann, U., and Kylling, A., 2005. LibRadTran: library for radiative transfer. http://www.libradtran.org/doku.php.

  • Miskolczi, F., Rizzi, R., Guzzi, R., and Bonzagni, M., 1998. A new high resolution transmittance code and its application in the field of remote sensing. In Lenoble, J., and Geleyn, J. F., (eds.), International Radiation Symposium. Deepak Publishing: Hampton VA, USA.

    Google Scholar 

  • Nakajima, T., and Tanaka, M., 1981. Algorithms for radiative intensity calculations in moderate thick atmospheres using a truncation approximation. Journal of Quantitative Spectroscopy and Radiative Transfer, 40, 51–69.

    Google Scholar 

  • O’Hirok, W., and Gautier, C., 1998. A three-dimensional radiative transfer model to investigate the solar radiation within a cloudy atmosphere. Part I: spatial effects. Journal of the Atmospheric Sciences, 55(12), 2162–2179.

    Google Scholar 

  • Petty, G. W., 2006. A First Course in Atmospheric Radiation, 2nd edn. Madison: Sundog.

    Google Scholar 

  • Pincus, R., and Evans, K. F., 2009. Computational cost and accuracy in calculating three-dimensional radiative transfer: results for new implementations of Monte Carlo and SHDOM. Journal of the Atmospheric Sciences, 66(10), 3131–3314.

    Google Scholar 

  • Preisendorfer, R., 1965. Radiative Transfer on Discrete Spaces. New York: Pergamon.

    Google Scholar 

  • Ricchiazzi, P., Shiren, Y., and Gautier, C., 2007. SBDART: a practical tool for plane-parallel radiative transfer in the earth’s atmosphere. Earth Space Research Group, Institute for Computational Earth System Science University of California, Santa Barbara, http://www.paulschou.com/tools/sbdart/.

  • Sobolev, V., 1975. Light Scattering in Planetary Atmospheres. New York: Pergamon. 442p.

    Google Scholar 

  • Spurr, R. J., 2001. A General Discrete Ordinate Approach to the Calculation of Radiances and Analytical Weighting Functions with Applications to Atmospheric Remote Sensing. PhD thesis, Eindoven Tech. University.

    Google Scholar 

  • Stamnes, K., 1982. On the computation of angular distributions of radiation in planetary atmosphere. Journal of Quantitative Spectroscopy and Radiative Transfer, 28, 47–51.

    Google Scholar 

  • Stamnes, K., and Swanson, R., 1981. A new look at the discrete ordinate method for radiative transfer calculation in anisotropically scattering atmosphere. Journal of the Atmospheric Sciences, 38, 387–399.

    Google Scholar 

  • Stamnes, K., Tsay, S. C., Wiscombe, W. J., and Jayaweera, K., 1988. Numerical stable algorithm for discrete ordinate radiative transfer in multiple scattering and emitting layered media. Applied Optics, 27, 2502–2509.

    Google Scholar 

  • Takara, E. E., and Ellingson, R. G., 1996. Scattering effects on longwave fluxes in broken cloud fields. Journal of the Atmospheric Sciences, 53(10), 1464–1476.

    Google Scholar 

  • Takara, E. E., and Ellingson, R. G., 2000. Broken cloud field longwave-scattering effects. Journal of the Atmospheric Sciences, 57(9), 1298–1310.

    Google Scholar 

  • Thomas, G. E., and Stamnes, K., 1999. Radiative Transfer in Atmosphere and Ocean. Cambridge: Cambridge University Press, p. 517.

    Google Scholar 

  • Van De Hulst, H. C., 1980. Multiple Light Scattering. Tables, Formulas and Applications. New York: Academic.

    Google Scholar 

  • Verstraete, M. M., Pinty, B., and Dickinson, R. E., 1990. A physical model of the bidirectional reflectance of vegetation canopies. I – Theory II – inversion and validation. Journal of Geophysical Research, 95, 11755–11775. (ISSN 0148–0227), Research supported by ESA, CNRS, and NCAR.

    Google Scholar 

  • World Climate Programme. 1982. WCP-43 Tropospheric aerosols: review and current data on physical and optical properties (computed by Harris, F. S., and Gerber, H. G.), WMO Geneve.

    Google Scholar 

  • Yanovithskij, E. G., 1997. Light Scattering in Inhomogeneous Atmosphere. Heidelberg: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Guzzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Guzzi, R. (2014). Radiative Transfer, Solution Techniques. In: Njoku, E.G. (eds) Encyclopedia of Remote Sensing. Encyclopedia of Earth Sciences Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36699-9_151

Download citation

Publish with us

Policies and ethics