Skip to main content

Emerging Technologies, Lidar

  • Reference work entry
  • First Online:
Encyclopedia of Remote Sensing

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Abrams, M. C., and Tratt, D. M., 2005. Progress in laser sources for lidar applications: laser sources for 3D imaging remote sensing. Proceedings of SPIE, 5653, 241, doi:10.1117/12.580323.

    Article  Google Scholar 

  • Abshire, J. B., Sun, X., Riris, H., Sirota, J. M., McGarry, J. F., Palm, S., Yi, D., and Liiva, P., 2005. Geoscience laser altimeter system (GLAS) on the ICESat mission: on-orbit measurement performance. Geophysical Research Letters, 32, L21S02, doi:10.1029/2005GL024028.

    Article  Google Scholar 

  • Abshire, J. B., Riris, H., Allan, G. R., Weaver, C. J., Mao, J., Sun, X., Hasselbrack, W. E., Kawa, S. R., and Biraud, S., 2010. Pulsed airborne lidar measurements of atmospheric CO2 column absorption. Tellus, 62B, 770, doi:10.1111/j.1600-0889.2010.00502.x.

    Article  Google Scholar 

  • Albota, M. A., Heinrichs, R. M., Kocher, D. G., Fouche, D. G., Player, B. E., O’Brien, M. E., Aull, B. F., Zayhowski, J. J., Mooney, J., Willard, B. C., and Carlson, R. R., 2002. Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser. Applied Optics, 41, 7671, doi:10.1364/AO.41.007671.

    Article  Google Scholar 

  • Althausen, D., Müller, D., Ansmann, A., Wandinger, U., Hube, H., Clauder, E., and Zörner, S., 2000. Scanning 6-wavelength 11-channel aerosol lidar. Journal of Atmospheric and Oceanic Technology, 17, 1469, doi:10.1175/1520-0426(2000)017<1469:SWCAL>2.0.CO;2.

    Article  Google Scholar 

  • Ansmann, A., Wandinger, U., Riebesell, M., Weitkamp, C., and Michaelis, W., 1992. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. Applied Optics, 31, 7113, doi:10.1364/AO.31.007113.

    Article  Google Scholar 

  • Baker, W. E., Emmitt, G. D., Robertson, F., Atlas, R. M., Molinari, J. E., Bowdle, D. A., Paegle, J., Hardesty, R. M., Menzies, R. T., Krishnamurti, T. N., Brown, R. A., Post, M. J., Anderson, J. R., Lorenc, A. C., and McElroy, J., 1995. Lidar-measured winds from space: a key component for weather and climate prediction. Bulletin of the American Meteorological Society, 76, 869, doi:10.1175/1520-0477(1995)076<0869:LMWFSA>2.0.CO;2.

    Article  Google Scholar 

  • Banic, J. R., and Cunningham, A. G., 1998. Airborne laser bathymetry: a tool for the next millennium. EEZ Technology, 3, 75. http://www.jalbtcx.org/downloads/Publications/32Banic_Cunningham_98.pdf.

  • Beck, S. M., Buck, J. R., Buell, W. F., Dickinson, R. P., Kozlowski, D. A., Marechal, N. J., and Wright, T. J., 2005. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing. Applied Optics, 44, 7621, doi:10.1364/AO.44.007621.

    Article  Google Scholar 

  • Bilbro, J. W., DiMarzio, C. A., Fitzjarrald, D. E., Johnson, S. C., and Jones, W. D., 1986. Airborne Doppler lidar measurements. Applied Optics, 25, 3952, doi:10.1364/AO.25.003952.

    Article  Google Scholar 

  • Blair, J. B., Rabine, D. L., and Hofton, M. A., 1999. The laser vegetation imaging sensor: a medium-altitude, digitization-only, airborne laser altimeter for mapping vegetation and topography. ISPRS Journal of Photogrammetry and Remote Sensing, 54, 115, doi:10.1016/S0924-2716(99)00002-7.

    Article  Google Scholar 

  • Browell, E. V., Grant, W. B., and Ismail, S., 2004. Environmental measurements: laser detection of atmospheric trace gases. In Guenther, R. D., Steel, D. G., and Bayvel, L. (eds.), Encyclopedia of Modern Optics. Amsterdam: Elsevier, pp. 403–416.

    Google Scholar 

  • Bufton, J. L., 1989. Laser altimetry measurements from aircraft and spacecraft. Proceedings of the IEEE, 77, 463, doi:10.1109/5.24131.

    Article  Google Scholar 

  • Buteau, S., Simard, J.-R., Lahaie, P., Roy, G., Mathieu, P., Déry, B., Ho, J., and McFee, J., 2007. Bioaerosol standoff monitoring using intensified range-gated laser-induced fluorescence spectroscopy. In Kim, Y. J., and Platt, U. (eds.), Advanced Environmental Monitoring. Dordrecht: Springer, pp. 203–216, doi:10.1007/978-1-4020-6364-0_16.

    Chapter  Google Scholar 

  • Chambers, D., 1997. Modeling of heterodyne efficiency for coherent laser radar in the presence of aberrations. Optics Express, 1, 60, doi:10.1364/OE.01.000060.

    Article  Google Scholar 

  • Chanin, M. L., and Hauchecorne, A., 1984. Lidar studies of temperature and density using rayleigh scattering. In International Council of Scientific Unions Middle Atmosphere Handbook, Vol. 13, Urbana, Illinois, USA: Scientific Committee on Solar Terrestrial Physics, International Council of Scientific Unions, p. 87.

    Google Scholar 

  • Cheng, A. F., Barnouin-Jha, O., Prockter, L., Zuber, M. T., Neumann, G., Smith, D. E., Garvin, J., Robinson, M., Veverka, J., and Thomas, P., 2002. Small-scale topography of 433 Eros from laser altimetry and imaging. Icarus, 155, 51, doi:10.1006/icar.2001.6750.

    Article  Google Scholar 

  • Chu, X., and Papen, G. C., 2005. Resonance fluorescence lidar for measurements of the middle and upper atmosphere. In Fujii, T., and Fukuchi, T. (eds.), Laser Remote Sensing. Boca Raton: Taylor & Francis, pp. 179–432, doi:10.1201/9781420030754.ch5.

    Chapter  Google Scholar 

  • Dehring, M. T., Tchoryk, P., and Wang, J., 2006. High altitude balloon-based wind LIDAR demonstration: from near space to space. Proceedings of SPIE, 6220, 62200P, doi:10.1117/12.669262.

    Google Scholar 

  • Durand, Y., Chinal, E., Endemann, M., Meynart, R., Reitebuch, O., and Treichel, R., 2006. ALADIN airborne demonstrator: a Doppler wind lidar to prepare ESA’s ADM-Aeolus explorer mission. Proceedings of SPIE, 6296, 62961D, doi:10.1117/12.680958.

    Google Scholar 

  • Eloranta, E. W., 1998. Practical model for the calculation of multiply scattered lidar returns. Applied Optics, 37, 2464, doi:10.1364/AO.37.002464.

    Article  Google Scholar 

  • Eloranta, E. W., 2005. High spectral resolution lidar. In Weitkamp, C., and Walther, H. (eds.), Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere. Berlin: Springer, pp. 143–163, doi:10.1007/0-387-25101-4_5.

    Chapter  Google Scholar 

  • Emmitt, G. D., 2004. Combining direct and coherent detection for Doppler wind lidar. Proceedings of SPIE, 5575, 31, doi:10.1117/12.576539.

    Article  Google Scholar 

  • Fujii, T., and Fukuchi, T. (eds.), 2005. Laser Remote Sensing. Boca Raton: Taylor & Francis. http://www.crcnetbase.com/isbn/9781420030754.

  • Gardner, C. S., 1989. Sodium resonance fluorescence lidar applications in atmospheric science and astronomy. Proceedings of the IEEE, 77, 408, doi:10.1109/5.24127.

    Article  Google Scholar 

  • Garvin, J., Bufton, J., Blair, J. B., Harding, D., Luthcke, S., Frawley, J., and Rowlands, D., 1998. Observations of the Earth’s topography from the shuttle laser altimeter (SLA): laser-pulse echo-recovery measurements of terrestrial surfaces. Physics and Chemistry of the Earth, 23, 1053, doi:10.1016/S0079-1946(98)00145-1.

    Article  Google Scholar 

  • Gelbwachs, J. A., 1994. Iron Boltzmann factor lidar: proposed new remote sensing technique for mesospheric temperature. Applied Optics, 33, 7151, doi:10.1364/AO.33.007151.

    Article  Google Scholar 

  • Gentry, B. M., Chen, H., and Li, S. X., 2000. Wind measurements with 355-nm molecular Doppler lidar. Optics Letters, 25, 1231, doi:10.1364/OL.25.001231.

    Article  Google Scholar 

  • Gibert, F., Flamant, P. H., Bruneau, D., and Loth, C., 2006. Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer. Applied Optics, 45, 4448, doi:10.1364/AO.45.004448.

    Article  Google Scholar 

  • Gimmestad, G. G., 2008. Reexamination of depolarization in lidar measurements. Applied Optics, 47, 3795, doi:10.1364/AO.47.003795.

    Article  Google Scholar 

  • Grant, W. B., Margolis, J. S., Brothers, A. M., and Tratt, D. M., 1987. CO2 DIAL measurements of water vapor. Applied Optics, 26, 3033, doi:10.1364/AO.26.003033.

    Article  Google Scholar 

  • Grant, W. B., Browell, E. V., Menzies, R. T., Sassen, K., She, C.-Y., and Thompson, B. J. (eds.), 1997. Selected Papers on Laser Applications in Remote Sensing. Bellingham: SPIE.

    Google Scholar 

  • Grund, C. J., Banta, R. M., George, J. L., Howell, J. N., Post, M. J., Richter, R. A., and Weickmann, A. M., 2001. High-resolution Doppler lidar for boundary layer and cloud research. Journal of Atmospheric and Oceanic Technology, 18, 376, doi:10.1175/1520-0426(2001)018<0376:HRDLFB>2.0.CO;2.

    Article  Google Scholar 

  • Hair, J. W., Hostetler, C. A., Cook, A. L., Harper, D. B., Ferrare, R. A., Mack, T. L., Welch, W., Izquierdo, L. R., and Hovis, F. E., 2008. Airborne high spectral resolution lidar for profiling aerosol optical properties. Applied Optics, 47, 6734, doi:10.1364/AO.47.006734.

    Article  Google Scholar 

  • Hannon, S. M., Bagley, H. R., and Bogue, R. K., 1999. Airborne Doppler lidar turbulence detection: ACLAIM flight test results. Proceedings of SPIE, 3707, 234, doi:10.1117/12.351378.

    Article  Google Scholar 

  • Heaps, W. S., and Burris, J., 1996. Airborne Raman lidar. Applied Optics, 35, 7128, doi:10.1364/AO.35.007128.

    Article  Google Scholar 

  • Henderson, S. W., and Hannon, S. M., 2005. Advanced coherent lidar system for wind measurements. Proceedings of SPIE, 5887, 58870I, doi:10.1117/12.620318.

    Article  Google Scholar 

  • Hoge, F. E., Lyon, P. E., Wright, C. W., Swift, R. N., and Yungel, J. K., 2005. Chlorophyll biomass in the global oceans: airborne lidar retrieval using fluorescence of both chlorophyll and chromophoric dissolved organic matter. Applied Optics, 44, 2857, doi:10.1364/AO.44.002857.

    Article  Google Scholar 

  • Hu, Y., Stamnes, K., Vaughan, M., Pelon, J., Weimer, C., Wu, D., Cisewski, M., Sun, W., Yang, P., Lin, B., Omar, A., Flittner, D., Hostetler, C., Trepte, C., Winker, D., Gibson, G., and Santa-Maria, M., 2008. Sea surface wind speed estimation from space-based lidar measurements. Atmospheric Chemistry and Physics, 8, 3593, doi:10.5194/acp-8-3593-2008.

    Article  Google Scholar 

  • Huffaker, R. M., and Hardesty, R. M., 1996. Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems. Proceedings of the IEEE, 84, 181, doi:10.1109/5.482228.

    Article  Google Scholar 

  • Huffaker, R. M., Jelalian, A., and Thomson, J. A. L., 1970. Laser-Doppler system for detection of aircraft trailing vortices. Proceedings of the IEEE, 58, 322, doi:10.1109/PROC.1970.7636.

    Article  Google Scholar 

  • Irgang, T. D., Hays, P. B., and Skinner, W. R., 2002. Two-channel direct-detection Doppler lidar employing a charge-coupled device as a detector. Applied Optics, 41, 1145, doi:10.1364/AO.41.001145.

    Article  Google Scholar 

  • Kane, T. J., and Gardner, C. S., 1993. Structure and seasonal variability of the nighttime mesospheric Fe layer at midlatitudes. Journal of Geophysical Research, 98, 16875, doi:10.1029/93JD01225.

    Article  Google Scholar 

  • Karpicz, R., Dementjev, A., Kuprionis, Z., Pakalnis, S., Westphal, R., Reuter, R., and Gulbinas, V., 2006. Oil spill fluorosensing lidar for inclined onshore or shipboard operation. Applied Optics, 45, 6620, doi:10.1364/AO.45.006620.

    Article  Google Scholar 

  • Karr, T. J., 2003. Synthetic aperture ladar for planetary sensing. Proceedings of SPIE, 5151, 44, doi:10.1117/12.505723.

    Article  Google Scholar 

  • Kasparian, J., Rodriguez, M., Méjean, G., Yu, J., Salmon, E., Wille, H., Bourayou, R., Frey, S., André, Y. B., Mysyrowicz, A., Sauerbrey, R., Wolf, J.-P., and Wöste, L., 2003. White light filaments for atmospheric analysis. Science, 301, 61, doi:10.1126/science.1085020.

    Article  Google Scholar 

  • Kasparian, J., Bourayou, R., Frey, S., Luderer, J. C., Méjean, G., Rodriguez, M., Salmon, E., Wille, H., Yu, J., Wolf, J.-P., and Wöste, L., 2005. Femtosecond white-light lidar. In Fujii, T., and Fukuchi, T. (eds.), Laser Remote Sensing. Boca Raton: Taylor & Francis, pp. 37–62, doi:10.1201/9781420030754.ch2.

    Chapter  Google Scholar 

  • Koch, S. E., Dorian, P. B., Ferrare, R., Melfi, S. H., Skillman, W. C., and Whiteman, D., 1991. Structure of an internal bore and dissipating gravity current as revealed by Raman lidar. Monthly Weather Review, 119, 857, doi:10.1175/1520-0493(1991)119<0857:SOAIBA>2.0.CO;2.

    Article  Google Scholar 

  • Koch, G. J., Barnes, B. W., Petros, M., Beyon, J. Y., Amzajerdian, F., Yu, J., Davis, R. E., Ismail, S., Vay, S., Kavaya, M. J., and Singh, U. N., 2004. Coherent differential absorption lidar measurements of CO2. Applied Optics, 43, 5092, doi:10.1364/AO.43.005092.

    Article  Google Scholar 

  • Kovalev, V. A., and Eichinger, W. E., 2004. Elastic Lidar: Theory, Practice, and Analysis Methods. Hoboken: Wiley, doi:10.1002/0471643173.

    Book  Google Scholar 

  • Lefsky, M., and McHale, M. R., 2008. Volume estimates of trees with complex architecture from terrestrial laser scanning. Journal of Applied Remote Sensing, 2, 023521, doi:10.1117/1.2939008.

    Article  Google Scholar 

  • McManamon, P. F., 2012. Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology. Optical Engineering, 51, 060901, doi:10.1117/1.OE.51.6.060901.

    Article  Google Scholar 

  • Measures, R. M., 1992. Laser Remote Sensing: Fundamentals and Applications. New York: Krieger.

    Google Scholar 

  • Menzies, R. T., 1976. Laser heterodyne detection techniques. In Hinkley, E. D. (ed.), Laser Monitoring of the Atmosphere. Berlin/Heidelberg: Springer, pp. 297–353, doi:10.1007/3-540-07743-X_21.

    Chapter  Google Scholar 

  • Menzies, R. T., and Tratt, D. M., 1994. Airborne CO2 coherent lidar for measurements of atmospheric aerosol and cloud backscatter. Applied Optics, 33, 5698, doi:10.1364/AO.33.005698.

    Article  Google Scholar 

  • Menzies, R. T., and Tratt, D. M., 2003. Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements. Applied Optics, 42, 6569, doi:10.1364/AO.42.006569.

    Article  Google Scholar 

  • Menzies, R. T., Tratt, D. M., and Hunt, W. H., 1998. Lidar In-space technology experiment measurements of sea surface directional reflectance and the link to surface wind speed. Applied Optics, 37, 5550, doi:10.1364/AO.37.005550.

    Article  Google Scholar 

  • Mukai, T., Abe, S., Hirata, N., Nakamura, R., Barnouin-Jha, O., Cheng, A., Mizuno, T., Hiraoka, K., Honda, T., and Demura, H., 2007. An overview of the LIDAR observations of asteroid 25143 Itokawa. Advances in Space Research, 40, 187, doi:10.1016/j.asr.2007.04.075.

    Article  Google Scholar 

  • Müller, D., Wandinger, U., Althausen, D., Mattis, I., and Ansmann, A., 1998. Retrieval of physical particle properties from lidar observations of extinction and backscatter at multiple wavelengths. Applied Optics, 37, 2260, doi:10.1364/AO.37.002260.

    Article  Google Scholar 

  • Murdock, D. G., Stearns, S. V., Lines, R. T., Lenz, D., Brown, D. M., and Philbrick, C. R., 2008. Applications of real-world gas detection: airborne natural gas emission lidar (ANGEL) system. Journal of Applied Remote Sensing, 2, 023518, doi:10.1117/1.2937078.

    Article  Google Scholar 

  • Nimelman, M., Tripp, J., Allen, A., Hiemstra, D. M., and McDonald, S. A., 2006. Spaceborne scanning lidar system (SSLS) upgrade path. Proceedings of SPIE, 6201, 62011V, doi:10.1117/12.666187.

    Google Scholar 

  • Olofson, K. F. G., Witt, G., and Pettersson, J. B. C., 2008. Bistatic lidar measurements of clouds in the nordic arctic region. Applied Optics, 47, 4777, doi:10.1364/AO.47.004777.

    Article  Google Scholar 

  • Osche, G. R., and Young, D. S., 1996. Imaging laser radar in the near and far infrared. Proceedings of the IEEE, 84, 103, doi:10.1109/5.482225.

    Article  Google Scholar 

  • Papen, G. C., Gardner, C. S., and Pfenninger, W. M., 1995. Analysis of a potassium lidar system for upper-atmospheric wind-temperature measurements. Applied Optics, 34, 6950, doi:10.1364/AO.34.006950.

    Article  Google Scholar 

  • Platt, C. M. R., Abshire, N. L., and McNice, G. T., 1978. Some microphysical properties of an ice cloud from lidar observations of horizontally oriented crystals. Journal of Applied Meteorology, 17, 1220, doi:10.1175/1520-0450(1978)017<1220:SMPOAI>2.0.CO;2.

    Article  Google Scholar 

  • Raizada, S., and Tepley, C. A., 2002. Iron Boltzmann lidar temperature and density observations from Arecibo – an initial comparison with other techniques. Geophysical Research Letters, 29, 1560, doi:10.1029/2001GL014535.

    Article  Google Scholar 

  • Ricklin, J. C., and Tomlinson, P. G., 2005. Active imaging at DARPA. Proceedings of SPIE, 5895, 589505, doi:10.1117/12.622572.

    Article  Google Scholar 

  • Rothermel, J., Cutten, D. R., Hardesty, R. M., Menzies, R. T., Howell, J. N., Johnson, S. C., Tratt, D. M., Olivier, L. D., and Banta, R. M., 1998. The multi-center airborne coherent atmospheric wind sensor. Bulletin of the American Meteorological Society, 79, 581, doi:10.1175/1520-0477(1998)079<0581:TMCACA>2.0.CO;2.

    Article  Google Scholar 

  • Saito, Y., Saito, R., Kawahara, T. D., Nomura, A., and Takeda, S., 2000. Development and performance characteristics of laser-induced fluorescence imaging lidar for forestry applications. Forest Ecology and Management, 128, 129, doi:10.1016/S0378-1127(99)00280-7.

    Article  Google Scholar 

  • Sassen, K., 1991. The polarization lidar technique for cloud research: a review and current assessment. Bulletin of the American Meteorological Society, 72, 1848, doi:10.1175/1520-0477(1991)072<1848:TPLTFC>2.0.CO;2.

    Article  Google Scholar 

  • Sassen, K., 2007. Identifying atmospheric aerosols with polarization lidar. In Kim, Y. J., and Platt, U. (eds.), Advanced Environmental Monitoring. Berlin: Springer, pp. 136–142, doi:10.1007/978-1-4020-6364-0_10.

    Chapter  Google Scholar 

  • Schutz, B. E., Zwally, H. J., Shuman, C. A., Hancock, D., and DiMarzio, J. P., 2005. Overview of the ICESat mission. Geophysical Research Letters, 32, L21S01, doi:10.1029/2005GL024009.

    Google Scholar 

  • Sharma, S. K., Misra, A. K., and Sharma, B., 2005. Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61, 2404, doi:10.1016/j.saa.2005.02.020.

    Article  Google Scholar 

  • Sjogren, W. L., and Wollenhaupt, W. R., 1973. Lunar shape via the apollo laser altimeter. Science, 179, 275, doi:10.1126/science.179.4070.275.

    Article  Google Scholar 

  • Slatton, K. C., Carter, W. E., Shrestha, R. L., and Dietrich, W., 2007. Airborne laser swath mapping: achieving the resolution and accuracy required for geosurficial research. Geophysical Research Letters, 34, L23S10, doi: 10.1029/2007GL031939.

    Google Scholar 

  • Smith, D. E., Zuber, M. T., Neumann, G. A., and Lemoine, F. G., 1997. Topography of the Moon from the clementine lidar. Journal of Geophysical Research, 102, 1591, doi:10.1029/96JE02940.

    Article  Google Scholar 

  • Smith, D. E., Zuber, M. T., Frey, H. V., Garvin, J. B., Head, J. W., Muhleman, D. O., Pettengill, G. H., Phillips, R. J., Solomon, S. C., Zwally, H. J., Banerdt, W. B., Duxbury, T. C., Golombek, M. P., Lemoine, F. G., Neumann, G. A., Rowlands, D. D., Aharonson, O., Ford, P. G., Ivanov, A. B., Johnson, C. L., McGovern, P. J., Abshire, J. B., Afzal, R. S., and Sun, X. L., 2001. Mars orbiter laser altimeter: experiment summary after the first year of global mapping of Mars. Journal of Geophysical Research, 106, 23689, doi:10.1029/2000JE001364.

    Article  Google Scholar 

  • Smith, D. E., Zuber, M. T., Neumann, G. A., Lemoine, F. G., Mazarico, E., Torrence, M. H., McGarry, J. F., Rowlands, D. D., Head III, J. W., Duxbury, T. H., Aharonson, O., Lucey, P. G., Robinson, M. S., Barnouin, O.S., Cavanaugh, J. F., Sun, X., Liiva, P., Mao, D.-D., Smith, J. C., and Bartels, A. E., 2010. Initial observations from the lunar orbiter laser altimeter (LOLA). Geophysical Research Letters, 37, L18204, doi:10.1029/2010GL043751.

    Google Scholar 

  • Spiers, G. D., Menzies, R. T., Jacob, J., Christensen, L. E., Phillips, M. W., Choi, Y., and Browell, E. V., 2011. Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection. Applied Optics, 50, 2098, doi:10.1364/AO.50.002098.

    Article  Google Scholar 

  • Spinhirne, J. D., Palm, S. P., Hart, W. D., Hlavka, D. L., and Welton, E. J., 2005. Cloud and aerosol measurements from GLAS: overview and initial results. Geophysical Research Letters, 32, L22S03, doi:10.1029/2005GL023507.

    Google Scholar 

  • Stoffelen, A., Pailleux, J., Källénc, E., Vaughan, J. M., Isaksen, L., Flamant, P., Wergen, W., Andersson, E., Schyberg, H., Culoma, A., Meynart, R., Endemann, M., and Ingmann, P., 2005. The atmospheric dynamics mission for global wind field measurement. Bulletin of the American Meteorological Society, 86, 73, doi:10.1175/BAMS-86-1-73.

    Article  Google Scholar 

  • Takeuchi, N., Baba, H., Sakurai, K., and Ueno, T., 1986. Diode-laser random-modulation cw lidar. Applied Optics, 25, 63, doi:10.1364/AO.25.000063.

    Article  Google Scholar 

  • Tratt, D. M., Whiteman, D. N., Demoz, B. B., Farley, R. W., and Wessel, J. E., 2005. Active Raman sounding of the Earth’s water vapor field. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61, 2335, doi:10.1016/J.SAA.2005.02.032.

    Article  Google Scholar 

  • Turner, D. D., and Whiteman, D. N., 2006. Remote Raman spectroscopy. Profiling water vapor and aerosols in the troposphere using Raman lidars. In Chalmers, J. M., and Griffiths, P. R. (eds.), Handbook of Vibrational Spectroscopy. Chichester: Wiley, doi:10.1002/0470027320.s6803.

    Chapter  Google Scholar 

  • Von Zahn, U., von Cossart, G., Fiedler, J., Fricke, K. H., Nelke, G., Baumgarten, G., Rees, D., Hauchecorne, A., and Adolfsen, K., 2000. The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance. Annales Geophysicae, 18, 815, doi:10.1007/s00585-000-0815-2.

    Article  Google Scholar 

  • Weibring, P., Edner, H., Svanberg, S., Cecchi, G., Pantani, L., Ferrara, R., and Caltabiano, T., 1998. Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS) and correlation spectroscopy (COSPEC). Applied Physics B, 67, 419, doi:10.1007/s003400050525.

    Article  Google Scholar 

  • Weibring, P., Johansson, T., Edner, H., Svanberg, S., Sundnér, B., Raimondi, V., Cecchi, G., and Pantini, L., 2001. Fluorescence lidar imaging of historical monuments. Applied Optics, 40, 6111, doi:10.1364/AO.40.006111.

    Article  Google Scholar 

  • Weitkamp, C., and Walther, H. (eds.), 2005. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere. Berlin: Springer, doi:10.1007/b106786.

    Book  Google Scholar 

  • Werner, C., Flamant, P. H., Reitebuch, O., Köpp, F., Streicher, J., Rahm, S., Nagel, E., Klier, M., and Herrmann, H., 2001. Wind infrared Doppler lidar instrument. Optical Engineering, 40, 115, doi:10.1117/1.1335530.

    Article  Google Scholar 

  • Wessel, J., Beck, S. M., Chan, Y. C., Farley, R. W., and Gelbwachs, J. A., 2000. Raman lidar calibration for the DMSP SSM/T-2 microwave water vapor sensor. IEEE Transactions on Geoscience and Remote Sensing, 38, 141, doi:10.1109/36.823908.

    Article  Google Scholar 

  • Whiteway, J., Daly, M., Carswell, A., Duck, T., Dickinson, C., Komguem, L., and Cook, C., 2008. Lidar on the phoenix mission to Mars. Journal of Geophysical Research, 113, E00A08, doi:10.1029/2007JE003002.

    Google Scholar 

  • Winker, D. M., Couch, R. H., and McCormick, M. P., 1996. An overview of LITE: NASA’s Lidar in-space technology experiment. Proceedings of the IEEE, 84, 164, doi:10.1109/5.482227.

    Article  Google Scholar 

  • Winker, D. M., Hunt, W. H., and McGill, M. J., 2007. Initial performance assessment of CALIOP. Geophysical Research Letters, 34, L19803, doi:10.1029/2007GL030135.

    Google Scholar 

  • Yu, J., Mondelain, D., Ange, G., Volk, R., Niedermeier, S., Wolf, J. P., Kasparian, J., and Sauerbrey, R., 2001. Backward supercontinuum emission from a filament generated by ultrashort laser pulses in air. Optics Letters, 26, 533, doi:10.1364/OL.26.000533.

    Article  Google Scholar 

  • Zhao, Y., Post, M. J., and Hardesty, R. M., 1990. Receiving efficiency of monostatic pulsed coherent lidars. 1: theory. Applied Optics, 29, 4111, doi:10.1364/AO.29.004111.

    Article  Google Scholar 

  • Zhao, Y., Brewer, W. A., Eberhard, W. L., and Alvarez, R. J., 2002. Lidar measurement of ammonia concentrations and fluxes in a plume from a point source. Journal of Atmospheric and Oceanic Technology, 19, 1928, doi:10.1175/1520-0426(2002)019<1928:LMOACA>2.0.CO;2.

    Article  Google Scholar 

  • Zuber, M. T., Smith, D. E., Solomon, S. C., Phillips, R. J., Peale, S. J., Head, J. W., Hauck, S. A., McNutt, R. L., Oberst, J., Neumann, G. A., Lemoine, F. G., Sun, X., Barnouin-Jha, O., and Harmon, J. K., 2008. Laser altimeter observations from MESSENGER’s first Mercury flyby. Science, 321, 77, doi:10.1126/science.1159086.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Tratt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Tratt, D.M. (2014). Emerging Technologies, Lidar. In: Njoku, E.G. (eds) Encyclopedia of Remote Sensing. Encyclopedia of Earth Sciences Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36699-9_202

Download citation

Publish with us

Policies and ethics