Skip to main content

Indexing of the Current and Near-Future Positions of Moving Objects

  • Reference work entry
Encyclopedia of Database Systems

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,500.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Agarwal P.K., Arge L., and Erickson J. Indexing Moving Points. In Proc. 19th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, 2000, pp. 175–186.

    Google Scholar 

  2. Basch J., Guibas L.J., and Hershberger J. Data Structures for Mobile Data. In Proc. 8th Annual ACM -SIAM Symp. on Discrete Algorithms, 1997, pp. 747–756.

    Google Scholar 

  3. Benetis R., Jensen C.S., Karčiauskas G., and Šaltenis S. Nearest and Reverse Nearest Neighbor Queries for Moving Objects. VLDB J., 15(3):229–249, 2006.

    Article  Google Scholar 

  4. Jensen C.S., Lin D., and Ooi B.C. Query and Update Efficient B+-Tree Based Indexing of Moving Objects. In Proc. 30th Int. Conf. on Very Large Data Bases, 2004, pp. 768–779.

    Google Scholar 

  5. Jensen C.S., Tiešytė D., and Tradišauskas N. Robust B+-Tree-Based Indexing of Moving Objects. In Proc. 7th Int. Conf. on Mobile Data Management, 2006, p. 12.

    Google Scholar 

  6. Kollios G., Gunopulos D., and Tsotras V.J. On Indexing Mobile Objects. In Proc. 18th ACM SIGACT-SIGMOD-SIGART Symp, Principles of Database Systems, 1999, pp. 261–272.

    Google Scholar 

  7. Mokbel M. F., Ghanem T.M., and Aref W.G. Spatio-Temporal Access Methods. IEEE Data Eng. Bull., 26(2):40–49, 2003.

    Google Scholar 

  8. Patel J.M., Chen Y., and Chakka V.P. STRIPES: An Efficient Index for Predicted Trajectories. In Proc. ACM SIGMOD Int. Conf. on Management of Data, 2004, pp. 637–646.

    Google Scholar 

  9. Prabhakar S., Xia Y., Kalashnikov D.V., Aref W.G., and Hambrusch S.E. Query Indexing and Velocity Constrained Indexing: Scalable Techniques for Continuous Queries on Moving Objects. IEEE Trans. Computers, 51(10):1124–1140, 2002.

    Article  MathSciNet  Google Scholar 

  10. Procopiuc C.M., Agarwal P.K., and Har-Peled S. STAR-Tree: An Efficient Self-Adjusting Index for Moving Objects. In Proc. of ALENEX Workshop, 2002, pp. 178–193.

    Google Scholar 

  11. Šaltenis S. and Jensen C.S. Indexing of Moving Objects for Location-Based Services. In Proc. 18th Int. Conf. on Data Engineering, 2002, pp. 463–472.

    Google Scholar 

  12. Šaltenis S., Jensen C.S., Leutenegger S.T., and Lopez M.A. Indexing the Positions of Continuously Moving Objects. In Proc. ACM SIGMOD Int. Conf. on Management of Data, 2000, pp. 331–342.

    Google Scholar 

  13. Tao Y., Papadias D., and Sun J. The TPR*-Tree: An Optimized Spatio-Temporal Access Method for Predictive Queries. In Proc. 29th Int. Conf. on Very Large Data Bases, 2003, pp. 790–801.

    Google Scholar 

  14. Tayeb J., Ulusoy Ö., and Wolfson O. A quadtree based dynamic attribute indexing method. Computer J., 41(3):185–200, 1998.

    Article  MATH  Google Scholar 

  15. Yiu M.L., Tao Y., and Mamoulis N. The B dual-Tree: indexing moving objects by space filling curves in the dual space. VLDB J., 17(3):379–400, 200.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Ĺ altenis, S., Jensen, C. (2009). Indexing of the Current and Near-Future Positions of Moving Objects. In: LIU, L., Ă–ZSU, M.T. (eds) Encyclopedia of Database Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-39940-9_201

Download citation

Publish with us

Policies and ethics