Advanced Information and Knowledge Processing

Also in this series

Gregoris Mentzas, Dimitris Apostolou, Andreas Abecker and Ron Young *Knowledge Asset Management* 1-85233-583-1

Michalis Vazirgiannis, Maria Halkidi and Dimitrios Gunopulos Uncertainty Handling and Quality Assessment in Data Mining 1-85233-655-2

Asunción Gómez-Pérez, Mariano Fernández-López and Oscar Corcho *Ontological Engineering* 1-85233-551-3

Amo Scharil (Ed.)
Environmental Online Communication
1-85233-783-4

Shichao Zhang, Chengqi Zhang and Xindong Wu Knowledge Discovery in Multiple Databases 1-85233-703-6

Data Mining in Bioinformatics

With 110 Figures

Jason T.L. Wang, PhD
New Jersey Institute of Technology, USA
Mohammed J. Zaki, PhD
Computer Science Department, Rensselaer Polytechnic Institute, USA
Hannu T.T. Toivonen, PhD
University of Helsinki and Nokia Research Center
Dennis Shasha, PhD
New York University, USA

Series Editors Xindong Wu Lakhmi Jain

British Library Cataloguing in Publication Data
Data mining in bioinformatics. — (Advanced information and knowledge processing)

1. Data mining 2. Bioinformatics — Data processing
I. Wang, Jason T. L.
006.3'12
ISBN 1852336714

Library of Congress Cataloging-in-Publication Data A catalogue record for this book is available from the American Library of Congress.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.

AI&KP ISSN 1610-3947 ISBN 1-85233-671-4 Springer London Berlin Heidelberg Springer Science+Business Media springeronline.com

© Springer-Verlag London Limited 2005

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.

Typesetting: Electronic text files prepared by authors Printed and bound in the United States of America 34/3830-543210 Printed on acid-free paper SPIN 10886107

Contents

Con	trib	utors	ix
Part	: I. (Overview	1
	Intr	oduction to Data Mining in Bioinformatics Background	3
	1.2 1.3	Organization of the Book	8
2.	Surv	vey of Biodata Analysis from a Data Mining	
	Pers	spective	9
	2.1	Introduction	9
	2.2	Data Cleaning, Data Preprocessing, and Data Integration	12
	2.3	Exploration of Data Mining Tools for Biodata Analysis	16
	2.4	Discovery of Frequent Sequential and Structured Patterns	21
	2.5	Classification Methods	24
	2.6	Cluster Analysis Methods	25
	2.7	Computational Modeling of Biological Networks	28
	2.8	Data Visualization and Visual Data Mining	31
	2.9	Emerging Frontiers	35
	2.10	Conclusions	38
Part	ı.	Sequence and Structure Alignment	41
3.	Ant	iClustAl: Multiple Sequence Alignment by Antipole	
	Clus	stering	43
	3.1	Introduction	43
	3.2	Related Work	45
	3.3	Antipole Tree Data Structure for Clustering	47
	3.4	AntiClustAl: Multiple Sequence Alignment via Antipoles	48
	3.5	Comparing ClustalW and AntiClustAl	51
	3.6	Case Study	53
	3.7	Conclusions	54
	3.8	Future Developments and Research Problems	56

4.	RN	A Structure Comparison and Alignment	59			
	4.1	Introduction	59			
	4.2	RNA Structure Comparison and Alignment Models	60			
	4.3	Hardness Results	67			
	4.4	Algorithms for RNA Secondary Structure Comparison	67			
	4.5	Algorithms for RNA Structure Alignment	71			
	4.6	Some Experimental Results	76			
Pa	rt II	I. Biological Data Mining	83			
5.		cewise Constant Modeling of Sequential Data				
		ng Reversible Jump Markov Chain Monte Carlo	85			
	5.1	Introduction	85			
	5.2	Bayesian Approach and MCMC Methods	88 94			
	$5.3 \\ 5.4$	Examples				
6.	Ger	ne Mapping by Pattern Discovery	105			
••	6.1	Introduction				
	6.2	Gene Mapping				
	6.3	Haplotype Patterns as a Basis for Gene Mapping				
	6.4	Instances of the Generalized Algorithm	117			
	6.5	Related Work	124			
	6.6	Discussion	124			
7.	Pre	edicting Protein Folding Pathways				
	7.1	Introduction				
	7.2	Preliminaries				
	7.3	Predicting Folding Pathways				
	7.4	Pathways for Other Proteins				
	7.5	Conclusions	141			
8.	Data Mining Methods for a Systematics of Protein Subcellular Location					
	8.1	Introduction				
	8.2	Methods				
	8.3	Conclusion				
9.	Mi	ning Chemical Compounds	189			
	9.1	Introduction				
	9.2	Background				
	9.3	Related Research				
	9.4	Classification Based on Frequent Subgraphs				
	9.5	Experimental Evaluation				
	9.6	Conclusions and Directions for Future Research	213			

Contents vii

Par	t IV. Biological Data Management	7
	Phyloinformatics: Toward a Phylogenetic Database 219 10.1 Introduction 219 10.2 What Is a Phylogenetic Database For? 222 10.3 Taxonomy 224 10.4 Tree Space 229 10.5 Synthesizing Bigger Trees 230 10.6 Visualizing Large Trees 230 10.7 Phylogenetic Queries 230 10.8 Implementation 230 10.9 Prospects and Research Problems 240	$9 \\ 9 \\ 2 \\ 4 \\ 9 \\ 0 \\ 4 \\ 4 \\ 9$
11.	Declarative and Efficient Querying on ProteinSecondary Structures2411.1 Introduction2411.2 Protein Format2411.3 Query Language and Sample Queries2411.4 Query Evaluation Techniques2411.5 Query Optimizer and Estimation2511.6 Experimental Evaluation and Application of Periscope/PS²26°11.7 Conclusions and Future Work27°	$ \begin{array}{c} 3 \\ 6 \\ 8 \\ \hline 7 \end{array} $
12.	Scalable Index Structures for Biological Data27312.1 Introduction27312.2 Index Structure for Sequences27712.3 Indexing Protein Structures28012.4 Comparative and Integrative Analysis of Pathways28312.5 Conclusion293	$5 \\ 7 \\ 0 \\ 3$
	ssary	
	graphies	
Ind	ex	7

Contributors

Peter Bajcsy

Center for Supercomputing Applications University of Illinois at Urbana-Champaign USA

Deb Bardhan

Department of Computer Science Rensselaer Polytechnic Institute USA

Chris Bystroff

Department of Biology Rensselaer Polytechnic Institute USA

Mukund Deshpande

Oracle Corporation USA

Cinzia Di Pietro

School of Medicine University of Catania Italy

Alfredo Ferro

Department of Mathematics and Computer Science University of Catania Italy

Laurie Jane Hammel

Department of Defense USA

Jiawei Han

Department of Computer Science University of Illinois at Urbana-Champaign USA

Kai Huang

Department of Biological Sciences Carnegie Mellon University USA

Donald P. Huddler

Biophysics Research Division University of Michigan USA

George Karypis

Department of Computer Science and Engineering University of Minnesota USA

Michihiro Kuramochi

Department of Computer Science and Engineering University of Minnesota USA

Lei Liu

Center for Comparative and Functional Genomics University of Illinois at Urbana-Champaign USA

Heikki Mannila

Department of Computer Science Helsinki University of Technology Finland

Robert F. Murphy

Departments of Biological Sciences and Biomedical Engineering Carnegie Mellon University USA

Vinay Nadimpally

Department of Computer Science Rensselaer Polytechnic Institute USA

Päivi Onkamo

Department of Computer Science University of Helsinki Finland

Roderic D. M. Page

Division of Environmental and Evolutionary Biology Institute of Biomedical and Life Sciences University of Glasgow United Kingdom

Jignesh M. Patel

Electrical Engineering and Computer Science Department University of Michigan USA

Giuseppe Pigola

Department of Mathematics and Computer Science University of Catania Italy

Alfredo Pulvirenti

Department of Mathematics and Computer Science University of Catania Italy

Michele Purrello

School of Medicine University of Catania Italy

Marco Ragusa

School of Medicine University of Catania Italy

Marko Salmenkivi

Department of Computer Science University of Helsinki Finland

Petteri Sevon

Department of Computer Science University of Helsinki Finland

Dennis Shasha

Courant Institute of Mathematical Sciences New York University USA

Ambuj K. Singh

Department of Computer Science University of California at Santa Barbara USA Contributors xi

Hannu T. T. Toivonen

Department of Computer Science University of Helsinki Finland

Jason T. L. Wang

Department of Computer Science New Jersey Institute of Technology USA

Jiong Yang

Department of Computer Science University of Illinois at Urbana-Champaign USA

Mohammed J. Zaki

Department of Computer Science Rensselaer Polytechnic Institute USA

Kaizhong Zhang

Department of Computer Science University of Western Ontario Canada

Part I

Overview