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ABSTRACT
Probabilistic databases are databases where the value of some attributes or the presence of some
records are uncertain and known only with some probability. Applications in many areas such as
information extraction, RFID and scientific data management, data cleaning, data integration, and
financial risk assessment produce large volumes of uncertain data, which are best modeled and
processed by a probabilistic database.

This book presents the state of the art in representation formalisms and query processing
techniques for probabilistic data. It starts by discussing the basic principles for representing large
probabilistic databases, by decomposing them into tuple-independent tables, block-independent-
disjoint tables, or U-databases. Then it discusses two classes of techniques for query evaluation on
probabilistic databases. In extensional query evaluation, the entire probabilistic inference can be pushed
into the database engine and, therefore, processed as effectively as the evaluation of standard SQL
queries. The relational queries that can be evaluated this way are called safe queries. In intensional
query evaluation, the probabilistic inference is performed over a propositional formula called lineage
expression: every relational query can be evaluated this way, but the data complexity dramatically
depends on the query being evaluated, and can be #P-hard. The book also discusses some advanced
topics in probabilistic data management such as top-k query processing, sequential probabilistic
databases, indexing and materialized views, and Monte Carlo databases.

KEYWORDS
query language, query evaluation, query plan, data complexity, probabilistic database,
polynomial time, sharp p, incomplete data, uncertain information
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Preface: A Great Promise
Traditional relational databases are deterministic. Every record stored in the database is meant

to be present with certainty, and every field in that record has a precise, unambiguous value. The
theoretical foundations and the intellectual roots of relational databases are in First Order Logic,
which is essentially the relational calculus, the foundation of query languages such as SQL. In
First Order Logic, the fundamental question is whether a logical sentence is true or false. Logical
formulas under first-order semantics can be used to assert that a record is, or is not, in a relation,
or in a query result, but they cannot make any less precise statement. The original applications that
motivated the creation of relational databases required certain query results: accounting, inventory,
airline reservations, and payroll. Database systems use a variety of tools and techniques to enforce
this, such as integrity constraints and transactions.

Today, however, data management needs to include new data sources, where data are uncer-
tain, and which are difficult or impossible to model with traditional semantics or to manage with a
traditional Relational Database Management System (RDBMS). For an illustration, consider Busi-
ness Intelligence (BI), whose goal is to extract and analyze business data by mining a large collection
of databases. BI systems can be made more useful by including external data, such as twitter feeds or
blogs, or email messages in order to extract even more valuable business information. For example,
by analyzing blogs or twitter feeds and merging them with offline databases of products, companies
can obtain early feedback about the quality of a new product or its degree of adoption, such as for a
new car model, a new electronic gadget, or a new movie; such knowledge is very valuable, both for
manufacturers and for investors. However, a traditional RDBMS requires the data to be precise: for
each tweet, the system needs to know precisely what product it mentions and whether the comment
is favorable or unfavorable. The data must be cleaned before it can be used in a traditional RDBMS.

The goal of Probabilistic Databases is to extend today’s database technology to handle uncertain
data. The uncertainty is expressed in terms of probabilities: a tuple is present only with some prob-
ability, or the value of an attribute is given by a probability distribution. Probabilistic databases are
expected to scale as well as traditional database systems, and they should support queries as complex
as those supported by advanced query processors today; however, but they will do this while allowing
the data to be uncertain, or probabilistic. Both the data and their probabilities are stored in standard
relations. The semantics, however, is probabilistic: the exact state of the entire database is not known
with precision; instead, it is given by a probability distribution. When an SQL query is executed,
the system returns a set of answers and it annotates each answer with a probability, representing the
degree of confidence in that output. Typically, the answers are ranked in decreasing order of their
output probability, so that users can inspect the top, most credible answers first. Thus, the main
use of probabilities is to record the degree of uncertainty in the data and to rank the outputs to a
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query; in some applications, the exact output probabilities matter less to the user than the ranking of
the outputs. Probabilistic databases have a major advantage in processing uncertain data over their
traditional counterparts. The data can be simply stored in the database without having to be cleaned
first. Queries can be run immediately on the data. Cleaning can proceed gradually if and when more
information becomes available by simply adjusting the probability value until it becomes 1.0, in
which case the data becomes certain, or 0.0, in which case the data item can be removed. Even data
that cannot be cleaned at all and will remain forever uncertain can still be stored and queried in a
probabilistic database system.

Probabilistic databases take an evolutionary approach: the idea is to extend relational technol-
ogy with a probabilistic semantics, rather than to develop a new artifact from scratch. All popular
database techniques should carry over automatically to a probabilistic database: indexes, query opti-
mization, advanced join algorithms, parallel query processing, etc. The goal is to extend the existing
semantics of relational data to represent uncertainties but keep all the tools and techniques that have
been proven so effective on deterministic data. As we will see in this book, this is not an easy task at
all. The foundations of probabilistic databases are in First Order Logic extended with probabilities
where the computational complexity of inference and model checking problems has only recently
started to be understood.

The AI literature has studied probabilistic inference over Graphical Models, GM, such as
Bayesian Networks and Markov Networks,which are described in several textbooks [Darwiche,2009,
Jordan, 1998, Koller and Friedman, 2009, Pearl, 1989]. There, the computational complexity is well
understood: inference is exponential in the size of the network, and, to be more exact, in the tree-width
of the network [Lauritzen and Spiegelhalter, 1990, Pearl, 1989].Tree-width is a fundamental notion
also in database theory: in particular, most interesting classes of queries require time exponential in
the size of the query and, specifically, in the tree-width of its fundamental combinatorial structure,
a graph [Abiteboul et al., 1995, Flum et al., 2002] or hypergraph [Chekuri and Rajaraman, 1997,
Gottlob et al., 1999], formed by the relations occurring in the query as nodes and edges that represent
joins. The difference here is that queries are usually small compared to the database, and query
evaluation is easy under this assumption. By contrast, the network of a GM represents the data itself,
and thus it can be very large.

The separation between query and data is a fundamental characteristics that distinguishes
probabilistic databases from graphical models.The size of the data may be very large, but the queries
are, by comparison, quite small. At a conceptual level, this distinction has been crisply articulated
by Vardi [1982], who introduced the term data complexity. The query evaluation problem, both in
traditional databases and in probabilistic databases, has two inputs: the query Q and the database
instance D. In data complexity, the query Q is fixed, and the complexity is measured only as a
function of the size of the database instance D. All modern query languages (SQL, XQuery) have
polynomial time data complexity on deterministic databases1, meaning that for any fixed Q, the

1The complexity of these languages becomes higher when extended with recursive functions, such as permitted in XQuery.
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data complexity is in polynomial time in the size of the database. In contrast, there is no similar
separation of query and data in GMs, where the entire network represents the data.

While it is possible to model a probabilistic database as a large graphical model, and reduce
query evaluation to inference in GM [Sen and Deshpande, 2007], in this book we define and study
probabilistic databases differently from GM. In our study, we separate the query from the data. We
represent the uncertain data by a combination of classical database relations and propositional formu-
las, sometimes called lineage, which is an approach first introduced by Imieliński and Lipski [1984].
This approach leads us to probabilistic inference on propositional formulas, which, although being
a special case of inference in GMs, has been investigated separately in the verification community
by Bryant [1986] and in the AI literature by Darwiche [2009].

There are several reasons and advantages to this model of probabilistic databases over general
GM.

First, under this model the database has a simple probabilistic model, which can scale easily.
If a more complex probabilistic model is needed by the application, the correlations are expressed
by the query (or view), which has a relatively small expression. This is a design principle that is well
established in standard database modeling and schema normalization theory. In schema normaliza-
tion, a deterministic table that has unwanted dependencies is decomposed into simpler tables that
remove those dependencies and can be recovered from the decomposed tables using a view (usually
a natural join).The same design principle exists in graphical models where a probability distribution
on a large number of random variables is decomposed into a product of factors over smaller subsets
of variables. The connection between database normalization and factor decomposition in graphical
models was described by Verma and Pearl [1988]. Thus, in a probabilistic database, the base tables
have a very simple probabilistic model, often consisting only of independent or disjoint tuples but
can be very large, while the query may introduce complex correlations, but its expression is small.
Independence properties in the data are in a strong sense certified by the representation and do not
need to be discovered in the network structure of a GM by the inference algorithm. We explore
representation formalisms for probabilistic databases in Chapter 2.

Second, the separation into query and data leads both to new inference techniques, specific
to probabilistic databases, and to a better insight into the complexity of the probabilistic inference
problem. We will describe a probabilistic inference method that is guided by the query expression
and not by the database instance. In particular, one of the inference rules, the inclusion-exclusion
formula or, more generally, the Möbius inversion function, has an exponential cost in the query
yet a polynomial cost in the data: for that reason, inclusion-exclusion has no analog in traditional
approaches for probabilistic inference on propositional formulas or in graphical models, yet, as we
shall see, it proves to be very effective in probabilistic databases.The rule is possible only through the
separation between the query and the data. At a theoretical level, the data complexity of probabilistic
inference has an interesting dichotomy property: some queries Q have polynomial time data com-
plexity, while others are provably hard for #P; every Union of Conjunctive Queries falls into one of
these two categories; hence, the data complexity forms a dichotomy.This phenomenon does not have
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a correspondence in other probabilistic inference settings since there is no distinction between the
data and the query. We describe query evaluation on probabilistic databases in Chapter 3, Chapter 4,
and Chapter 5.

Third, this query-centric approach to probabilistic inference allows us to build on decades of
research on database management systems by reusing and extending database technology for data
representation, storage, and query processing. It is a common theme in research on probabilistic
database systems to build on existing database technology. Some of these approaches are surveyed in
Chapter 6. Case studies of the TRIO and MayBMS systems can be found in the book by Aggarwal
[2008].

This book contains a survey of the main concepts in probabilistic databases: representation
formalisms for probabilistic data, query evaluation, and some advanced topics including sequential
probabilistic databases, indexes, and Monte Carlo databases. Many applications today need to query
large amounts of uncertain data, yet achieving scalability remains challenging. The techniques and
concepts described in this book represent the state of the art in query processing on probabilistic
databases.The new approach to probabilistic inference described in this book,based on the separation
of the data and the query, holds a great promise for extending traditional, scalable database processing
techniques with probabilistic inference. The book is intended for researchers, either in database or
probabilistic inference, or as a textbook for an advanced graduate class.
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