Skip to main content

Three-Dimensional GIS and Geological Applications

  • Reference work entry
  • 287 Accesses

Synonyms

Spatial information system; Geoscientific information system

Definition

An information system for the in-/output, modeling, management, processing, analyzing and visualization of geoscientific data including geo-referenced three-dimensional geometric, topological and attribute data. The three-dimensional geometric data may consist of points/vertices (x,y,z-coordinates), curves, surfaces and polyhedra, respectively. The topological data may consist of nodes, edges, faces and solids, respectively. Typical attribute data are descriptions of geological strata, i.e., properties of strata such as “geological age,” “soil type,” “main components of the stratum” etc.

The implementation of a three-dimensional GIS provides data types, spatial access structures including geometric/topological algorithms and a spatial or visual query language for the modeling, management and analysis of geo-referenced three-dimensional data.

Historical Background

Three-dimensional GIS have two roots in the...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   2,500.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Recommended Reading

  1. A., Abdul-Rahman S., and Zlatanova V. (eds.). Coors Innovations in 3D Geoinformation Systems, Lecture Notes in Geoinformation and Cartography, Springer, Heidelberg, 2006.

    Google Scholar 

  2. Balovnev O., Bode T., Breunig M., Cremers A.B., Müller W., Pogodaev G., Shumilov S., Siebeck J., Siehl A., and Thomsen A. The story of the GeoToolKit – an object-oriented geodatabase kernel system. Geoinformatica, 8(1):5–47, 2004.

    Article  Google Scholar 

  3. Beckmann N., Kriegel H.-P., Schneider R., and Seeger B. The R*-tree: an efficient and robust access method for points and rectangles. In Proc. ACM SIGMOD Int. Conf. on Management of Data, 1990, pp. 322–331.

    Google Scholar 

  4. Brisson E. Representing geometric structures in d dimensions: topology and order. In Proc. 5th Annual Symp. on Computational Geometry, 1989, pp. 218–227.

    Google Scholar 

  5. V. and Coors A (eds.). Zipf 3D-Geoinformationssysteme, Grundlagen und Anwendungen. Wichmann – Hüthig, Heidelberg, 2004.

    Google Scholar 

  6. GOCAD. http://www.gocad.org.

  7. Götze H.J. and Lahmeyer B. Application of three-dimensional interactive modelling in gravity and magnetics. Geophysics, 53(8), pp. 1096–1108.1988,

    Article  Google Scholar 

  8. Güting R.H. An introduction to spatial database systems. VLDB J., 3(4):357–399, 1994.

    Article  Google Scholar 

  9. Guttman A. R-Trees: a dynamic index structure for spatial searching. In Proc. ACM SIGMOD Int. Conf. on Management of Data, 1984, pp. 47–57.

    Google Scholar 

  10. Lienhardt P. Subdivision of n-dimensional spaces and n-dimensional generalized maps. In Proc. 5th Annual Symp. on Computational Geometry, 1989, pp. 228–236.

    Google Scholar 

  11. Lienhardt P. N-dimensional generalized combinatorial maps and cellular quasi-manifolds. J. Comp. Geom. App., 4(3):275–324, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  12. Lévy B. and Mallet J.-L. Discrete Smooth Interpolation: Constrained Discrete Fairing for Arbitrary Meshes, ISA-GOCAD (Inria Lorraine/CNRS), ENSG, Vandoeuvre Nancy, http://www.earthdecision.com/news/white_papers/DSI.pdf.

  13. Mallet J.L. Geomodelling. Oxford University Press, New York, NY, 2002.

    Google Scholar 

  14. OGC. http://www.opengeospatial.org.

  15. Pigot S. A topological model for a 3D spatial information system. In Proc. 5th Int. Symp. on Spatial Data Handling, 1992, pp. 344–360.

    Google Scholar 

  16. Raper J. (Ed.). Three dimensional applications in geographical information systems. Taylor & Francis, London, 1989.

    Google Scholar 

  17. Samet H. The design and analysis of spatial data structures, Addison-Wesley, Reading, 1990.

    Google Scholar 

  18. Schaeben H., Apel M., v.d. Boogart G., Kroner U. GIS 2D, 3D, 4D, nD. Informatik-Spektrum, 26(3)pp. 173–179.2003,

    Google Scholar 

  19. Siehl A. Construction of geological maps based on digital spatial models. Geol. Jb. A., 104:253–261, 1988.

    Google Scholar 

  20. Turner A.K. (ed.) Three-dimensional modeling with geoscientific information systems, Kluwer Academic, Dordrecht, 1991.

    Google Scholar 

  21. P., van Oosterom S., Zlatanova F., and Penninga E. (eds.) Fendel Advances in 3D geoinformation systems, Lecture Notes in Geoinformation and Cartography. Springer, Heidelberg, 2007.

    Google Scholar 

  22. Vinken R. Digital geoscientific maps – a research project of the DFG. In Proc. Int. Colloquium at Dinkelsbühl, Geolog. Jahrbuch A104, 1988, pp. 7–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Breunig, M. (2009). Three-Dimensional GIS and Geological Applications. In: LIU, L., ÖZSU, M.T. (eds) Encyclopedia of Database Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-39940-9_426

Download citation

Publish with us

Policies and ethics