1

Static Disassembly and Code Analysis

Giovanni Vigna

Reliable Software Group
University of California, Santa Barbara

Summary. The classification of an unknown binary program as malicious or benign
requires two steps. In the first step, the stream of bytes that constitutes the program
has to be transformed (or disassembled) into the corresponding sequence of machine
instructions. In the second step, based on this machine code representation, static
or dynamic code analysis techniques can be applied to determine the properties and
function of the program.

Both the disassembly and code analysis steps can be foiled by techniques that
obfuscate the binary representation of a program. Thus, robust techniques are re-
quired that deliver reliable results under such adverse circumstances. In this chapter,
we introduce a disassemble technique that can deal with obfuscated binaries. Also,
we introduce a static code analysis approach that can identify high-level semantic
properties of code that are difficult to conceal.

1.1 Introduction

Code analysis takes as input a program and attempts to determine certain
characteristics of this program. In particular, the goal of security analysis is
to identify either malicious behavior or the presence of security flaws, which
might be exploited to compromise the security of a system. In this chapter,
we focus particularly on the security analysis of binary programs that use the
Intel x86 instruction set. However, many of the concepts can also be applied
to analyze code that exists in a different representation.

In the first step of the analysis, the code has to be disassembled. That is,
we want to recover a symbolic representation of a program’s machine code in-
structions from its binary representation. While disassembly is straightforward
for regular binaries, the situation is different for malicious code. In particular,
a number of techniques have been proposed that are effective in preventing
a substantial fraction of a binary program from being disassembled correctly.
This could allow an attacker to hide malicious code from the subsequent static
program analysis. In Section 1.2, we present binary analysis techniques that
substantially improve the success of the disassembly process when confronted

2 G. Vigna

with obfuscated binaries. Using control flow graph information and statisti-
cal methods, a large fraction of the program’s instructions can be correctly
identified.

Based on the program’s machine code, the next step is to identify code
sequences that are known to be malicious (or code sequences that violate a
given specification of permitted behavior). Often, malicious code is defined
at a very low level of abstraction. That is, a specification, or signature, of
malicious code is expressed in terms of byte sequences or instruction sequences.
While it is efficient and easy to search a program for the occurrence of specific
byte strings, such syntaz-based signatures can be trivially evaded. Therefore,
specifications at a higher level are needed that can characterize the intrinsic
properties of a program that are more difficult to disguise. Of course, suitable
analysis techniques are required that can identify such higher-level properties.
Moreover, these techniques have to be robust against deliberate efforts of an
attacker to thwart analysis.

Code analysis techniques can be categorized into two main classes: dy-
namic techniques and static techniques. Approaches that belong to the first
category rely on monitoring execution traces of an application to identify the
executed instructions and their actions, or behavior. Approaches that belong
to the second category analyze the binary structure statically, parsing the in-
structions as they are found in the binary image and attempting to determine
a (possibly over-approximated) set of all possible behaviors.

Both static and dynamic approaches have advantages and disadvantages.
Static analysis takes into account the complete program, while dynamic anal-
ysis can only operate on the instructions that were executed in a particular
set of runs. Therefore, it is impossible to guarantee that the whole executable
with all possible actions was covered when using dynamic analysis. On the
other hand, dynamic analysis assures that only actual program behavior is
considered. This eliminates possible incorrect results due to overly conserva-
tive approximations that are often necessary when performing static analysis.

In Section 1.3, we introduce our static analysis approach to find pieces of
code that perform actions (i.e., behave) in a way that we have specified as
malicious. More precisely, we describe our application of symbolic execution
to the static analysis of binaries.

1.2 Robust Disassembly of Obfuscated Binaries

In this section, we introduce our approach to robust disassembly when fac-
ing obfuscated, malicious binaries. The term obfuscation refers to techniques
that preserve the program’s semantics and functionality while, at the same
time, making it more difficult for the analyst to extract and comprehend
the program’s structures. In the context of disassembly, obfuscation refers to
transformations of the binary such that the parsing of instructions becomes
difficult.

1 Static Disassembly and Code Analysis 3

In [13], Linn and Debray introduced novel obfuscation techniques that ex-
ploit the fact that the Intel x86 instruction set architecture contains variable
length instructions that can start at arbitrary memory address. By inserting
padding bytes at locations that cannot be reached during run-time, disas-
semblers can be confused to misinterpret large parts of the binary. Although
their approach is limited to Intel x86 binaries, the obfuscation results against
current state-of-the-art disassemblers are remarkable.

In general, disassemblers follow one of two approaches. The first approach,
called linear sweep, starts at the first byte of the binary’s text segment and
proceeds from there, decoding one instruction after another. It is used, for
example, by GNU’s objdump [8]. The drawback of linear sweep disassemblers
is that they are prone to errors that result from data embedded in the in-
struction stream. The second approach, called recursive traversal, fixes this
problem by following the control flow of the program [4, 15]. This allows recur-
sive disassemblers such as IDA Pro [7] to circumvent data that is interleaved
with the program instructions. The problem with the second approach is that
the control flow cannot always be reconstructed precisely. When the target
of a control transfer instruction such as a jump or a call cannot be deter-
mined statically (e.g., in case of an indirect jump), the recursive disassembler
fails to analyze parts of the program’s code. This problem is usually solved
with a technique called speculative disassembly [3], which uses a linear sweep
algorithm to analyze unreachable code regions.

Linn and Debray’s approach [13] to confuse disassemblers are based on
two main techniques. First, junk bytes are inserted at locations that are not
reachable at run-time. These locations can be found after control transfer
instructions such as jumps where control flow does not continue. Inserting
junk bytes at unreachable locations should not affect recursive disassemblers,
but has a profound impact on linear sweep implementations.

The second technique relies on a branch function to change the way regular
procedure calls work. This creates more opportunities to insert junk bytes and
misleads both types of disassemblers. A normal call to a subroutine is replaced
with a call to the branch function. This branch function uses an indirect jump
to transfer control to the original subroutine. In addition, an offset value is
added to the return address of the subroutine, which has been saved on the
stack as part of the subroutine invocation. Therefore, when the subroutine is
done, control is not transfered to the address directly after the call instruc-
tion. Instead, an instruction that is a certain number of bytes after the call
instruction is executed. Because calls are redirected to the branch function,
large parts of the binary become unreachable for the recursive traversal al-
gorithm. As a result, recursive traversal disassemblers perform even worse on
obfuscated binaries than linear sweep disassemblers.

When analyzing an obfuscated binary, one cannot assume that the code
be generated by a well-behaved compiler. In fact, the obfuscation techniques
introduced by Linn and Debray [13] precisely exploit the fact that standard
disassemblers assume certain properties of compiler-generated code that can

4 G. Vigna

be violated without changing the program’s functionality. However, in general,
certain properties are easier to change than others and it is not straightfor-
ward to transform a binary into a functionally equivalent representation in
which all the compiler-related properties of the original code are lost. When
disassembling obfuscated binaries, we require that certain assumptions are
valid.

First of all, we assume that valid instructions must not overlap. An in-
struction is denoted as valid if it belongs to the program, that is, it is reached
(and executed) at run-time as part of some legal program execution trace.
Two instructions overlap if one or more bytes in the executable are shared by
both instructions. In other words, the start of one instruction is located at an
address that is already used by another instruction. Overlapping instructions
have been suggested to complicate disassembly in [5]. However, suitable can-
didate instructions for this type of transformation are difficult to find in real
executables and the reported obfuscation effects were minimal [13].

The second assumption is that conditional jumps can be either taken or
not taken. This means that control flow can continue at the branch target or
at the instruction after the conditional branch. In particular, it is not pos-
sible to insert junk bytes at the branch target or at the address following
the branch instruction. Linn and Debray [13] discuss the possibility to trans-
form unconditional jumps into conditional branches using opaque predicates.
Opaque predicates are predicates that always evaluate to either true or false,
independent of the input. This would allow the obfuscator to insert junk bytes
either at the jump target or in place of the fall-through instruction. However,
it is not obvious how to generate opaque predicates that are not easily recog-
nizable for the disassembler. Also, the obfuscator presented in [13] does not
implement this transformation.

In addition to the assumptions above, we also assume that the code is not
necessarily the output of a well-behaved compiler. That is, we assume that an
arbitrary amount of junk bytes can be inserted at unreachable locations. Un-
reachable locations denote locations that are not reachable at run-time. These
locations can be found after instructions that change the normal control flow.
For example, most compilers arrange code such that the address following
an unconditional jump contains a valid instruction. However, we assume that
an arbitrary number of junk bytes can be inserted there. Also, the control
flow does not have to continue immediately after a call instruction. Thus, an
arbitrary number of padding bytes can be added after each call. This is dif-
ferent from the standard behavior where it is expected that the callee returns
to the instruction following a call using the corresponding return instruction.
More specifically, in the x86 instruction set, the call operation performs a
jump to the call target and, in addition, pushes the address following the
call instruction on the stack. This address is then used by the corresponding
ret instruction, which performs a jump to the address currently on top of
the stack. However, by redirecting calls to a branch function, it is trivial to
change the return address.

1 Static Disassembly and Code Analysis 5

Given the assumptions above, we have developed two classes of techniques:
general techniques and tool-specific techniques. General techniques are tech-
niques that do not rely upon any knowledge on how a particular obfuscator
transforms the binary. It is only required that the transformations respect
our assumptions. Our general techniques are based on the program’s control
flow, similar to a recursive traversal disassembler. However, we use a different
approach to construct the control flow graph, which is more resilient to ob-
fuscation attempts. Program regions that are not covered by the control flow
graph are analyzed using statistical techniques.

An instance of an obfuscator that respects our assumptions is presented
by Linn and Debray in [13]. By tailoring the static analysis process against
a particular tool, it is often possible to reverse some of the performed trans-
formations and improve the analysis results. For more information on how
we can take advantage of tool-specific knowledge when disassembling binaries
transformed with Linn and Debray’s obfuscator, please refer to [11]. In the
following, we only concentrate on the general disassembly techniques.

1.2.1 Function Identification

The first step when disassembling obfuscated programs is to divide the binary
into functions that can then be analyzed independently. The main reason for
doing so is run-time performance; it is necessary that the disassembler scale
well enough such that the analysis of large real-world binaries is possible.

An important part of our analysis is the reconstruction of the program’s
control flow. When operating on the complete binary, the analysis does not
scale well for large programs. Therefore, the binary is broken into smaller
regions (i.e., functions) that can be analyzed consecutively. This results in a
run-time overhead of the disassembly process that is linear in the number of
instructions (roughly, the size of the code segment).

A straightforward approach to obtain a function’s start addresses is to
extract the targets of call instructions. When a linker generates an ordinary
executable, the targets of calls to functions located in the binary’s text seg-
ment are bound to the actual addresses of these functions. Given the call
targets and assuming that most functions are actually referenced from others
within the binary, one can obtain a fairly complete set of function start ad-
dresses. Unfortunately, this approach has two drawbacks. One problem is that
this method requires that the call instructions are already identified. As the
objective of our disassembler is precisely to provide that kind of information,
the call instructions are not available at this point. Another problem is that an
obfuscator can redirect all calls to a single branching function that transfers
control to the appropriate targets. This technique changes all call targets to
a single address, thus removing information necessary to identify functions.

We use a heuristic to locate function start addresses. More precisely, func-
tion start addresses are located by identifying byte sequences that implement
typical function prologs. When a function is called, the first few instructions

6 G. Vigna

usually set up a new stack frame. This frame is required to make room for
local variables and to be able restore the stack to its initial state when the
function returns. In the current implementation, we scan the binary for byte
sequences that represent instructions that push the frame pointer onto the
stack and instructions that increase the size of the stack by decreasing the
value of the stack pointer. The technique works very well for regular binaries
and also for the obfuscated binaries used in our experiments. The reason is
that the used obfuscation tool [13] does not attempt to hide function prologs.
It is certainly possible to extend the obfuscator to conceal the function pro-
log. In this case, our function identification technique might require changes,
possibly using tool-specific knowledge.

Note that the partitioning of the binary into functions is mainly done
for performance reasons, and it is not crucial for the quality of the results
that all functions are correctly identified. When the start point of a function
is missed, later analysis simply has to deal with one larger region of code
instead of two separate smaller parts. When a sequence of instructions within
a function is misinterpreted as a function prolog, two parts of a single function
are analyzed individually. This could lead to less accurate results when some
intra-procedural jumps are interpreted as inter-procedural, making it harder
to reconstruct the intra-procedural control flow graph as discussed in the
following section.

1.2.2 Intra-Procedural Control Flow Graph

To find the valid instructions of a function (i.e., the instructions that belong
to the program), we attempt to reconstruct the function’s intra-procedural
control flow graph. A control flow graph (CFG) is defined as a directed graph
G = (V,E) in which vertices u,v € V represent basic blocks and an edge
e € E: u — v represents a possible flow of control from u to v. A basic block
describes a sequence of instructions without any jumps or jump targets in the
middle. More formally, a basic block is defined as a sequence of instructions
where the instruction in each position dominates, or always executes before,
all those in later positions, and no other instruction executes between two
instructions in the sequence. Directed edges between blocks represent jumps
in the control flow, which are caused by control transfer instructions (CTIs)
such as calls, conditional and unconditional jumps, or return instructions.
The traditional approach to reconstructing the control flow graph of a
function works similar to a recursive disassembler. The analysis commences
at the function’s start address and instructions are disassembled until a control
transfer instruction is encountered. The process is then continued, recursively,
at all jump targets that are local to the procedure and, in case of a call
instruction or a conditional jump, at the address following the instruction.
In case of an obfuscated binary, however, the disassembler cannot continue
directly after a call instruction. In addition, many local jumps are converted
into non-local jumps to addresses outside the function to blur local control

1 Static Disassembly and Code Analysis 7

flow. In most cases, the traditional approach leads to a control flow graph
that covers only a small fraction of the valid instructions of the function
under analysis.

We developed an alternative technique to extract a more complete control
flow graph. The technique is composed of two phases: in the first phase, an
initial control flow graph is determined. In the following phase, conflicts and
ambiguities in the initial CFG are resolved. The two phases are presented in
detail in the following two sections.

8048000 | 55 push %ebp function func(int arg) {
8048001 89 e5 mov %esp, %ebp int local_var, ret_val;
8048003 [e8 00007411 call 19788008 <branch fnct> local = other_func(arg);
8048008 | 0Oa 05 (junk)

804800a | 3c 00 cmp 0, %eax if (local_var == 0)
804800c | 7506 ine 8048014 <L1>

804800e b0 00 mov 0, %eax ret_val = 0;
8048010 | eb 07 jmp 8048019 <L2> else

8048012 | 0Oa 05 (junk)

L1: 8048014 [a100007401 mov (1740000), %eax ret_val = global_var;

L2: 8048019 | 89ec mov %ebp, %esp return ret_val;
804801b | 5&d pop %ebp
804801c | ¢3 ret
804801d | 90 nop }
Disassembly of Obfuscated Function C Function

Fig. 1.1. Example function.

1.2.3 Initial Control Flow Graph

To determine the initial control flow graph for a function, we first decode all
possible instructions between the function’s start and end addresses. This is
done by treating each address in this address range as the beginning of a new
instruction. Thus, one potential instruction is decoded and assigned to each
address of the function. The reason for considering every address as a possible
instruction start stems from the fact that x86 instructions have a variable
length from one to fifteen bytes and do not have to be aligned in memory (i.e.,
an instruction can start at an arbitrary address). Note that most instructions
take up multiple bytes and such instructions overlap with other instructions
that start at subsequent bytes. Therefore, only a subset of the instructions
decoded in this first step can be valid. Figure 1.2 provides a partial listing of
all instructions in the address range of the sample function (both in source
and assembler format) that is shown in Figure 1.1. For the reader’s reference,
valid instructions are marked by an x in the “Valid” column. Of course, this
information is not available to our disassembler. An example for the overlap
between valid and invalid instructions can be seen between the second and

8 G. Vigna

the third instruction. The valid instruction at address 0x8048001 requires two
bytes and thus interferes with the next (invalid) instruction at 0x8048002.

Valid Candidate

8048000 55 push %ebp X

8048001 89 e5 mov %esp, %ebp X

8048002 e5e8 in e8,%eax

8048003 e8 000074 11 call 19788008 <obfuscator> X

8048004 00 00 add %eal, %eax

8048005 00 74 add

8048006 74 11 je 8048019 X
804800c 75 06 jne 8048014 X X
8048010 eb 07 jmp 8048019 X X
8048017 74 01 je 804801a X
8048018 0189 ec5dc390 add %dh,ffffff89(%ecx,%eax,1)

8048019 89 ec mov %ebp, %esp X

804801a ec in (%dx), %al

804801b 5d pop %ebp X

Fig. 1.2. Partial instruction listing.

The next step is to identify all intra-procedural control transfer instruc-
tions. For our purposes, an intra-procedural control transfer instruction is
defined as a CTI with at least one known successor basic block in the same
function. Remember that we assume that control flow only continues after
conditional branches but not necessarily after call or unconditional branch
instructions. Therefore, an instruction is an intra-procedural control transfer
instruction if either (i) its target address can be determined and this address
is in the range between the function’s start and end addresses or (ii) it is a
conditional jump. In the latter case, the address that immediately follows the
conditional jump instruction is the start of a successor block.

Note that we assume that a function is represented by a contiguous se-
quence of instructions, with possible junk instructions added in between. This
means that, it is not possible that the basic blocks of two different functions
are intertwined. Therefore, each function has one start address and one end
address (i.e., the last instruction of the last basic block that belongs to this
function). However, it is possible that a function has multiple exit points.

To find all intra-procedural CTTs, the instructions decoded in the previous
step are scanned for any control transfer instructions. For each CTI found in
this way, we attempt to extract its target address. In the current implemen-
tation, only direct address modes are supported and no data flow analysis is
performed to compute address values used by indirect jumps. However, such
analysis could be later added to further improve the performance of our static
analyzer. When the instruction is determined to be an intra-procedural con-
trol transfer operation, it is included in the set of jump candidates. The jump
candidates of the sample function are marked in Figure 1.2 by an x in the

1 Static Disassembly and Code Analysis 9

“Candidate” column. In this example, the call at address 0x8048003 is not
included into the set of jump candidates because the target address is located
outside the function.

Given the set of jump candidates, an initial control flow graph is con-
structed. This is done with the help of a recursive disassembler. Starting with
an initial empty CFG, the disassembler is successively invoked for all the el-
ements in the set of jump candidates. In addition, it is also invoked for the
instruction at the start address of the function.

The key idea for taking into account all possible control transfer instruc-
tions is the fact that the valid CTIs determine the skeleton of the analyzed
function. By using all control flow instructions to create the initial CFG, we
make sure that the real CFG is a subgraph of this initial graph. Because the
set of jump candidates can contain both valid and invalid instructions, it is
possible (and also frequent) that the initial CFG contains a superset of the
nodes of the real CFG. These nodes are introduced as a result of argument
bytes of valid instructions being misinterpreted as control transfer instruc-
tions. The Intel x86 instruction set contains 26 single-byte opcodes that map
to control transfer instructions (out of 219 single-byte instruction opcodes).
Therefore, the probability that a random argument byte is decoded as CTI
is not negligible. In our experiments [11], we found that about one tenth
of all decoded instructions are CTIs. Of those instructions, only two thirds
were part of the real control flow graph. As a result, the initial CFG contains
nodes and edges that represent invalid instructions. Most of the time, these
nodes contain instructions that overlap with valid instructions of nodes that
belong to the real CFG. The following section discusses mechanisms to re-
move these spurious nodes from the initial control flow graph. It is possible to
distinguish spurious from valid nodes because invalid CTIs represent random
jumps within the function while valid CTTs constitute a well-structured CFG
with nodes that have no overlapping instructions.

Creating an initial CFG that includes nodes that are not part of the real
control flow graph can been seen as the opposite to the operation of a re-
cursive disassembler. A standard recursive disassembler starts from a known
valid block and builds up the CFG by adding nodes as it follows the targets
of control transfer instructions that are encountered. This technique seems
favorable at a first glance, because it makes sure that no invalid instructions
are incorporated into the CFG. However, most control flow graphs are par-
titioned into several unconnected subgraphs. This happens because there are
control flow instructions such as indirect branches whose targets often cannot
be determined statically. This leads to missing edges in the CFG and to the
problem that only a fraction of the real control flow graph is reachable from a
certain node. The situation is exacerbated when dealing with obfuscated bina-
ries, as inter-procedural calls and jumps are redirected to a branching function
that uses indirect jumps. This significantly reduces the parts of the control
flow graph that are directly accessible to a recursive disassembler, leading to
unsatisfactory results.

10 G. Vigna

Although the standard recursive disassembler produces suboptimal results,
we use a similar algorithm to extract the basic blocks to create the initial CFG.
As mentioned before, however, the recursive disassembler is not only invoked
for the start address of the function alone, but also for all jump candidates
that have been identified. An initial control flow graph is then constructed.

There are two differences between a standard recursive disassembler and
our prototype tool. First, we assume that the address after a call or an un-
conditional jump instruction does not have to contain a valid instruction.
Therefore, our recursive disassembler cannot continue at the address follow-
ing a call or an unconditional jump. Note, however, that we do continue to
disassemble after a conditional jump (i.e., branch).

The second difference is due to the fact that it is possible to have in-
structions in the initial call graph that overlap. In this case, two different
basic blocks in the call graph can contain overlapping instructions starting
at slightly different addresses. When following a sequence of instructions, the
disassembler can arrive at an instruction that is already part of a previously
found basic block. Normally, this instruction is the first instruction of the
existing block. The disassembler can then “close” the instruction sequence of
the current block and create a link to the existing basic block in the control
flow graph.

When instructions can overlap, it is possible that the current instruction
sequence overlaps with another sequence in an existing basic block for some
instructions before the two sequences eventually become identical. In this case,
the existing basic block is split into two new blocks. One block refers to the
overlapping sequence up to the instruction where the two sequences merge, the
other refers to the instruction sequence that both have in common. All edges
in the control flow graph that point to the original basic block are changed
to point to the first block, while all outgoing edges of the original block are
assigned to the second. In addition, the first block is connected to the second
one.

The reason for splitting the existing block is the fact that a basic block is
defined as a continuous sequence of instructions without a jump or jump target
in the middle. When two different overlapping sequences merge at a certain
instruction, this instruction has two predecessor instructions (one in each of
the two overlapping sequences). Therefore, it becomes the first instruction
of a new basic block. As an additional desirable side effect, each instruction
appears at most once in a basic block of the call graph.

The fact that instruction sequences eventually “merge” is a common phe-
nomenon when disassembling x86 binaries. The reason is called self-repairing
disassembly and relates to the fact that two instruction sequences that start at
slightly different addresses (that is, shifted by a few bytes) synchronize quickly,
often after a few instructions. Therefore, when the disassembler starts at an
address that does not correspond to a valid instruction, it can be expected to
re-synchronize with the sequence of valid instructions after a few steps [13].

1 Static Disassembly and Code Analysis 11
F G
8048019 804801b
804801b 804801e
A
\
\
\
\
\
AY
AY
804801a
804801b
K

8048006
8048008

[oe]

8048000 Y _ __ __________
8048008

C
8048008 804800e 8048010
804800e 8048010 8048012

\
N
\

N
804800c 8048014 \ __ __ __ 8048017
804800e 8048019 8048019

H | J

Fig. 1.3. Initial control flow graph.

The initial control flow graph generated for for our example function is
shown in Figure 1.3. In this example, the algorithm is invoked for the func-
tion start at address 0x8048000 and the four jump candidates (0x8048006,
0x804800c¢, 0x8048010, and 0x8048017). The nodes in this figure represent
basic blocks and are labeled with the start address of the first instruction
and the end address of the last instruction in the corresponding instruction
sequence. Note that the end address denotes the first byte after the last in-
struction and is not part of the basic block itself. Solid, directed edges between
nodes represent the targets of control transfer instructions. A dashed line be-
tween two nodes signifies a conflict between the two corresponding blocks.

Two basic blocks are in conflict when they contain at least one pair of in-
structions that overlap. As discussed previously, our algorithm guarantees that
a certain instruction is assigned to at most one basic block (otherwise, blocks
are split appropriately). Therefore, whenever the address ranges of two blocks
overlap, they must also contain different, overlapping instructions. Otherwise,
both blocks would contain the same instruction, which is not possible. This
is apparent in Figure 1.3, where the address ranges of all pairs of conflicting
basic blocks overlap. To simplify the following discussion of the techniques
used to resolve conflicts, nodes that belong to the real control flow graph are
shaded. In addition, each node is denoted with an uppercase letter.

1.2.4 Block Conflict Resolution

The task of the block conflict resolution phase is to remove basic blocks from
the initial CFG until no conflicts are present anymore. Conflict resolution
proceeds in five steps. The first two steps remove blocks that are definitely
invalid, given our assumptions. The last three steps are heuristics that choose
likely invalid blocks. The conflict resolution phase terminates immediately
after the last conflicting block is removed; it is not necessary to carry out
all steps. The final step brings about a decision for any basic block conflict
and the control flow graph is guaranteed to be free of any conflicts when the
conflict resolution phase completes.

12 G. Vigna

The five steps are detailed in the following paragraphs.

Step 1: We assume that the start address of the analyzed function contains
a valid instruction. Therefore, the basic block that contains this instruction
is valid. In addition, whenever a basic block is known to be valid, all blocks
that are reachable from this block are also valid.

A basic block v is reachable from basic block w if there exists a path p from
u to v. A path p from u to v is defined as a sequence of edges that begins at
u and terminates at v. An edge is inserted into the control flow graph only
when its target can be statically determined and a possible program execution
trace exists that transfers control over this edge. Therefore, whenever a control
transfer instruction is valid, its targets have to be valid as well.

We tag the node that contains the instruction at the function’s start ad-
dress and all nodes that are reachable from this node as valid. Note that this
set of valid nodes contains exactly the nodes that a traditional recursive disas-
sembler would identify when invoked with the function’s start address. When
the valid nodes are identified, any node that is in conflict with at least one of
the valid nodes can be removed.

In the initial control flow graph for the example function in Figure 1.3, only

node A (0x8048000) is marked as valid. That node is drawn with a stronger
border in Figure 1.3. The reason is that the corresponding basic block ends
with a call instruction at 0x8048003 whose target is not local. In addition, we
do not assume that control flow resumes at the address after a call and thus
the analysis cannot directly continue after the call instruction. In Figure 1.3,
node B (the basic block at 0x8048006) is in conflict with the valid node and
can be removed.
Step 2: Because of the assumption that valid instructions do not overlap, it
is not possible to start from a valid block and reach two different nodes in
the control flow graph that are in conflict. That is, whenever two conflicting
nodes are both reachable from a third node, this third node cannot be valid
and is removed from the CFG. The situation can be restated using the notion
of a common ancestor node. A common ancestor node of two nodes u and v
is defined as a node n such that both u and v are reachable from n.

In Step 2, all common ancestor nodes of conflicting nodes are removed
from the control flow graph. In our example in Figure 1.3, it can be seen that
the conflicting node F and node K share a common ancestor, namely node J.
This node is removed from the CFG, resolving a conflict with node I. The
resulting control flow graph after the first two steps is shown in Figure 1.4.

The situation of having a common ancestor node of two conflicting blocks
is frequent when dealing with invalid conditional branches. In such cases,
the branch target and the continuation after the branch instruction are often
directly in conflict, allowing one to remove the invalid basic block from the
control flow graph.

Step 3: When two basic blocks are in conflict, it is reasonable to expect
that a valid block is more tightly integrated into the control flow graph than
a block that was created because of a misinterpreted argument value of a

1 Static Disassembly and Code Analysis 13

G
804801b
804801e

A

8048000
8048008
F
8048019
804801b
8048008
804800e

804800c
804800e

804801a
804801b

8048014
8048019
|

Fig. 1.4. CFG after two steps of conflict resolution.

program instruction. That means that a valid block is often reachable from a
substantial number of other blocks throughout the function, while an invalid
block usually has only a few ancestors.

The degree of integration of a certain basic block into the control flow
graph is approximated by the number of its predecessor nodes. A node u is
defined as a predecessor node of v when v is reachable from u. In Step 3, the
predecessor nodes for pairs of conflicting nodes are determined and the node
with the smaller number is removed from the CFG.

In Figure 1.4, node K has no predecessor nodes while node F has five.

Note that the algorithm cannot distinguish between real and spurious nodes
and, thus, it includes node C in the set of predecessor nodes for node F. As a
result, node K is removed. The number of predecessor nodes for node C and
node H are both zero and no decision is made in the current step.
Step 4: In this step, the number of direct successor nodes of two conflicting
nodes are compared. A node v is a direct successor node of node v when v
can be directly reached through an outgoing edge from w. The node with less
direct successor nodes is then removed. The rationale behind preferring the
node with more outgoing edges is the fact that each edge represents a jump
target within the function and it is more likely that a valid control transfer
instruction has a target within the function than any random CTI.

In Figure 1.4, node C has only one direct successor node while node H

has two. Therefore, node C is removed from the control flow graph. In our
example, all conflicts are resolved at this point.
Step 5: In this step, all conflicts between basic blocks must be resolved. For
each pair of conflicting blocks, one is chosen at random and then removed
from the graph. No human intervention is required at this step, but it would
be possible to create different alternative disassembly outputs (one output for
each block that needs to be removed) that can be all presented to a human
analyst.

14 G. Vigna

It might also be possible to use statistical methods during Step 5 to im-
prove the chances that the “correct” block is selected. However, this technique
is not implemented and is left for future work.

The result of the conflict resolution step is a control flow graph that con-
tains no overlapping basic blocks. The instructions in these blocks are consid-
ered valid and could serve as the output of the static analysis process. However,
most control flow graphs do not cover the function’s complete address range
and gaps exist between some basic blocks.

1.2.5 Gap Completion

The task of the gap completion phase is to improve the results of our analysis
by filling the gaps between basic blocks in the control flow graph with instruc-
tions that are likely to be valid. A gap from basic block b; to basic block b2
is the sequence of addresses that starts at the first address after the end of
basic block b; and ends at the last address before the start of block b, given
that there is no other basic block in the control flow graph that covers any
of these addresses. In other words, a gap contains bytes that are not used by
any instruction in blocks the control flow graph.

Gaps are often the result of junk bytes that are inserted by the obfuscator.
Because junk bytes are not reachable at run-time, the control flow graph does
not cover such bytes. It is apparent that the attempt to disassemble gaps filled
with junk bytes does not improve the results of the analysis. However, there
are also gaps that do contain valid instructions. These gaps can be the result
of an incomplete control flow graph, for example, stemming from a region of
code that is only reachable through an indirect jump whose target cannot
be determined statically. Another frequent cause for gaps that contain valid
instructions are call instructions. Because the disassembler cannot continue
after a call instruction, the following valid instructions are not immediately
reachable. Some of these instructions might be included into the control flow
graph because they are the target of other control transfer instructions. Those
regions that are not reachable, however, cause gaps that must be analyzed in
the gap completion phase.

The algorithm to identify the most probable instruction sequence in a
gap from basic block b; to basic block b works as follows. First, all possibly
valid sequences in the gap are identified. A necessary condition for a valid
instruction sequence is that its last instruction either (i) ends with the last
byte of the gap or (ii) its last instruction is a non intra-procedural control
transfer instruction. The first condition states that the last instruction of a
valid sequence has to be directly adjacent to the first instruction of block bs.
This becomes evident when considering a valid instruction sequence in the
gap that is executed at run-time. After the last instruction of the sequence is
executed, the control flow has to continue at the first instruction of basic block
by. The second condition states that a sequence does not need to end directly
adjacent to block by if the last instruction is a non intra-procedural control

1 Static Disassembly and Code Analysis 15

transfer. The restriction to non intra-procedural CTIs is necessary because all
intra-procedural CTIs are included into the initial control flow graph. When
an intra-procedural instruction appears in a gap, it must have been removed
during the conflict resolution phase and should not be included again.

Instruction sequences are found by considering each byte between the start
and the end of the gap as a potential start of a valid instruction sequence.
Subsequent instructions are then decoded until the instruction sequence either
meets or violates one of the necessary conditions defined above. When an
instruction sequence meets a necessary condition, it is considered possibly
valid and a sequence score is calculated for it. The sequence score is a measure
of the likelihood that this instruction sequence appears in an executable. It
is calculated as the sum of the instruction scores of all instructions in the
sequence. The instruction score is similar to the sequence score and reflects the
likelihood of an individual instruction. Instruction scores are always greater
or equal than zero. Therefore, the score of a sequence cannot decrease when
more instructions are added. We calculate instruction scores using statistical
techniques and heuristics to identify improbable instructions.

The statistical techniques are based on instruction probabilities and di-
graphs. Our approach utilizes tables that denote both the likelihood of in-
dividual instructions appearing in a binary as well as the likelihood of two
instructions occurring as a consecutive pair. The tables were built by disas-
sembling a large set of common executables and tabulating counts for the
occurrence of each individual instruction as well as counts for each occurrence
of a pair of instructions. These counts were subsequently stored for later use
during the disassembly of an obfuscated binary. It is important to note that
only instruction opcodes are taken into account with this technique; operands
are not considered. The basic score for a particular instruction is calculated
as the sum of the probability of occurrence of this instruction and the proba-
bility of occurrence of this instruction followed by the next instruction in the
sequence.

In addition to the statistical technique, a set of heuristics is used to identify
improbable instructions. This analysis focuses on instruction arguments and
observed notions of the validity of certain combinations of operations, regis-
ters, and accessing modes. Each heuristic is applied to an individual instruc-
tion and can modify the basic score calculated by the statistical technique. In
our current implementation, the score of the corresponding instruction is set
to zero whenever a rule matches. Examples of these rules include the following:

operand size mismatches;
certain arithmetic on special-purpose registers;
unexpected register-to-register moves (e.g., moving from a register other
than %ebp into %esp);
e moves of a register value into memory referenced by the same register.

16 G. Vigna

When all possible instruction sequences are determined, the one with the
highest sequence score is selected as the valid instruction sequence between
b1 and bQ.

8048000|| 55 ; 55 push %ebp
8048001|| 89 e5 E 89 e5 mov %esp, %ebp
8048003|| e8 00007411 : €8 000074 11 call 19788008
8048008 | 0Oa i 50a
& 8048009 | 05 ! 05 3T05
O 804800a | 3c : 3c ®3c gac 3c 00 cmp 0, %eax
804800b | 00 v .00 00 °00 200
H 75 75 75
804800c|| 75 06 E 06 06 06 75 06 ine 8048014
804800e|| b0 00 E b0 00 mov 0, %eax
8048010|| eb 07 E eb 07 jmp 8048019
9 8048012 | 0a ! 50a
G 8048013 | 05 V.05 BOS .
: al " Vai
8048014(| a1 000074 01 . 00 00 a1l 0000 74 01 mov (1740000), %eax
: 00 00
8048019 89 ec H 74 74 89 ec mov %ebp, %esp
804801b|| 5d : 5d pop %ebp
804801c|| c3 H c3 ret
804801d|| 90 : 90 nop
Gap Sequences Disassembler Output

Fig. 1.5. Gap completion and disassembler output.

The instructions that make up the control flow graph of our example func-
tion and the intermediate gaps are shown in the left part of Figure 1.5. It can
be seen that only a single instruction sequence is valid in the first gap, while
there is none in the second gap. The right part of Figure 1.5 shows the output
of our disassembler. All valid instructions of the example function have been
correctly identified.

Based on the list of valid instructions, the subsequent code analysis phase
can attempt to detect malicious code. In the following Section 1.3, we present
symbolic execution as one possible static analysis approach to identify higher-
level properties of code.

1.3 Code Analysis

This section describes the use of symbolic execution [10], a static analysis tech-
nique to identify code sequences that exhibit certain properties. In particular,
we aim at characterizing a code piece by its semantics, or, in other words, by
its effect on the environment. The goal is to construct models that charac-
terize malicious behavior, regardless of the particular sequence of instructions
(and therefore, of bytes) used in the code. This allows one to specify more

1 Static Disassembly and Code Analysis 17

general and robust descriptions of malicious code that cannot be evaded by
simple changes to the syntactic representation or layout of the code (e.g., by
renaming registers or modify the execution order of instructions).

Symbolic execution is a technique that interpretatively executes a pro-
gram, using symbolic expressions instead of real values as input. This also
includes the execution environment of the program (data, stack, and heap
regions) for which no initial value is known at the time of the analysis. Of
course, for all variables for which concrete values are known (e.g., initialized
data segments), these values are used. When the execution starts from the
entry point in the program, say address s, a symbolic execution engine in-
terprets the sequence of machine instructions as they are encountered in the
program.

To perform symbolic execution of machine instructions (in our case, Intel
x86 operations), it is necessary to extend the semantics of these instructions
so that operands are not limited to real data objects but can also be sym-
bolic expressions. The normal execution semantics of Intel x86 assembly code
describes how data objects are represented, how statements and operations
manipulate these data objects, and how control flows through the statements
of a program. For symbolic execution, the definitions for the basic operators
of the language have to be extended to accept symbolic operands and produce
symbolic formulas as output.

1.3.1 Execution State

We define the execution state S of program p as a snapshot of the content
of the processor registers (except the program counter) and all valid memory
locations at a particular instruction of p, which is denoted by the program
counter. Although it would be possible to treat the program counter like any
other register, it is more intuitive to handle the program counter separately
and to require that it contain a concrete value (i.e., it points to a certain
instruction). The content of all other registers and memory locations can be
described by symbolic expressions.

Before symbolic execution starts from address s, the execution state S is
initialized by assigning symbolic variables to all processor registers (except
the program counter) and memory locations for which no concrete value is
known initially. Thus, whenever a processor register or a memory location is
read for the first time, without any previous assignment to it, a new symbol
is supplied from the list of variables {v;, va, vs,...}. Note that this is the only
time when symbolic data objects are introduced.

In our current system, we do not support floating-point data objects
and operations. Therefore, all symbols (variables) represent integer values.
Symbolic expressions are linear combinations of these symbols (i.e., inte-
ger polynomials over the symbols). A symbolic expression can be written as
Cp*Up+Cp_1%Un_1+...+c1*v1+co where the ¢; are constants. In addition,
there is a special symbol L that denotes that no information is known about

18 G. Vigna

the content of a register or a memory location. Note that this is very different
from a symbolic expression. Although there is no concrete value known for
a symbolic expression, its value can be evaluated when concrete values are
supplied for the initial execution state. For the symbol L, nothing can be
asserted, even when the initial state is completely defined.

By allowing program variables to assume integer polynomials over the
symbols v;, the symbolic execution of assignment statements follows natu-
rally. The expression on the right-hand side of the statement is evaluated,
substituting symbolic expressions for source registers or memory locations.
The result is another symbolic expression (an integer is the trivial case) that
represents the new value of the left-hand side of the assignment statement.
Because symbolic expressions are integer polynomials, it is possible to evalu-
ate addition and subtraction of two arbitrary expressions. Also, it is possible
to multiply or shift a symbolic expression by a constant value. Other instruc-
tions, such as the multiplication of two symbolic variables or a logic operation
(e.g., and, or), result in the assignment of the symbol L to the destination.
This is because the result of these operations cannot (always) be represented
as integer polynomial. The reason for limiting symbolic formulas to linear
expressions will become clear in Section 1.3.3.

Whenever an instruction is executed, the execution state is changed. As
mentioned previously, in case of an assignment, the content of the destination
operand is replaced with the right-hand side of the statement. In addition,
the program counter is advanced. In the case of an instruction that does not
change the control flow of a program (i.e., an instruction that is not a jump
or a conditional branch), the program counter is simply advanced to the next
instruction. Also, an unconditional jump to a certain label (instruction) is
performed exactly as in normal execution by transferring control from the
current statement to the statement associated with the corresponding label.

o Yeax: 1 VO leax: Voo
inti, j, k; 8048364: mov 0x8049588,%edx | edx: vi ' edx: v2 !
804836a: mov %edx,%eax i R i
void f() 804836¢c: add %eax,%eax ! 8049588 0: v2 1 1 8049588: (j) : v2 1
. 804836e: add %edx,%eax 1804958c (K): v3 | | 804958c: (K):v3 1
i=3%+k; 8048370: add 0x804958¢,%eax 18049590 (i) : v4 | |8049590: () :v4 |
} 8048376: mov %eax,0x8049590 ! P! |
804837b: PG ____ 8048364 | |PC: ____ 8048362
Step 1 Step 2
Teax: v2 1 leax: 2v2 | leax: ¢ 3v2 | Teax: 824v3| leax: | 3v2+v3 |
redx: v2 | ledx: v2 | edx: v2 ! edx: v2 | ledx: v2 |
| [[[s |
18049588 () : v2 i 1 8049588 (j) : v2 i 1 8049588 (j) : v2 i 38049588 @i): v2 ' 18049588 (j) : v2 i
1 804958c¢ (k): v3 || 804958c¢ (K): v3 || 804958¢ (k): v3 1 1804958c (k): v3 ! 1 804958c¢ (k): v3 I
18049590 (1) : v4 | | 8049590 (I): v4 | |8049590 (i): v4 | 18049590 (i): v4 | 18049590 (i) : 3*v2+v3 |
| [[[s |
LPC:____ 804836c | |PC: 804836e | |PC: 8048370 | PC: 8048376 | |PC: ____ 804837b
Step 3 Step 4 Step 5 Step 6 Step 7

Fig. 1.6. Symbolic execution.

1 Static Disassembly and Code Analysis 19

Figure 1.6 shows the symbolic execution of a sequence of instructions. In
addition to the x86 machine instructions, a corresponding fragment of C source
code is shown. For each step of the symbolic execution, the relevant parts of
the execution state are presented. Changes between execution states are shown
in bold face. Note that the compiler (gcc 3.3) converted the multiplication
in the C program into an equivalent series of add machine instructions.

1.3.2 Conditional Branches and Loops

To handle conditional branches, the execution state has to be extended to
include a set of constraints, called the path constraints. In principle, a path
constraint relates a symbolic expression L to a constant. This can be used,
for example, to specify that the content of a register has to be equal to 0.
More formally, a path constraint is a boolean expression of the form L > 0
or L =0, in which L is an integer polynomial over the symbols v;. The set of
path constraints forms a linear constraint system.

The symbolic execution of a conditional branch statement starts by eval-
uating the associated Boolean expression. The evaluation is done by replac-
ing the instruction’s operands with their corresponding symbolic expressions.
Then, the inequality (or equality) is transformed and converted into the stan-
dard form introduced above. Let the resulting path constraint be called q.

To continue symbolic execution, both branches of the control path need
to be explored. The symbolic execution forks into two “parallel” execution
threads: one thread follows the then alternative, while the other one follows
the else alternative. Both execution threads assume the execution state that
existed immediately before the conditional statement, but proceed indepen-
dently thereafter. Because the then alternative is only chosen if the conditional
branch is taken, the corresponding path constraint ¢ must be true. Therefore,
we add ¢ to the set of path constraints of this execution thread. The situation
is reversed for the else alternative. In this case, the branch is not taken and ¢
must be false. Thus, —q is added to the path constraints of this execution.

After ¢ (or —q) is added to a set of path constraints, the corresponding
linear constraint system is immediately checked for satisfiability. When the
set of path constraints has no solution, this implies that, independent of the
choice of values for the initial configuration C, this path of execution can never
occur. This allows us to immediately terminate impossible execution threads.

Each fork of execution at a conditional statement contributes a condi-
tion over the variables v; that must hold for this particular execution thread.
Thus, the set of path constraints determines which conditions the initial ex-
ecution state must satisfy in order for an execution to follow the particular
associated path. Each symbolic execution begins with an empty set of path
constraints. As assumptions about the variables are made (in order to choose
between alternative paths through the program as presented by conditional
statements), those assumptions are added to the set. An example of a fork
into two symbolic execution threads as the result of an if-statement and the

20 G. Vigna

inti, j; Teax: VO

1 edx: vi |

void f() i !

8048364: cmpl $0x2a,0x804958c 1 8049588 (j): v2 !

if (i>42) 804836b: jle 8048379 1 804958c¢ (i): v3 |

i=1 804836d: movl $0x1,0x8049588 | !

else 8048377: jmp 8048383 | PC: 804836b |

i=0; 8048379: movl $0x0,0x8049588 ! !

} 8048383: L Path Condition:__ _

Step 1
then continuation . .
else continuation
Teax: Voo ""’: ”””””” ! ""’: ”””””” ! (éax’: ””” vo | (ééx’: ””” vo o
! edx: vi . edx: vi Lo edx: vi ! | edx: vi Lo edx: vi !
i i i i
! [[! | [|
1 8049588 (j): v2 | 18049588 (j): 1 | 18049588 (): 1 | 18049588 (j): v2 | !8049588 (j): 0 |
1804958 (I): v8 | 1804958c (): v8 | 1804958c () v3 | 1804958 (i): V8 | 1804958c (): v8 |
! [[! | [|
| PC: 804836d | | PC: 8048377 1 | PC: 8048383 | 'PC: 80483791 | PC: 8048383 |
! [[! | [|
i | | | i |
' Path Condition: | | Path Condition: | | Path Condition: ! | Path Condition: | 1 Path Condition: !
1(v3-42)>0 1 1(v3:42)>0 ! 1(v3:429>0 ___! [(v3-42)s0 | 1(v3:42)s0 ____|
Step 2a. Step 3a. Step 4a. Step 2b. Step 3b.

Fig. 1.7. Handling conditional branches during symbolic execution.

corresponding path constraints are shown in Figure 1.7. Note that the if-
statement was translated into two machine instructions. Thus, special code is
required to extract the condition on which a branch statement depends.

Because a symbolic execution thread forks into two threads at each condi-
tional branch statement, loops represent a problem. In particular, we have to
make sure that execution threads “make progress.” The problem is addressed
by requiring that a thread passes through the same loop at most three times.
Before an execution thread enters a loop for the forth time, its execution is
halted. Then, the effect of an arbitrary number of iterations of this loop on
the execution state is approximated. This approximation is a standard static
analysis technique [6, 14] that aims at determining value ranges for the vari-
ables that are modified in the loop body. Since the problem of finding exact
ranges and relationships between variables is undecidable in the general case,
the approximation naturally involves a certain loss of precision. After the
effect of the loop on the execution thread is approximated, the thread can
continue with the modified state after the loop. To determine loops in the
control flow graph, we use the algorithm by Lengauer-Tarjan [12], which is
based on dominator trees.

To approximate the effect of the loop body on an execution state, a fixpoint
for this loop is constructed. For our purposes, a fixpoint is an execution state
F' that, when used as the initial state before entering the loop, is equivalent
to the execution state after the loop termination. In other words, after the
operations of the loop body are applied to the fixpoint state F', the resulting
execution state is again F. Clearly, if there are multiple paths through the
loop, the resulting execution states at each loop exit must be the same (and
identical to F'). Thus, whenever the effect of a loop on an execution state
must be determined, we transform this state into a fixpoint for this loop. This

1 Static Disassembly and Code Analysis 21

transformation is often called widening. Then, the thread can continue after
the loop using the fixpoint as its new execution state.

The fixpoint for a loop is constructed in an iterative fashion. Given the
execution state S after the first execution of the loop body, we calculate the
execution state Sy after a second iteration. Then, S; and S; are compared.
For each register and each memory location that hold different values (i.e.,
different symbolic expressions), we assign L as the new value. The resulting
state is used as the new state and another iteration of the loop is performed.
This is repeated until S; and S(;41) are identical. In case of multiple paths
through the loop, the algorithm is extended by collecting one exit state S;
for each path and then comparing all pairs of states. Whenever a difference
between a register value or a memory location is found, this location is set to
L. The iterative algorithm is guaranteed to terminate, because at each step,
it is only possible to convert the content of a memory location or a register
to L. Thus, after each iteration, the states are either identical or the content
of some locations is made unknown. This process can only be repeated until
all values are converted to unknown and no information is left.

intj, k;
void f() =l =l
ico, | g=e P
j=k=0; d=1h =2t sl k=L oy k=t
j=0l =0 j=o0 S« =L %7
while (i < 100) { k=15 k=1 k=10 k=1
k=1; S S S i=1;" S =l
. . 1 i i .
if (i==10) 2 8 =25 6 SN
i=2; k=150 k=150
}i++; Sg Sg
}

Fig. 1.8. Fixpoint calculation.

An example for a fixpoint calculation (using C code instead of x86 as-
sembly) is presented in Figure 1.8. In this case, the execution state includes
the values of the three variables i, j, and k. After the first loop iteration,
the execution state S is reached. Here, i has been incremented once, k has
been assigned the constant 1, and j has not been modified. After a second
iteration, S, is reached. Because i has changed between S; and Sy, its value is
set to L in S3. Note that the execution has not modified j, because the value
of i was known to be different from 10 at the if-statement. Using S3 as the
new execution state, two paths are taken through the loop. In one case (S4),
Jj is set to 2, in the other case (Ss), the variable j remains 0. The reason for
the two different execution paths is the fact that ¢ is no longer known at the
if-statement and, thus, both paths have to be followed. Comparing S3 with

22 G. Vigna

Sy and Ss, the difference between the values of variable j leads to the new
state Sg in which j is set to L. As before, the new state Sg is used for the
next loop iteration. Finally, the resulting states S7 and Sg are identical to S,
indicating that a fixpoint is reached.

In the example above, we quickly reach a fixpoint. In general, by consid-
ering all modified values as unknown (setting them to L), the termination
of the fixpoint algorithm is achieved very quickly. However, the approxima-
tion might be unnecessarily imprecise. For our current prototype, we use this
simple approximation technique [14]. However, we plan to investigate more
sophisticated fixpoint algorithms in the future.

1.3.3 Analyzing Effects of Code Sequences

As mentioned previously, the aim of the symbolic execution is to characterize
the behavior of a piece of code. For example, symbolic execution could be used
to determine if a system call is invoked with a particular argument. Another
example is the assignment of a value to a certain memory address.

Consider a specification that defines a piece of code as malicious when it
writes to an area in memory that should not be modified. Such a specification
can be used to characterize kernel-level rootkits, which modify parts of the
operating system memory (such as the system call table) that benign modules
do not touch. To determine whether a piece of code can assign a value to a cer-
tain memory address ¢, the destination addresses of data transfer instructions
(e.g., x86 mov) must be determined. Thus, whenever the symbolic execution
engine encounters such an instruction, it checks whether this instruction can
possibly access (or write to) address ¢. To this end, the symbolic expression
that represents the destination of the data transfer instruction is analyzed.
The reason is that if it were possible to force this symbolic expression to
evaluate to ¢, then the attacker could achieve her goal.

Let the symbolic expression of the destination of the data transfer in-
struction be called s;. To check whether it is possible to force the destination
address of this instruction to ¢, the constraint s; = ¢ is generated (this con-
straint simply expresses the fact that s; should evaluate to the target address
t). Now, we have to determine whether this constraint can be satisfied, given
the current path constraints. To this end, the constraint s, = ¢ is added to
the path constraints, and the resulting linear inequality system is solved.

If the linear inequality system has a solution, then the sequence of code
instructions that were symbolically executed so far can possibly write to t.
Note that, since the symbolic expressions are integer polynomials over vari-
ables that describe the initial state of the system, the solution to the linear
inequality system directly provides concrete values for the initial configura-
tion that will eventually lead to a value being written to ¢. For example, in
the case of kernel-level rootkit detection, a kernel module would be classified
as malicious if a data transfer instruction (in its initialization routine) can be
used to modify the address ¢ of an entry in the system call table.

1 Static Disassembly and Code Analysis 23

To solve the linear constraint systems, we use the Parma Polyhedral Li-
brary (PPL) [1]. In general, solving a linear constraint system is exponential
in the number of inequalities. However, the number of inequalities is usu-
ally small, and PPL uses a number of optimizations to reduce the resources
required at run time.

1.3.4 Memory Aliasing and Unknown Stores

In the previous discussion, two problems were ignored that considerably com-
plicate the analysis for real programs: memory aliasing and store operations
to unknown destination addresses.

Memory aliasing refers to the problem that two different symbolic expres-
sions s; and se might point to the same address. That is, although s; and
s contain different variables, both expressions evaluate to the same value.
In this case, the assignment of a value to an address that is specified by s;
has unexpected side effects. In particular, such an assignment simultaneously
changes the content of the location pointed to by ss.

Memory aliasing is a typical problem in the static analysis of high-level
languages with pointers (such as C). Unfortunately, the problem is exacer-
bated at the machine code level. The reason is that, in a high-level language,
only a certain subset of variables can be accessed via pointers. Also, it is of-
ten possible to perform alias analysis that further reduces the set of variables
that might be subject to aliasing. Thus, one can often guarantee that certain
variables are not modified by write operations through pointers. At machine
level, the address space is uniformly treated as an array of storage locations.
Thus, a write operation could potentially modify any other variable.

In our prototype, we take an optimistic approach and assume that different
symbolic expressions refer to different memory locations. This approach is
motivated by the fact that most C compilers address local and global variables
so that a distinct expression is used for each access to a different variable. In
the case of global variables, the address of the variable is directly encoded
in the instruction, making the identification of the variable particularly easy.
For each local variable, the access is performed by calculating a different offset
with respect to the value of the base pointer register (%ebp).

A store operation to an unknown address is related to the aliasing problem
as such an operation could potentially modify any memory location. Here, one
can choose one of two options. A conservative and safe approach must assume
that any variable could have been overwritten and no information remains.
The other approach assumes that such a store operation does not interfere
with any variable that is part of the solution of the linear inequality system.
While this leads to the possibility of false negatives, it significantly reduces
the number of false positives.

24 G. Vigna

1.4 Conclusions

The analysis of an unknown program requires that the binary is first disassem-
bled into its corresponding assembly code representation. Based on the code
instructions, static or dynamic code analysis techniques can then be used to
classify the program as malicious or benign.

In this chapter, we have introduced a robust disassembler that produces
good results even when the malicious code employs tricks to resists analy-
sis. This is crucial for many security tools, including virus scanners [2] and
intrusion detection systems [9].

We also introduced symbolic execution as one possible static analysis tech-
nique to infer semantic properties of code. This allows us to determine the
effects of the execution of a piece of code. Based on this knowledge, we can
construct general and robust models of malicious code. These models do not
describe particular instances of malware, but capture the properties of a whole
class of malicious code. Thus, it is more difficult for an attacker to evade de-
tection by applying simple changes to the syntactic representation of the code.

References

1. R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex
polyhedra and the Parma Polyhedra Library. In 9th International Symposium
on Static Analysis, 2002.

2. M. Christodorescu and Somesh Jha. Static Analysis of Executables to Detect
Malicious Patterns. In Proceedings of the 12th USENIX Security Symposium,
2003.

3. C. Cifuentes and M. Van Emmerik. UQBT: Adaptable binary translation at
low cost. IEEE Computer, 40(2-3), 2000.

4. C. Cifuentes and K. Gough. Decompilation of Binary Programs. Software
Practice & Experience, 25(7):811-829, July 1995.

5. F. B. Cohen. Operating System Protection through Program Evolution. http:
//all.net/books/IP/evolve.html.

6. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
4th ACM Symposium on Principles of Programming Languages (POPL), 1977.

7. Data Rescure. IDA Pro: Disassembler and Debugger. http://www.datarescue.
com/idabase/, 2004.

8. Free Software Foundation. GNU Binary Utilities, Mar 2002. http://www.gnu.
org/software/binutils/manual/.

9. J.T. Giffin, S. Jha, and B.P. Miller. Detecting manipulated remote call streams.
In In Proceedings of 11th USENIX Security Symposium, 2002.

10. J. King. Symbolic Execution and Program Testing. Communications of the
ACM, 19(7), 1976.

11. C. Kruegel, F. Valeur, W. Robertson, and G. Vigna. Static Analysis of Obfus-
cated Binaries. In Useniz Security Symposium, 2004.

12.

13.

14.

15.

1 Static Disassembly and Code Analysis 25

T. Lengauer and R. Tarjan. A Fast Algorithm for Finding Dominators in a
Flowgraph. ACM Transactions on Programming Languages and Systems, 1(1),
1979.

C. Linn and S. Debray. Obfuscation of executable code to improve resistance
to static disassembly. In Proceedings of the 10th ACM Conference on Computer
and Communications Security (CCS), pages 290-299, Washington, DC, October
2003.

F. Nielson, H. Nielson, and C. Hankin. Principles of Program Analysis. Springer
Verlag, 1999.

R. Sites, A. Chernoff, M. Kirk, M. Marks, and S. Robinson. Binary Translation.
Digital Technical Journal, 4(4), 1992.

