

Method Construction by Goal Analysis

C. Gonzalez-Perez1, P. Giorgini2 and B. Henderson-Sellers3
1 University of Technology, Sydney, Department of Software Engineering, cesar-

gon@verdewek.com
2 University of Trento, Department Information and communication Technology,

paolo.giorgini@unitn.it
3 University of Technology, Sydney, Department of Software Engineering,

brian@it.uts.edu.au

Abstract. Method engineering proposes the construction of methodologies by selecting
method fragments from a repository and assembling then in an appropriate way. However, the
rules by which the “optimal” method fragments are chosen are not clear, and such chores are
usually done manually by an expert. This paper presents a goal analysis technique for the
selection of the optimal method fragments from a repository, using backward reasoning to
obtain the set of fragments that satisfy the desired goals with minimum effort. By using this
technique, a methodologist can determine the goals that the organisation wants the methodol-
ogy to satisfy, and then, preferably, rely on automated tools for the selection of the optimal
solution.

1 Introduction

It is well accepted that no single software development methodology (or method; we
will consider them here as synonyms) serves all purposes (Cockburn 2000). Differ-
ent project, product and organisational characteristics call for different methodolo-
gies, which are often further tweaked or customised to fit the particular idiosyncra-
sies of its users (Bajec, Vavpotič, and Krisper 2007). One quick way to obtain a
customised methodology is to adopt an existing one and change it as necessary.
However, this entails significant risks since the methodologists making the changes
are not necessarily aware of the interconnections and dependencies between different
components of the methodology. The situational method engineering (SME) para-
digm (Brinkkemper 1996; Henderson-Sellers, Serour, McBride, Gonzalez-Perez, and
Dagher 2004b) offers a solution to this problem: instead of adopting an existing
methodology and changing it as necessary, a custom methodology is created by
selecting the appropriate method fragments from an existing repository and combin-
ing them appropriately. This approach is used in methodological frameworks such as
OPF (Firesmith and Henderson-Sellers 2002), OOSPICE (Henderson-Sellers, Stal-
linger, and Lefever 2002) and FIPA (Cossentino, Gaglio, Garro, and Seidita 2007),

2 Cesar Gonzalez-Perez, Paolo Giorgini and Brian Henderson-Sellers

and is advocated in the recent ISO/IEC (2007) 24744 International Standard “Soft-
ware Engineering Metamodel for Development Methodologies”.

Despite an increasing and broadening interest in situational method engineering,
some areas are still to be fully explored. For example, how are the method fragments
to be selected from the repository? A complete methodology is likely to be com-
posed of hundreds of method fragments, and each of these must be carefully chosen
to (a) fit the purpose of the methodology being constructed and (b) be compatible
with other method fragments. Usually, this task is performed by a methodologist,
who uses his/her expert judgement to handcraft an “optimal” solution. This approach
has a number of drawbacks. First of all, it can be extremely time consuming. Sec-
ondly, there is no way to demonstrate that the chosen collection of method fragments
is best, i.e. no guarantee can be given on the quality of the result (other than that
given by the trust on the methodologist’s expertise). Typically, an organisation will-
ing to adopt the method engineering paradigm will need to recruit a methodologist or
hire a consultant to compose a methodology each time.

This paper presents a solution to these drawbacks in which a project manager will
be able to create a profile of the methodology to be constructed in terms of the goals
that it must achieve, and then use a goal analysis technique, ideally implemented by
a tool, to extract the optimal combination of method fragments from the repository
that fulfils the goals at minimum effort.

In the rest of this paper, Section 2 introduces some important concepts of method
engineering; Section 3 explains the basic concepts of goal analysis and Section 4 its
application to methodology construction.

2 Background for Situational Method Engineering

As explained above, the SME approach needs the existence of a method fragment
repository. This repository is usually a database that contains method fragments of
different kinds. Method fragments are self-contained, relatively independent specifi-
cations of some aspect of a methodology, such as a task to be performed, a technique
that may be employed, a product that can be generated or a team that can be formed.
Different kinds of method fragments have different properties: for example, task
specifications have a purpose (that declares what the task intends to achieve) and a
description (that specifies the steps that may be followed in order to achieve it); work
product specifications, on the other hand, have a name (such as “Requirements
Specification Document” or “Class Diagram”) and a description. In turn, different
kinds of method fragments are related to each other: for example, task specifications
may be linked to the work products that they generate when executed.

The structure of the repository, i.e. the kinds of method fragments, their proper-
ties and the relationships between them, is usually given by a metamodel. A meta-
model is a formal description of the concepts that can be used to construct a method-
ology and the relationships amongst them. Here, we will adopt the International
Standard ISO/IEC (2007) 24744 “Software Engineering Metamodel for Develop-

Method Construction by Goal Analysis 3

ment Methodologies” (SEMDM). SEMDM defines 68 concrete classes, instances of
which can potentially be stored in a method fragment repository. Not all the method
fragment classes are relevant for this paper; we will concentrate on the following:

• PhaseKind. Specification of a managed timeframe within a project for which
the objective is the transition between levels of abstraction. Phase kinds spec-
ify the “when” of a methodology, i.e. its temporal ordering and organisation.

• ProcessKind. Specification of a discrete, large-grained job performed within a
project that operates within a given area of expertise. Process kinds specify
the “what and why” of a methodology at an abstract level, i.e. the methodol-
ogy’s job structure.

• TaskKind. Specification of a small-grained job performed within a project
that focuses on what must be done in order to achieve a given purpose. Task
kinds specify the “what and why” of a methodology at a detailed level.

• TechniqueKind. Specification of a small-grained job performed within a pro-
ject that focuses on how the given purpose may be achieved. Technique kinds
specify the “how” of a methodology, i.e. the specific means of achieving the
associated task.

• WorkProductKind. Specification of an artefact of interest for the project.
Work product kinds specify what is created and consumed during a project.

• ActionKind. Specification of how a given task kind acts upon a particular
work product kind.

These classes are interrelated in the following way (Fig. 1) i.e. each phase kind is
composed of process kinds, which give “content” to it. The phase kind specifies
when something must be done, while the associated process kinds define what to do.
In turn, each process kind contains a number of task kinds, which flesh out and refine
the process’ purpose. In turn, each task kind may be associated to a number of tech-
nique kinds, since there is often a choice from several techniques, each of which can
be used to achieve the goals of the same task, and different tasks can use the same
technique. Finally, each task kind may be mapped to a number of work product kinds
via action kinds. These mappings involve different action types: a task can create,
modify, delete or read a work product. Typically, each task kind will read work
products of some kinds and perhaps create a new work product of a different kind.

2.1 Sample Method Fragment Repository

Consider the following (simplified) example. Two phase kinds are defined in a re-
pository: “System Definition” and “System Construction”. The first is intended to be
performed at the beginning of a project and defines the system to be built. The sec-
ond is meant to be executed at the end of a project in order to construct the system
previously defined. A number of process kinds are also defined: “Requirements
Engineering”, “Coding”, “Acceptance Testing”, “Quality Assurance” and “Process
Improvement”. Each of these process kinds specifies, from an abstract point of view,
what can be done at some point in the project. Some of these process kinds are asso-
ciated to the “System Definition” phase kind, some to “System Construction”, and

4 Cesar Gonzalez-Perez, Paolo Giorgini and Brian Henderson-Sellers

some to both (Table 1). Then, some task kinds can be introduced, such as “Elicit
requirements”, “Analyse requirements”, “Validate requirements”, “Develop service
models” and “Determine work product defects” (Table 2). These task kinds, together
with many more, would be associated to different process kinds. A number of tech-
nique kinds can also be introduced, such as “Prototyping”, “Peer reviewing” and
“Threat modelling” (Table 3). These technique kinds would be mapped to task kinds
in a many-to-many fashion. Finally, some work product kinds can be introduced into
the repository, such as “Requirements Specification Document”, “Service Diagram”,
“Source Program” and “Report” (Table 4). Each of these work product kinds would
be associated to a number of task kinds with a particular action type; for example
“Requirements Specification Document” can be mapped to “Document require-
ments” via an action kind with a “create” type and to “Develop service models” via a
different action kind with a “read” type. In turn, “Service Diagram” can be mapped
to “Develop service models” via an action kind with a “create” type.

PhaseKind

ProcessKind

+Description

TaskKind TechniqueKind

+description

WorkProductKind

0..* 0..*

0..*
0..*

0..* 0..*

1

0..*
+Type
+Optionality
+WorkProductRole

ActionKind
11..*

PhaseKind

ProcessKind

+Description

TaskKind TechniqueKind

+description

WorkProductKind

0..* 0..*

0..*
0..*

0..* 0..*

1

0..*
+Type
+Optionality
+WorkProductRole

ActionKind
11..*

Fig. 1. Metamodel fragment (a subset of ISO/IEC 24744). Only relevant classes, attributes and

associations are depicted. Here the diamond indicates a generic whole-part relationship.

Relevant life cycle models are created by instantiating the class TimeCycleKind
from ISO/IEC 24744. This is a subtype of StageWithDurationKind (also the super-
type of PhaseKind). Selection of the lifecycle is a stylistic decision much akin to the
choice of architectural style for an software application. While it is possible that we
can represent this selection process in terms of a soft goal, it is more likely that the
choice will be made based on other, external factors and influences. (This topic of
life cycle selection is a topic for future research - not discussed further here.)

Table 1 Sample process kinds.

Name Mapped to phase kinds
Requirements Engineering System Definition
Coding System Construction
Acceptance Testing System Construction
Quality Assurance System Definition, System Construction
Process Improvement System Definition, System Construction

Method Construction by Goal Analysis 5

Table 2 Sample task kinds.

Name Mapped to process kinds
Elicit requirements Requirements Engineering
Analyse requirements Requirements Engineering
Validate requirements Requirements Engineering
Document requirements Requirements Engineering
Develop class models High-Level Modelling
Develop service models High-Level Modelling
Sketch user interface High-Level Modelling
Develop interaction models Detailed Modelling
Write code Coding
Unit test class Coding
Demonstrate the system Acceptance Testing
Obtain stakeholder feedback Acceptance Testing, Quality Assurance
Determine work product defects Quality Assurance
Prepare defect report Quality Assurance
Test build system Quality Assurance

Table 3 Sample technique kinds.

Name Mapped to task kinds
Prototyping Develop service models, Sketch user interface
Text analysis Analyse requirements, Develop class models
CRC cards Develop class models
Peer reviewing Validate requirements, Determine work product defects
Test-first development Unit test class
In-house customer Demonstrate the system, Obtain stakeholder feedback
Automated builds Test build system
Threat modelling Analyse requirements

Table 4 Sample work product kinds with action types.

Name Mapped to task kinds Action type
Elicit requirements create
Analyse requirements, Validate requirements modify

Stakeholders
Statement

Document requirements read
Document requirements create Requirements

Specification
Document

Develop class models, Develop service models,
Sketch user interface

read

Develop service models create
Develop interaction models modify

Service Diagram

Sketch user interface read
Sketch user interface create
Develop service models modify

User Interface
Sketch

Write code read
Write code create
Unit test class modify

Source Program

Test build system read
Report Test build system, Determine work product de-

fects, Prepare defect report
create

6 Cesar Gonzalez-Perez, Paolo Giorgini and Brian Henderson-Sellers

From the sample method fragments in Tables 1-4, it can be seen that the depend-

ency network that can arise from the method fragments in a repository can be ex-
tremely intricate. For example, selecting the “High-Level Modelling” process kind
would usually imply bringing along the “Develop service models” task kind, which
“creates” a “Service Diagram” work product and “reads” a “Requirements Specifica-
tion Document” work product. In order to provide the necessary input (i.e. a re-
quirements specification document), we need to select a task kind that creates it,
namely “Document Requirements”. This task kind, in turn, may bring along the
whole “Requirements Engineering” process kind together with additional task kinds.

Technique selection is usually more flexible, since a number of technique kinds
are often available for each individual task kind. Which is selected depends only on
the characteristics of the project (e.g. time or budget constraints), the product context
(e.g. safe-criticality) and the organisation (e.g. culture and skills). Although we can
assume that any of the technique kinds mapped to a given task kind is appropriate to
achieve the task’s purpose, the particular technique kinds that are chosen will likely
influence overall project properties such as time consumed or defect injection rate as
well as providing a different level of risk and associated costs. From this perspective,
we can say that some techniques are better than others for some particular purposes.

2.2 Requirements for Method Construction

The design and construction of a methodology can be seen as any other engineering
activity: some requirements are given and a suitable artefact that satisfies them must
be developed. Therefore, we can assume that some requirements exist when method-
ologists face the task of constructing a methodology from a method fragment reposi-
tory. These requirements can be described in terms of the capabilities and qualities of
the intended outcome of the engineering effort, namely, the future methodology. In
turn, method capabilities and qualities may refer to the kind of products that the
method can construct, the type of projects used to tackle such activities and the char-
acteristics of the organisations where these projects may take place. If we can char-
acterise products, projects and organisations with measurable attributes, we will have
a solid starting point on which requirements for method construction can be defined.
These can be seen as defining the requirements for the construction of the methodol-
ogy (as opposed to the requirements for the construction of the software application,
which is the target of the software development project) (Ralyté 2002). Factors that
influence these requirements are many, including organizational maturity level, skills
set of development team members, type of domain (e.g. information systems, real-
time control, e-business), project size, team size, level of criticality, interface style,
level of resources allocated to project and whether or not the system is to be a dis-
tributed application (Nguyen and Henderson-Sellers 2003)

Table 5 shows a list of the attributes that we have identified for the purpose of il-
lustration in this paper. We have only included attributes that may be directly af-
fected by the choice of method fragments when constructing a methodology. We are
aware that many other attributes (such as product correctness or readability) are also

Method Construction by Goal Analysis 7

of interest to software engineering, but they have been left out from this experiment
since they are not likely to be directly affected by the choice of method fragments.

Table 5 Product, project and organisation attributes for method construction.

Area Attribute Description
Reliability The product must offer high reliability, i.e. its users

will depend on it for critical operations.
Changeability The product will need to be changed, so it will need

to offer the appropriate mechanisms to achieve this
with ease.

Product

Usability The product must be easy to use.
Cost constraints The project has cost constraints, so it must be

completed at the lowest cost possible.
Time constraints The project has time constraints, so it must be

completed in the shortest time possible.
Staffing constraints The project has staffing constraints, so it must be

completed with the lowest possible number of staff.

Project

Visibility The project needs high visibility, so all the work
must be properly documented.

Formal culture The development team’s culture promotes formal,
high-ceremony work.

Agile culture The development team’s culture promotes agile-
style, low-ceremony work.

Organisation

Experience The development team has got extensive experience
in the kind of project and product to be developed.

3 Goal Analysis Concepts

In goal analysis, the final goal of each process step is considered from the point of
view of a specific actor. There are three relevant reasoning techniques that are use-
ful: means-end analysis, contributions analysis and AND/OR decomposition (Bre-
sciani, Giorgini, Giunchiglia, and Mylopolous 2004). In means-end analysis, the
following are performed iteratively until an acceptable solution is reached: “Describe
the current state, the desired state (the goal) and the difference between the two;
Select a promising procedure for enabling this change of state by using this identified
difference between present and desired states; Apply the selected procedure and
update the current state.” (Henderson-Sellers, Giorgini, and Bresciani 2004a)

Contributions analysis helps to identify goals that may contribute towards the
partial fulfilment of the final goal and is sometimes used as an alternative to means-
end analysis, particularly useful for softgoals. Positive or negative influences to-
wards attainment of the goal are identified and quantified on a (usually 5 point)
Likert scale. In particular, contribution analysis has been shown to be very effective
for soft goals used for eliciting non-functional (quality) requirements.

8 Cesar Gonzalez-Perez, Paolo Giorgini and Brian Henderson-Sellers

Finally, AND/OR decomposition changes a root goal into a finer goal structure

i.e. a set of subgoals - either alternatives (OR decomposition) or additive (AND
decomposition).

Goal analysis has been used in a number of ways to support software develop-
ment e.g. in the design of systems, especially for documenting early requirements, as
in the Tropos methodology (Bresciani et al., 2004); in business process reengineer-
ing (Grau, Franch, and Maiden 2005); and in the support of ISO/IEC15504 assess-
ments (Rifaut, 2005). Here, we present the first application of goal analysis to
method construction in the context of method engineering.

4 Applying Goal Analysis to Method Construction

In order to use goal analysis for method construction, we need to determine how
each of the method fragments in the sample repository affects each of the above
listed attributes. For example, we can say that performing the Quality Assurance
process (see Table 1) enhances product reliability. For each method fragment plus
attribute pair, one of five possible values has been determined: strongly enhances,
enhances, neutral, deteriorates and strongly deteriorates.

Table 6 shows these (non-neutral) mappings between method fragments and at-
tributes. Please note that we are not claiming that these mappings are optimal or even
correct; these are a sample collection of reasonable mappings for the purpose of this
paper. A separate study would be necessary in order to determine how each method
fragment in a production repository affects each attribute of interest.

Suppose we have two options for a Software Engineering Process (SEP) and each
has several Tasks, each implemented by a Technique chosen from a list. The two
options are shown graphically in Figure 2.

Table 6 Mappings between attributes and method fragments. For each mapping, a value is
included indicating how the choice of the method fragment affects the attribute.

Attribute Method Fragment Value
Area Name Class Name

Process kind Quality Assurance strongly
enhances

Task kind Unit test class enhances
Test-first development enhances
In-house customer enhances

Reliability

Technique kind

Threat modelling strongly
enhances

Process kind Configuration Man-
agement

enhances Changeability

Task kind Document require-
ments

enhances

Product

Usability Process kind Acceptance Testing strongly
enhances

Method Construction by Goal Analysis 9

Attribute Method Fragment Value
Demonstrate the
system

enhances Task kind

Obtain stakeholder
feedback

strongly
enhances

Phase kind System Definition deteriorates
Quality Assurance deteriorates

Cost con-
straints Process kind

Process Improvement deteriorates
Phase kind System Definition deteriorates
Process kind Process Improvement deteriorates
Task kind Unit test class deteriorates

Prototyping deteriorates

Time con-
straints

Technique kind
Automated builds enhances

Process kind Quality Assurance deteriorates
Peer reviewing deteriorates

Staffing con-
straints Technique kind

Pair programming deteriorates
Prepare defect report enhances

Project

Visibility Task kind
Prepare process qual-
ity report

enhances

Phase kind System Definition strongly
enhances

Formal culture

Task kind Measure process
quality

enhances

Phase kind System Definition strongly
deteriorates

Process kind Process Improvement deteriorates
Task kind Document require-

ments
Elicit requirements

deteriorates
enhances

In-house customer enhances

Agile culture

Technique kind
Test-first development enhances

Phase kind System Definition strongly
enhances

Requirements Engi-
neering

enhances Process kind

Acceptance Testing enhances
Task kind Elicit requirements enhances

Focus groups strongly
enhances

Prototyping strongly
enhances

Walkthroughs enhances

Organisation

Experience

Technique kind

In-house customer enhances

Looking at the Techniques we have a table (akin to Table 6 above) that links

Techniques to impact factors (-ilities). The Techniques are labelled as X1-X6 where
X1 = Test first; X2 = In house customer; X3 = Prototyping; X4 = Automated builds;
X5 = Threat modelling; and X6 = Peer reviewing. Then the two processes can be
described in terms of these terminal Techniques as:

10 Cesar Gonzalez-Perez, Paolo Giorgini and Brian Henderson-Sellers

SEP1 is (X1 or X2); (X3 or X4)
SEP2 is (X1 or X2); (X1 or X2 or X5 or X6)

We consider just two examples. The impact on the Reliability and of Agility factors:

SEP

SEP1 SEP2

Req Eng Acc. Test Process
Improve

Req Eng. Quality Assur OPF
ACTIVITIES

Elicit req. Demo sys
Unit test

Obtain feedback

Elicit req Unit test OPF
TASKS

Test In
First house

Prototyping

Auto build

Test In
First house

Test In Threat
First house

Peer rev
OPF
TECHS.

and

and

and

or

or
or

or or

or

SEP

SEP1 SEP2

Req Eng Acc. Test Process
Improve

Req Eng. Quality Assur OPF
ACTIVITIES

Elicit req. Demo sys
Unit test

Obtain feedback

Elicit req Unit test OPF
TASKS

Test In
First house

Prototyping

Auto build

Test In
First house

Test In Threat
First house

Peer rev
OPF
TECHS.

and

and

and

or

or
or

or or

or

Fig. 2 Hierarchical tree depicting Activities, Tasks and Techniques for two hypothetical SEPs

1) reliability
Test-first development (X1) enhances (+)
In-house customer (X2) enhances (+)
Prototyping (X3) neutral (o)
Automated builds (X4) deteriorates (-)
Threat modelling(X5) strongly enhances (++)
Peer reviewing (X6) strongly enhances (++)
2) agility
Test-first development (X1) enhances (+)
In-house customer (X2) enhances (+)
Prototyping (X3) deteriorates (-)
Automated builds (X4) strongly deteriorates (--)
Threat modelling(X5) strongly deteriorates (--)
Peer reviewing (X6 strongly enhances (++)

Then the impact is as follows:
OPTION Reliability Agility
SEP1 option 1 is X1; X3 + / 0 + / -

Method Construction by Goal Analysis 11

SEP1 option 2 is X1; X4 + / - + / - -
SEP1 option 3 is X2; X3 + / 0 + / -
SEP1 option 4 is X2; X4 + / - + / - -
SEP2 option 1 is X1; X1 + / + + / +
SEP2 option 2 is X1; X2 + / + + / +
SEP2 option 3 is X1; X5 + / + + + / - -
SEP2 option 4 is X1; X6 + / + + + / + +
SEP2 option 5 is X2; X1 + / + + / +
SEP2 option 6 is X2; X2 + / + + / +
SEP2 option 7 is X2; X5 + / + + + / - -
SEP2 option 8 is X2; X6 + / + + + / + +

We conclude that from a reliability viewpoint, the best choice would be SEP2,

options 3, 4, 7 or 8. On the other hand, from an agility perspective, the best choice
would be SEP2, option 4 or 6.

The above analysis is fully supported and automated in Tropos (Giorgini, My-
lopoulous, and Sebastiani 2005). In particular, backward reasoning allows the analyst
to search for possible method fragments from the repository that satisfy the desired
goal. Moreover, by assigning a cost to each fragment, backward reasoning also pro-
duces the solution with the minimum cost.

5 Conclusions and Future Work

With the aim of creating a high quality software development methodology from
those method fragments selected from an existing repository, we have examined a
new idea based on goal analysis. Rather than select the elements of the methodology
“top-down” by considering what seems reasonable in a particular situation using
what might be termed “intuition” (the current approach in SME), we suggest that a
more objective process can be created in which the main focus becomes the goal
rather than the means of achieving that goal (the process element). The goal analysis
approach proposed here permits the creation of an optimized methodology; impor-
tantly, one that is optimized for a particular characteristic such as reliability or agil-
ity. An hierarchical tree is constructed (Figure 2) and, for each element, we identify
whether there is a positive or negative impact for the chosen optimization character-
istic. We have demonstrated this approach with a simple example of a small tree in
which fragments for activities, tasks and techniques from the OPF repository have
been selected, considering the impacts on two different software engineering proc-
esses, SEP1 and SEP2 (Figure 2). That these processes have different optima under
different evaluation criteria (here agility and reliability) suggests that this approach is
worthy of further investigation including practical trials in industry and the develop-
ment of a prototype support tool. We are currently planning such industry trials
within the Italian ministry funded project MEnSA (http://www.mensa-project.org)
project and anticipate building appropriate support tools in due course.

12 Cesar Gonzalez-Perez, Paolo Giorgini and Brian Henderson-Sellers

Acknowledgments

We wish to thank for financial support both the Australian Research Council and the
Italian ministry for research through its PRIN-MEnSA project.

References

Bajec, M., Vavpotič, D. and Krisper, M. (2007) Practice-driven approach for creating project-
specific software development methods. Inf. Software Technol. 49, 345-365.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F. and Mylopolous, J. (2004) Tropos: an
agent-oriented software development methodology. Autonomous Agents and Multi-Agent
Systems 8(3), 203-236.

Brinkkemper, S. (1996) Method engineering: engineering of information systems development
methods and tools. Inf. Software Technol. 38(4), 275-280.

Cockburn, A.S. (2000) Selecting a project's methodology. IEEE Software 17(4), 64-71.
Cossentino, M., Gaglio, S., Garro, A. and Seidita, V. (2007) Method fragments for agent

design methodologies: from standardization to research. Int. J. Agent-Oriented Software
Eng. 1(1), 91-121

Firesmith, D.G. and Henderson-Sellers, B. (2002) The OPEN Process Framework. Addison-
Wesley, London.

Giorgini P., Mylopoulous J. and Sebastiani R. (2005). Goal-oriented requirements analysis
and reasoning in the Tropos methodology. Eng. Appl. Artific. Intell. 18(2), 159-171.

Grau, G., Franch, X. and Maiden, N.A.M. (2005) A goal-based round-trip method for system
development. In: Procs. 11th International Conference on Requirements Engineering:
Foundations for Software Quality (REFSQ’05), pp. 67-82.

Henderson-Sellers, B., Stallinger, F. and Lefever, B. (2002) Bridging the gap from process
modelling to process assessment: the OOSPICE process specification for component-
based software engineering. In: Procs. 28th EUROMICRO Conference. Dortmund, Ger-
many, 4-6 September 2002. IEEE Computer Society: Los Alamos, CA, USA, pp. 324-331.

Henderson-Sellers, B., Giorgini, P. and Bresciani, P. (2004a) Enhancing Agent OPEN with
concepts used in the Tropos methodology. In: A. Omicini, P. Pettra and J. Pitt (Eds.), En-
gineering Societies in the Agents World IV. 4th International Workshop, ESAW 2003.
LNAI 3071, Springer-Verlag, Berlin, pp. 328-345.

Henderson-Sellers, B., Serour, M. McBride, T. Gonzalez-Perez, C. and Dagher, L. (2004b)
Process construction and customization. J. Universal Computer Science. 10(4), 326-358.

ISO/IEC (2007). Software Engineering Metamodel for Development Methodologies. ISO/IEC
24744, International Organization for Standardization, Geneva.

Nguyen, V.P. and Henderson-Sellers, B. (2003) Towards automated support for method engi-
neering with the OPEN Process Framework. In: M.H Hamza (Ed.), Procs. Seventh
IASTED International Conference on Software Engineering and Applications. ACTA
Press, Anaheim, CA, USA, pp. 691-696.

Ralyté, J. (2002) Requirements definition for the situational method engineering. In: C. Rol-
land, S. Brinkkemper and M. Saeki (Eds.), Engineering Information Systems in the Inter-
net Context. Kluwer Academic Publishers, Boston, USA, pp. 127-152.

Rifaut, A. (2005) Goal-driven requirements engineering for supporting the ISO 15504 assess-
ment process. In: I. Richardson, P. Abrahamsson and R. Messnarz (Eds.), Software Proc-
ess Improvement. 12th European Conf., EuroSPI 2005, LNCS 3792, Springer, pp. 151-162

