Ultra-Low Voltage Nano-Scale Memories

#### SERIES ON INTEGRATED CIRCUITS AND SYSTEMS

Anantha Chandrakasan, Editor Massachusetts Institute of Technology Cambridge, Massachusetts, USA

#### Published books in the series:

Ultra-Low Voltage Nano-Scale Memories Kiyoo Itoh, Masashi Horiguchi, and Hitoshi Tanaka 2007, ISBN 978-0-387-33398-4

Routing Congestion in VLSI Circuits: Estimation and Optimization Prashant Saxena, Rupesh S. Shelar, and Sachin S. Sapatnekar 2007, ISBN 978-0-387-30037-5

Ultra-Low Power Wireless Technologies for Sensor Networks Brian Otis and Jan Rabaey 2007, ISBN 978-0-387-30930-9

Sub-threshold Design for Ultra Low-Power Systems Alice Wang, Benton H. Calhoun, and Anantha Chandrakasan 2006, ISBN 0-387-33515-3

High Performance Energy Efficient Microprocessor Design Vojin Oklibdzija and Ram Krishnamurthy (Eds.) 2006, ISBN 0-387-28594-6

Abstraction Refinement for Large Scale Model Checking Chao Wang, Gary D. Hachtel, and Fabio Somenzi 2006, ISBN 0-387-28594-6

> A Practical Introduction to PSL Cindy Eisner and Dana Fisman 2006, ISBN 0-387-35313-5

Thermal and Power Management of Integrated Circuits Arman Vassighi and Manoj Sachdev 2006, ISBN 0-398-25762-4

Leakage in Nanometer CMOS Technologies Siva G. Narendra and Anantha Chandrakasan 2005, ISBN 0-387-25737-3

Statistical Analysis and Optimization for VLSI: Timing and Power Ashish Srivastava, Dennis Sylvester and David Blaauw 2005, ISBN 0-387-26049-8

# **Ultra-Low Voltage Nano-Scale Memories**

Edited by

### KIYOO ITOH

Hitachi, Ltd. Tokyo, Japan

#### MASASHI HORIGUCHI

Renesas Technology Corp. Tokyo, Japan

and

### HITOSHI TANAKA

Hitachi ULSI Systems Co., Ltd. Tokyo, Japan



Kiyoo Itoh Hitachi, Ltd. Tokyo, Japan Masashi Horiguchi Renesas Technology Corp. Tokyo, Japan

Hitoshi Tanaka Hitachi ULSI Systems Co., Ltd. Tokyo, Japan

Ultra-Low Voltage Nano-Scale Memories Library of Congress Control Number: 2007920040 ISBN-13: 978-0-387-33398-4 e-ISBN-13: 978-0-387-68853-4

Printed on acid-free paper.

© 2007 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now know or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1

springer.com

## Preface

Ultra-low voltage nano-scale large-scale integrated circuits (LSIs) are becoming more important to ensure the reliability of miniaturized devices, to meet the needs of a rapidly growing mobile market, and to offset a significant increase in the power dissipation of high-end microprocessor units. Such LSIs cannot not be made without ultra-low voltage nano-scale memories because they need lowpower large-capacity memories. Many challenges arise, however, in the process of achieving such memories as their devices and voltages are scaled down below 100 nm and sub-1-V. A high signal-to-noise (S/N) ratio design is necessary in order to cope with both a small signal voltage from low-voltage memory cells and with large amounts of noise in a high-density memory-cell array. Moreover, innovative circuits and devices are needed to resolve the increasing problems of leakage currents when the threshold voltage ( $V_t$ ) of MOSFETs is reduced and serious variability in speed and leakage occur. Since the solutions to these problems lie across different fields, e.g., digital and analog, and even SRAM and DRAM, a multidisciplinary approach is needed.

Despite the importance of this field, there are few authoritative books on ultralow voltage nano-scale memories. This book has been systematically researched and is based on the authors' long careers in developing memories, and lowvoltage designs in the industry. Ultra-Low Voltage Nano-Scale Memories gives a detailed explanation of various circuits that the authors regard as important because the circuits covered range from basic to state-of-the-art designs. This book is intended for both students and engineers who are interested in ultra-low voltage nano-scale memory LSIs. Moreover, it is instructive not only for memory designers, but also for all digital and analog LSI designers who are at the leading edge of such LSI developments.

**Chapter 1** describes the basics of digital, analog, and memory circuits, and low-voltage related circuits. First, the basics of LSI devices, leakage currents, and CMOS digital and analog circuits including circuit models are discussed. Then the basics of memory LSIs, DRAMs, SRAMs, and flash memory are explained, followed by a discussion of memory related issues such as soft errors, redundancy, and error checking and correcting (ECC) circuits. Issues related to voltage, such as the scaling law, power-supply schemes, and trends in power-supply voltages are also described. Finally, various power-supply management issues for future memory and on-chip voltage converters are briefly discussed.

Chapter 2 describes ultra-low voltage nano-scale DRAM cells. First, the trends in DRAM-cells and 1-T-based DRAM-cells are discussed. After that, the

design of the folded-data-line 1-T cell is described five ways: in terms of the lowest necessary  $V_t$  and word voltage, the signal charge and the signal voltage, noise sources, the gate-over drive of the sense amp, and noise reductions. Open-data-line 1-T cells and state-of-the-art DRAM cells, such as the two-transistor (2-T) DRAM cell, the so-called 'twin cell', as well as a double-gate fully-depleted SOI 2-T cell, and gain cells are also explained.

**Chapter 3** describes ultra-low voltage nano-scale SRAM cells. An explanation of the recent trends in SRAM-cell developments, is followed by a discussion of the leakage currents, and the voltage margin of 6-T SRAM cells, as well as their improvements. Finally, the 6-T SRAM cell is compared with the 1-T cell in terms of its voltage margin and soft error immunity.

**Chapter 4** describes various circuit techniques that are used to reduce subthreshold leakage currents in RAM peripheral circuits. The basic principles of how to reduce leakage are described, with particular emphasis on the use of gate-source reverse biasing schemes. Various biasing schemes are discussed in detail, followed by applications to RAM cells and peripheral circuits in both standby and active modes.

**Chapter 5** deals with the issue of variability in the nanometer era. The main focus is leakage and speed variations that are caused by variations in  $V_t$ . Various solutions with redundancy and ECC, layout, controls of internal supply voltages, and new devices such as planar double-gate fully-depleted SOI are discussed.

**Chapter 6** describes the reference voltage generators that provide reference voltages for other converters. Various generators such as  $V_t$ -referenced,  $V_t$ -difference, band-gap generators, voltage trimming circuits, and burn-in test capability are described in detail.

**Chapter 7** describes voltage down-converters in terms of their basic design concept, transient characteristics and phase compensation as well as their power-supply rejection ratio. Half- $V_{DD}$  generators are also briefly discussed.

**Chapter 8** deals with the circuit configurations of various voltage-up converters and negative voltage generators. Basic voltage converters with capacitors, Dickson-type voltage multipliers, and switched-capacitor-type voltage multipliers are explained and compared. Level monitors are also discussed.

**Chapter 9** describes high-voltage tolerant circuit techniques that manage the voltage differences between peripheral circuits as well as between internal circuits and interface circuits of chips operating at a high external voltage.

We are indebted to many people, especially to our research colleagues at the Hitachi Central Research Laboratory, Tokyo who have collaborated with us, and one particular member of the administrative team, Ms. Anzai. They have offered support, advice, and the material needed to complete our work. Without their support this book would not have been possible.

Kiyoo Itoh Masashi Horiguchi Hitoshi Tanaka Tokyo, September 25, 2006

# Table of Contents

| Preface |       |                                                       | v  |  |
|---------|-------|-------------------------------------------------------|----|--|
| 1.      | An In | An Introduction to LSI Design                         |    |  |
|         | 1.1.  | Basics of LSL Devices                                 | 1  |  |
|         | 1.2.  | 1.2.1 MOST Characteristics                            | 1  |  |
|         |       | 1.2.1. MOST characteristics                           | 0  |  |
|         |       | 1 2 3 SOI MOSTS                                       | 11 |  |
|         |       | 1.2.4. Resistors                                      | 13 |  |
|         | 1.3.  | Leakage Currents                                      | 14 |  |
|         |       | 1.3.1. Subthreshold Current                           | 14 |  |
|         |       | 1.3.2. Gate-Tunneling Current                         | 16 |  |
|         |       | 1.3.3. Substrate Current                              | 17 |  |
|         |       | 1.3.4. pn-Junction Current                            | 18 |  |
|         | 1.4.  | Basics of CMOS Digital Circuits                       | 19 |  |
|         |       | 1.4.1. CMOS Inverter                                  | 20 |  |
|         |       | 1.4.2. NOR and NAND Gates                             | 21 |  |
|         |       | 1.4.3. Cross-Coupled CMOS Sense Amplifier             | 21 |  |
|         |       | 1.4.4. Level Shifter                                  | 23 |  |
|         |       | 1.4.5. Charge Pump                                    | 23 |  |
|         |       | 1.4.6. Ring Oscillator                                | 24 |  |
|         | 1.5.  | Basics of CMOS Analog Circuit                         | 24 |  |
|         |       | 1.5.1. Analog Circuits compared with Digital Circuits | 24 |  |
|         |       | 1.5.2. Equivalent Circuits                            | 26 |  |
|         |       | 1.5.3. Basic Analog Circuits                          | 29 |  |
|         | 1.6.  | Basics of Memory LSIs                                 | 32 |  |
|         |       | 1.6.1. Memory Chip Architectures                      | 34 |  |
|         | 17    | 1.6.2. Memory Cells                                   | 35 |  |
|         | 1.7.  | Basics of DRAMs                                       | 37 |  |
|         |       | 1.7.1. Read Operation                                 | 38 |  |
|         |       | 1.7.2. Write Operation                                | 40 |  |
|         | 10    | Paging of SDAMa                                       | 41 |  |
|         | 1.0.  | 181 Dead Operation                                    | 42 |  |
|         |       | 1.8.2 Write Operation                                 | 42 |  |
|         |       |                                                       | 44 |  |

| <ul> <li>1.9.1. The Basic Operation of Flash Memory Cells <ul> <li>1.9.2. The NOR Cell</li> <li>1.9.3. The NAND Cell</li> </ul> </li> <li>1.10. Soft Errors <ul> <li>1.11. Redundancy Techniques</li> <li>1.12. Error Checking and Correcting (ECC) Circuit</li> <li>1.13. Scaling Laws <ul> <li>1.13.1. Constant Electric-Field Scaling</li> <li>1.13.2. Constant Operation-Voltage Scaling</li> <li>1.13.3. Combined Scaling</li> </ul> </li> <li>1.14. Power Supply Schemes <ul> <li>1.15. Trends in Power Supply Voltages</li> <li>1.16. Power Management for Future Memories</li> <li>1.16.1. Static Control of Internal Supply Voltages</li> <li>1.16. Power Management for Future Memories</li> <li>1.16.1. Static Control of Internal Supply Voltages</li> <li>1.16.2. Dynamic Control of Internal Supply Voltages</li> </ul> </li> <li>1.17. Roles of On-Chip Voltage Converters</li> </ul> </li> <li> 2. Ultra-Low Voltage Nano-Scale DRAM Cells <ul> <li>2.1. Introduction</li> <li>2.2. Gain Cells</li> <li>2.3. The Data-Line Arrangement</li> <li>2.3.2. The Data-Line Arrangement</li> <li>2.3.2. The Data-Line Arrangement</li> <li>2.3.2. The Data-Line Precharging Scheme</li> </ul> </li> <li> 2.4. Design of the Folded-Data-Line I-T Cell <ul> <li>2.4.3. Signal Charge and Signal Voltage</li> <li>2.4.4. Noise Sources</li> <li>2.4.5. The Effective Signal Voltage <ul> <li>and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> </ul> </li> <li> 2.6. Design of the 2-T Cell <ul> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> </ul> </li> <li> 3. Ultra-Low Voltage Nano-Scale SRAM Cell </li> </ul></li></ul>                                                                                                                                                                                                                                                                                       |    | 1.9.   | Basics of Flash Memories                                | 45  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------|---------------------------------------------------------|-----|
| <ul> <li>1.9.2. The NOR Cell <ul> <li>1.9.3. The NAND Cell</li> </ul> </li> <li>1.10. Soft Errors <ul> <li>1.11. Redundancy Techniques</li> </ul> </li> <li>1.12. Error Checking and Correcting (ECC) Circuit</li> <li>1.13. Scaling Laws <ul> <li>1.13.1. Constant Electric-Field Scaling</li> <li>1.13.2. Constant Operation-Voltage Scaling</li> <li>1.13.3. Combined Scaling</li> </ul> </li> <li>1.14. Power Supply Schemes <ul> <li>1.15. Trends in Power Supply Voltages</li> <li>1.16.1. Static Control of Internal Supply Voltages</li> <li>1.16.2. Dynamic Control of Internal Supply Voltages</li> <li>1.16.2. Dynamic Control of Internal Supply Voltages</li> <li>1.16.2. Dynamic Control of Internal Supply Voltages</li> <li>1.17. Roles of On-Chip Voltage Converters</li> </ul> </li> <li>2. Ultra-Low Voltage Nano-Scale DRAM Cells</li> <li>2.1. The I-T Cell and Related Cells</li> <li>2.2.2. Gain Cells</li> <li>2.3. I-T-Based Cells</li> <li>2.3. I-T-Based Cells</li> <li>2.3. I-T-Based Cells</li> <li>2.3. I-T-Based Cells</li> <li>2.4.1. The Lowest Necessary V<sub>i</sub> and Word Line Voltage</li> <li>2.4.3. Signal Charge and Signal Voltage</li> <li>2.4.4. Noise Sources</li> <li>2.4.5. The Effective Signal Voltage <ul> <li>and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> </ul> </li> <li>2.6. Design of the 2-T Cell</li> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells</li> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ul>                                                                                                                                                                                                                                                                                                                 |    |        | 1.9.1. The Basic Operation of Flash Memory Cells        | 45  |
| 1.9.3. The NAND Cell1.10. Soft Errors1.11. Redundancy Techniques1.12. Error Checking and Correcting (ECC) Circuit1.13. Scaling Laws1.13.1. Constant Electric-Field Scaling1.13.2. Constant Operation-Voltage Scaling1.13.3. Combined Scaling1.14. Power Supply Schemes1.15. Trends in Power Supply Voltages1.16.1. Static Control of Internal Supply Voltages1.16.2. Dynamic Control of Internal Supply Voltages1.17. Roles of On-Chip Voltage Converters2. Ultra-Low Voltage Nano-Scale DRAM Cells2.1. Introduction2.2. Trends in DRAM-Cell Developments2.2.1. The 1-T Cell and Related Cells2.2.2. Gain Cells2.3.1. The Data-Line Arrangement2.3.2. The Data-Line Precharging Scheme2.4. Design of the Folded-Data-Line 1-T Cell2.4. Noise Sources2.4.5. The Effective Signal Voltage2.4.6. Noise Reduction2.4.7. The Minimum $V_{DD}$ 2.5. Design of the Open-Data-Line 1-T Cell2.6. Noise Reduction2.7.7. The Minimum $V_{DD}$ 2.5. Design of the Open-Data-Line 1-T Cell2.6. Noise Reduction2.7.7. The Minimum $V_{DD}$ 2.5. Design of the Open-Data-Line 1-T Cell2.6. Noise Reduction2.7.7. The Minimum $V_{DD}$ 2.6. Design of the 2-T Cell2.7.1. Noise-Generation Mechanism2.5.2. Concepts for Noise Reduction2.5.3. Data-Line Shielding Circuits2.6. Design of the 2-T Cell2.7. Design of Double-Gate Fully-Depleted SOI Cells3. Ultra-Low Voltage Nano-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |        | 1.9.2. The NOR Cell                                     | 50  |
| <ul> <li>1.10. Soft Errors</li> <li>1.11. Redundancy Techniques</li> <li>1.12. Error Checking and Correcting (ECC) Circuit</li> <li>1.13. Scaling Laws <ul> <li>1.13.1. Constant Electric-Field Scaling</li> <li>1.13.2. Constant Operation-Voltage Scaling</li> <li>1.13.3. Combined Scaling</li> </ul> </li> <li>1.14. Power Supply Schemes</li> <li>1.15. Trends in Power Supply Voltages</li> <li>1.16. Power Management for Future Memories <ul> <li>1.16.1. Static Control of Internal Supply Voltages</li> <li>1.16.2. Dynamic Control of Internal Supply Voltages</li> <li>1.16.3. Dynamic Control of Internal Supply Voltages</li> <li>1.16.4. Static Control of Internal Supply Voltages</li> <li>1.16.5. Dynamic Control of Internal Supply Voltages</li> <li>1.17. Roles of On-Chip Voltage Converters</li> </ul> </li> <li>2. Ultra-Low Voltage Nano-Scale DRAM Cells <ul> <li>2.1. The I-T Cell and Related Cells</li> <li>2.2.1. The I-T Cell and Related Cells</li> <li>2.2.2. Gain Cells</li> <li>2.3. 1-Ti-Based Cells</li> <li>2.4. The Data-Line Precharging Scheme</li> </ul> </li> <li>2.4. The Data-Line Precharging Scheme</li> <li>2.4. The Minimum V<sub>DD</sub></li> <li>2.4.3. Signal Charge and Signal Voltage <ul> <li>2.4.4. Noise Sources</li> <li>2.4.5. The Effective Signal Voltage <ul> <li>and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.4.7. The Minimum V<sub>DD</sub></li> </ul> </li> <li>2.5. Design of the Open-Data-Line 1-T Cell</li> <li>2.5.1. Noise-Generation Mechanism <ul> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> </ul> </li> <li>2.6. Design of the 2-T Cell</li> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> </ul> </li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells</li> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ul> |    |        | 1.9.3. The NAND Cell                                    | 53  |
| <ul> <li>1.11. Redundancy Techniques</li> <li>1.12. Error Checking and Correcting (ECC) Circuit</li> <li>1.13. Error Checking and Correcting (ECC) Circuit</li> <li>1.13. Constant Electric-Field Scaling</li> <li>1.13.1. Constant Operation-Voltage Scaling</li> <li>1.13.2. Constant Operation-Voltage Scaling</li> <li>1.13.3. Combined Scaling</li> <li>1.14. Power Supply Schemes</li> <li>1.15. Trends in Power Supply Voltages</li> <li>1.16. Power Management for Future Memories</li> <li>1.16.1. Static Control of Internal Supply Voltages</li> <li>1.16.2. Dynamic Control of Internal Supply Voltages</li> <li>1.16.2. Dynamic Control of Internal Supply Voltages</li> <li>1.17. Roles of On-Chip Voltage Converters</li> </ul> 2. Ultra-Low Voltage Nano-Scale DRAM Cells <ul> <li>2.1. Introduction</li> <li>2.2. Trends in DRAM-Cell Developments</li> <li>2.2.2. Gain Cells</li> <li>2.3.1. The Data-Line Arrangement</li> <li>2.3.2. The Data-Line Precharging Scheme</li> </ul> 2.4. Design of the Folded-Data-Line 1-T Cell <ul> <li>2.4.1. The Lowest Necessary V<sub>i</sub> and Word Line Voltage</li> <li>2.4.2. The Minimum V<sub>DD</sub></li> <li>2.4.3. Signal Charge and Signal Voltage</li> <li>2.4.4. Noise Sources</li> <li>2.4.5. The Effective Signal Voltage</li> <li>and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.4.7. The Minimum V<sub>DD</sub></li> </ul> 2.5. Design of the Open-Data-Line 1-T Cell <ul> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> <li>2.6. Design of the 2-T Cell</li> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> </ul> 3. Ultra-Low Voltage Nano-Scale SRAM Cell 3. Leakage Currents in the 6-T SRAM Cell                                                                                                                                                                                                                                                                                    |    | 1.10.  | Soft Errors                                             | 56  |
| <ul> <li>1.12. Error Checking and Correcting (ECC) Circuit</li> <li>1.13. Scaling Laws <ul> <li>1.13.1. Constant Electric-Field Scaling</li> <li>1.13.2. Constant Operation-Voltage Scaling</li> <li>1.13.2. Constant Operation-Voltage Scaling</li> <li>1.13.2. Constant Operation-Voltage Scaling</li> <li>1.14. Power Supply Schemes</li> </ul> </li> <li>1.15. Trends in Power Supply Voltages</li> <li>1.16. Power Management for Future Memories <ul> <li>1.16.1. Static Control of Internal Supply Voltages</li> <li>1.16.2. Dynamic Control of Internal Supply Voltages</li> <li>1.17. Roles of On-Chip Voltage Converters</li> </ul> </li> <li>2. Ultra-Low Voltage Nano-Scale DRAM Cells <ul> <li>2.1. Introduction</li> <li>2.2. Trends in DRAM-Cell Developments</li> <li>2.2.1. The 1-T Cell and Related Cells</li> <li>2.2.2. Gain Cells</li> <li>2.3.1. The Data-Line Arrangement</li> <li>2.3.2. The Data-Line Precharging Scheme</li> </ul> </li> <li>2.4. Design of the Folded-Data-Line 1-T Cell</li> <li>2.4.1. The Lowest Necessary V<sub>i</sub> and Word Line Voltage</li> <li>2.4.2. The Minimum V<sub>DD</sub></li> <li>2.4.3. Signal Charge and Signal Voltage <ul> <li>and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.4.7. The Minimum V<sub>DD</sub></li> </ul> </li> <li>2.5. Design of the Open-Data-Line 1-T Cell</li> <li>2.5.1. Noise-Generation Mechanism <ul> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> <li>2.6. Design of the 2-T Cell</li> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> </ul> </li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells <ul> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ul> </li> </ul>                                                                                                                                                                                                                                                            |    | 1.11.  | Redundancy Techniques                                   | 57  |
| <ul> <li>1.13. Scaling Laws <ul> <li>1.13. I. Constant Electric-Field Scaling</li> <li>1.13.2. Constant Operation-Voltage Scaling</li> <li>1.13.3. Combined Scaling</li> </ul> </li> <li>1.14. Power Supply Schemes <ul> <li>1.15. Trends in Power Supply Voltages</li> <li>1.16. Power Management for Future Memories</li> <li>1.16.1. Static Control of Internal Supply Voltages</li> <li>1.16.2. Dynamic Control of Internal Supply Voltages</li> <li>1.16.2. Dynamic Control of Internal Supply Voltages</li> </ul> </li> <li>1.16.2. Dynamic Control of Internal Supply Voltages</li> <li>1.17. Roles of On-Chip Voltage Converters</li> </ul> <li>2. Ultra-Low Voltage Nano-Scale DRAM Cells <ul> <li>2.1. Introduction</li> <li>2.2. Trends in DRAM-Cell Developments</li> <li>2.2.1. The 1-T Cell and Related Cells</li> <li>2.2.2. Gain Cells</li> <li>2.3. 1-T-Based Cells</li> <li>2.3. 1. The Data-Line Arrangement</li> <li>2.3.2. The Data-Line Precharging Scheme</li> </ul> </li> <li>2.4. Design of the Folded-Data-Line 1-T Cell</li> <li>2.4.1. The Lowest Necessary V<sub>t</sub> and Word Line Voltage</li> <li>2.4.2. The Minimum V<sub>DD</sub></li> <li>2.4.3. Signal Charge and Signal Voltage <ul> <li>2.4.4. Noise Sources</li> <li>2.4.5. The Effective Signal Voltage <ul> <li>and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.5. Design of the Open-Data-Line 1-T Cell</li> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> <li>2.6. Design of the 2-T Cell</li> <li>2.7. Design of the 2-T Cell</li> <li>2.7. Design of the 2-T Cell</li> </ul> </li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells</li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells</li> <li>3. Leakage Currents in the 6-T SRAM Cell</li> </ul></li>                                                                                                                                                                                                                           |    | 1.12.  | Error Checking and Correcting (ECC) Circuit             | 59  |
| <ul> <li>1.13.1. Constant Electric-Field Scaling <ul> <li>1.13.2. Constant Operation-Voltage Scaling</li> <li>1.13.3. Combined Scaling</li> </ul> </li> <li>1.14. Power Supply Schemes <ul> <li>1.15. Trends in Power Supply Voltages</li> <li>1.16. Power Management for Future Memories</li> <li>1.16.1. Static Control of Internal Supply Voltages</li> <li>1.16.2. Dynamic Control of Internal Supply Voltages</li> <li>1.16.2. Dynamic Control of Internal Supply Voltages</li> <li>1.17. Roles of On-Chip Voltage Converters</li> </ul> </li> <li>2. Ultra-Low Voltage Nano-Scale DRAM Cells <ul> <li>2.1. Introduction</li> <li>2.2. Trends in DRAM-Cell Developments</li> <li>2.2.2. Gain Cells</li> <li>2.3.1. The Data-Line Arrangement</li> <li>2.3.2. The Data-Line Precharging Scheme</li> </ul> </li> <li>2.4. Design of the Folded-Data-Line 1-T Cell</li> <li>2.4.3. Signal Charge and Signal Voltage</li> <li>2.4.4. Noise Sources</li> <li>2.4.5. The Effective Signal Voltage <ul> <li>and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.4.7. The Minimum V<sub>DD</sub></li> </ul> </li> <li>2.5. Design of the Open-Data-Line 1-T Cell</li> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> <li>2.6. Design of the 2-T Cell</li> <li>2.7. Design of Duble-Gate Fully-Depleted SOI Cells</li> </ul> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells <ul> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ul> </li>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 1.13.  | Scaling Laws                                            | 60  |
| <ul> <li>1.13.2. Constant Operation-Voltage Scaling <ol> <li>1.13.3. Combined Scaling</li> </ol> </li> <li>1.14. Power Supply Schemes</li> <li>1.15. Trends in Power Supply Voltages</li> <li>1.16. Power Management for Future Memories <ol> <li>1.16.1. Static Control of Internal Supply Voltages</li> <li>1.16.2. Dynamic Control of Internal Supply Voltages</li> <li>1.16.2. Dynamic Control of Internal Supply Voltages</li> <li>1.16.2. Dynamic Control of Internal Supply Voltages</li> <li>1.17. Roles of On-Chip Voltage Converters</li> </ol> </li> <li>2. Ultra-Low Voltage Nano-Scale DRAM Cells <ol> <li>1.17. Roles of On-Chip Voltage Converters</li> </ol> </li> <li>2. Ultra-Low Voltage Nano-Scale DRAM Cells <ol> <li>1.17. Roles of On-Chip Voltage Converters</li> </ol> </li> <li>2. Ultra-Low Voltage Nano-Scale DRAM Cells <ol> <li>1.17. Trends in DRAM-Cell Developments</li> <li>2.2.2. Gain Cells</li> <li>2.3. 1-T-Based Cells</li> <li>2.3. 1-T-Based Cells</li> <li>2.3. 1. The Data-Line Arrangement</li> <li>2.3.2. The Data-Line Precharging Scheme</li> </ol> </li> <li>2.4.1. The Lowest Necessary V<sub>i</sub> and Word Line Voltage</li> <li>2.4.2. The Minimum V<sub>DD</sub></li> <li>2.4.3. Signal Charge and Signal Voltage</li> <li>2.4.4. Noise Sources</li> <li>2.4.5. The Effective Signal Voltage <ol> <li>and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.4.7. The Minimum V<sub>DD</sub></li> </ol> </li> <li>2.5. Design of the Open-Data-Line 1-T Cell <ol> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> </ol> </li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells <ol> <li>Introduction</li> <li>Trends in SRAM-Cell Developments</li> <li>Leakage Currents in the 6-T SRAM Cell</li> </ol> </li> </ul>                                                                                                                                                                                                                  |    |        | 1.13.1. Constant Electric-Field Scaling                 | 60  |
| <ul> <li>1.13.3. Combined Scaling</li> <li>1.14. Power Supply Schemes</li> <li>1.15. Trends in Power Supply Voltages</li> <li>1.16. Power Management for Future Memories <ul> <li>1.16.1. Static Control of Internal Supply Voltages</li> <li>1.16.2. Dynamic Control of Internal Supply Voltages</li> <li>1.17. Roles of On-Chip Voltage Converters</li> </ul> </li> <li>2. Ultra-Low Voltage Nano-Scale DRAM Cells <ul> <li>2.1. Introduction</li> <li>2.2. Trends in DRAM-Cell Developments</li> <li>2.2.1. The 1-T Cell and Related Cells</li> <li>2.2.2. Gain Cells</li> </ul> </li> <li>2.3. 1-T-Based Cells <ul> <li>2.3.1. The Data-Line Arrangement</li> <li>2.3.2. The Data-Line Precharging Scheme</li> </ul> </li> <li>2.4.3. Signal Charge and Signal Voltage <ul> <li>2.4.4. Noise Sources</li> <li>2.4.5. The Effective Signal Voltage <ul> <li>and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.4.7. The Minimum V<sub>DD</sub></li> </ul> </li> <li>2.5. Design of the Open-Data-Line 1-T Cell <ul> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> </ul> </li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells <ul> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ul> </li> </ul></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |        | 1.13.2. Constant Operation-Voltage Scaling              | 62  |
| <ul> <li>1.14. Power Supply Schemes</li> <li>1.15. Trends in Power Supply Voltages</li> <li>1.16. Power Management for Future Memories <ul> <li>1.16.1. Static Control of Internal Supply Voltages</li> <li>1.16.2. Dynamic Control of Internal Supply Voltages</li> </ul> </li> <li>1.16.2. Dynamic Control of Internal Supply Voltages</li> <li>1.17. Roles of On-Chip Voltage Converters</li> </ul> <li>2. Ultra-Low Voltage Nano-Scale DRAM Cells <ul> <li>2.1. Introduction</li> <li>2.2. Trends in DRAM-Cell Developments</li> <li>2.2.1. The 1-T Cell and Related Cells</li> <li>2.2.2. Gain Cells</li> </ul> </li> <li>2.3. 1-T-Based Cells <ul> <li>2.3.1. The Data-Line Arrangement</li> <li>2.3.2. The Data-Line Precharging Scheme</li> </ul> </li> <li>2.4. Design of the Folded-Data-Line 1-T Cell <ul> <li>2.4.1. The Lowest Necessary V<sub>i</sub> and Word Line Voltage</li> <li>2.4.2. The Minimum V<sub>DD</sub></li> <li>2.4.3. Signal Charge and Signal Voltage</li> <li>2.4.4. Noise Sources</li> <li>2.4.5. The Effective Signal Voltage <ul> <li>and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> </ul> </li> <li>2.6. Design of the 2-T Cell</li> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> </ul> </li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells <ul> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ul> </li>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |        | 1.13.3. Combined Scaling                                | 63  |
| <ul> <li>1.15. Trends in Power Supply Voltages</li> <li>1.16. Power Management for Future Memories <ul> <li>1.16.1. Static Control of Internal Supply Voltages</li> <li>1.16.2. Dynamic Control of Internal Supply Voltages</li> </ul> </li> <li>1.16.2. Dynamic Control of Internal Supply Voltages</li> <li>1.17. Roles of On-Chip Voltage Converters</li> </ul> <li>2. Ultra-Low Voltage Nano-Scale DRAM Cells <ul> <li>2.1. Introduction</li> <li>2.2. Trends in DRAM-Cell Developments</li> <li>2.2.2. Gain Cells</li> </ul> </li> <li>2.3. 1-T-Based Cells <ul> <li>2.3.1. The Data-Line Arrangement</li> <li>2.3.2. The Data-Line Precharging Scheme</li> </ul> </li> <li>2.4. Design of the Folded-Data-Line 1-T Cell <ul> <li>2.4.1. The Lowest Necessary V<sub>i</sub> and Word Line Voltage</li> <li>2.4.2. The Minimum V<sub>DD</sub></li> <li>2.4.3. Signal Charge and Signal Voltage</li> <li>2.4.4. Noise Sources</li> <li>2.4.5. The Effective Signal Voltage <ul> <li>and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.4.7. The Minimum V<sub>DD</sub></li> </ul> </li> <li>2.5. Design of the Open-Data-Line 1-T Cell <ul> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> </ul> </li> <li>2.6. Design of the 2-T Cell <ul> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> </ul> </li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells <ul> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ul> </li> </ul></li>                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | 1.14.  | Power Supply Schemes                                    | 63  |
| <ul> <li>1.16. Power Management for Future Memories <ol> <li>1.16.1. Static Control of Internal Supply Voltages</li> <li>1.16.2. Dynamic Control of Internal Supply Voltages</li> </ol> </li> <li>1.17. Roles of On-Chip Voltage Converters</li> </ul> 2. Ultra-Low Voltage Nano-Scale DRAM Cells <ul> <li>2.1. Introduction</li> <li>2.2. Trends in DRAM-Cell Developments</li> <li>2.2.1. The 1-T Cell and Related Cells</li> <li>2.2.2. Gain Cells</li> <li>2.3.1. The Data-Line Arrangement</li> <li>2.3.2. The Data-Line Arrangement</li> <li>2.3.2. The Data-Line Precharging Scheme</li> </ul> 2.4. Design of the Folded-Data-Line 1-T Cell <ul> <li>2.4.1. The Lowest Necessary V<sub>t</sub> and Word Line Voltage</li> <li>2.4.3. Signal Charge and Signal Voltage</li> <li>2.4.4. Noise Sources</li> <li>2.4.5. The Effective Signal Voltage</li> <li>and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> <li>2.6. Design of the 2-T Cell</li> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> </ul> 3. Ultra-Low Voltage Nano-Scale SRAM Cells <ul> <li>3. Leakage Currents in the 6-T SRAM Cell</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | 1.15.  | Trends in Power Supply Voltages                         | 66  |
| <ol> <li>1.16.1. Static Control of Internal Supply Voltages         <ol> <li>1.16.2. Dynamic Control of Internal Supply Voltages</li> <li>1.17. Roles of On-Chip Voltage Converters</li> </ol> </li> <li>Ultra-Low Voltage Nano-Scale DRAM Cells         <ol> <li>Introduction</li> <li>Trends in DRAM-Cell Developments                 <ol> <li>Introduction</li> <li>Trends in DRAM-Cell Developments</li> <li>Trends in DRAM-Cell Developments</li> <li>Trends in DRAM-Cell Developments</li> <li>The 1-T Cell and Related Cells</li> <li>Can Cells</li> <li>Introduction</li> <li>The Data-Line Arrangement</li> <li>The Data-Line Precharging Scheme</li> <li>Design of the Folded-Data-Line 1-T Cell</li> <li>Introduction</li> <li>The Minimum V<sub>DD</sub></li> <li>Signal Charge and Signal Voltage</li></ol></li></ol></li></ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | 1.16.  | Power Management for Future Memories                    | 68  |
| <ol> <li>1.16.2. Dynamic Control of Internal Supply Voltages</li> <li>1.17. Roles of On-Chip Voltage Converters</li> <li>2. Ultra-Low Voltage Nano-Scale DRAM Cells</li> <li>2.1. Introduction</li> <li>2.2. Trends in DRAM-Cell Developments</li> <li>2.2.1. The 1-T Cell and Related Cells</li> <li>2.2.2. Gain Cells</li> <li>2.3. 1-T-Based Cells</li> <li>2.3.1. The Data-Line Arrangement</li> <li>2.3.2. The Data-Line Precharging Scheme</li> <li>2.4. Design of the Folded-Data-Line 1-T Cell</li> <li>2.4.1. The Lowest Necessary V<sub>i</sub> and Word Line Voltage</li> <li>2.4.2. The Minimum V<sub>DD</sub></li> <li>2.4.3. Signal Charge and Signal Voltage</li> <li>2.4.4. Noise Sources</li> <li>2.4.5. The Effective Signal Voltage</li> <li>and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.4.7. The Minimum V<sub>DD</sub></li> <li>2.5. Design of the Open-Data-Line 1-T Cell</li> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> <li>2.6. Design of the 2-T Cell</li> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells</li> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |        | 1.16.1. Static Control of Internal Supply Voltages      | 70  |
| <ol> <li>1.17. Roles of On-Chip Voltage Converters</li> <li>Ultra-Low Voltage Nano-Scale DRAM Cells         <ol> <li>Introduction</li> <li>Trends in DRAM-Cell Developments</li></ol></li></ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |        | 1.16.2. Dynamic Control of Internal Supply Voltages     | 72  |
| <ol> <li>Ultra-Low Voltage Nano-Scale DRAM Cells         <ol> <li>Introduction</li> <li>Trends in DRAM-Cell Developments                 <ol></ol></li></ol></li></ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | 1.17.  | Roles of On-Chip Voltage Converters                     | 73  |
| <ul> <li>2.1. Introduction</li> <li>2.2. Trends in DRAM-Cell Developments</li> <li>2.2.1. The 1-T Cell and Related Cells</li> <li>2.2.2. Gain Cells</li> <li>2.3. 1-T-Based Cells</li> <li>2.3.1. The Data-Line Arrangement</li> <li>2.3.2. The Data-Line Precharging Scheme</li> <li>2.4. Design of the Folded-Data-Line 1-T Cell</li> <li>2.4.1. The Lowest Necessary V<sub>i</sub> and Word Line Voltage</li> <li>2.4.2. The Minimum V<sub>DD</sub></li> <li>2.4.3. Signal Charge and Signal Voltage</li> <li>2.4.4. Noise Sources</li> <li>2.4.5. The Effective Signal Voltage</li> <li>and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.4.7. The Minimum V<sub>DD</sub></li> <li>2.5. Design of the Open-Data-Line 1-T Cell</li> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> <li>2.6. Design of the 2-T Cell</li> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells</li> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2. | Ultra- | Low Voltage Nano-Scale DRAM Cells                       | 79  |
| <ul> <li>2.2. Trends in DRAM-Cell Developments <ol> <li>2.2.1. The 1-T Cell and Related Cells</li> <li>2.2.2. Gain Cells</li> </ol> </li> <li>2.3.1. The Data-Line Arrangement <ol> <li>3.2. The Data-Line Precharging Scheme</li> </ol> </li> <li>2.4. Design of the Folded-Data-Line 1-T Cell <ol> <li>4.1. The Lowest Necessary V<sub>t</sub> and Word Line Voltage</li> <li>2.4.2. The Minimum V<sub>DD</sub></li> <li>2.4.3. Signal Charge and Signal Voltage</li> <li>2.4.4. Noise Sources</li> <li>2.4.5. The Effective Signal Voltage <ol> <li>and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.4.7. The Minimum V<sub>DD</sub></li> </ol> </li> <li>2.5. Design of the Open-Data-Line 1-T Cell <ol> <li>5.1. Noise-Generation Mechanism</li> <li>5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> </ol> </li> <li>2.6. Design of the 2-T Cell <ol> <li>7. Design of Double-Gate Fully-Depleted SOI Cells</li> </ol> </li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells <ol> <li>1. Introduction</li> <li>2. Trends in SRAM-Cell Developments</li> <li>3. Leakage Currents in the 6-T SRAM Cell</li> </ol> </li> </ol></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | 2.1.   | Introduction                                            | 79  |
| <ul> <li>2.2.1. The 1-T Cell and Related Cells</li> <li>2.2.2. Gain Cells</li> <li>2.3.1 1-T-Based Cells</li> <li>2.3.1. The Data-Line Arrangement</li> <li>2.3.2. The Data-Line Precharging Scheme</li> <li>2.4. Design of the Folded-Data-Line 1-T Cell</li> <li>2.4.1. The Lowest Necessary V<sub>t</sub> and Word Line Voltage</li> <li>2.4.2. The Minimum V<sub>DD</sub></li> <li>2.4.3. Signal Charge and Signal Voltage</li> <li>2.4.4. Noise Sources</li> <li>2.4.5. The Effective Signal Voltage</li> <li>and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.4.7. The Minimum V<sub>DD</sub></li> <li>2.5. Design of the Open-Data-Line 1-T Cell</li> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> <li>2.6. Design of the 2-T Cell</li> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells</li> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | 2.2.   | Trends in DRAM-Cell Developments                        | 80  |
| <ul> <li>2.2.2. Gain Cells</li> <li>2.3.1 1-T-Based Cells</li> <li>2.3.1. The Data-Line Arrangement</li> <li>2.3.2. The Data-Line Precharging Scheme</li> <li>2.4. Design of the Folded-Data-Line 1-T Cell</li> <li>2.4.1. The Lowest Necessary V<sub>t</sub> and Word Line Voltage</li> <li>2.4.2. The Minimum V<sub>DD</sub></li> <li>2.4.3. Signal Charge and Signal Voltage</li> <li>2.4.4. Noise Sources</li> <li>2.4.5. The Effective Signal Voltage</li> <li>and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.4.7. The Minimum V<sub>DD</sub></li> <li>2.5. Design of the Open-Data-Line 1-T Cell</li> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> <li>2.6. Design of the 2-T Cell</li> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells</li> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |        | 2.2.1. The 1-T Cell and Related Cells                   | 80  |
| <ul> <li>2.3. 1-T-Based Cells <ul> <li>2.3.1. The Data-Line Arrangement</li> <li>2.3.2. The Data-Line Precharging Scheme</li> </ul> </li> <li>2.4. Design of the Folded-Data-Line 1-T Cell <ul> <li>2.4.1. The Lowest Necessary V<sub>t</sub> and Word Line Voltage</li> <li>2.4.2. The Minimum V<sub>DD</sub></li> <li>2.4.3. Signal Charge and Signal Voltage</li> <li>2.4.4. Noise Sources</li> <li>2.4.5. The Effective Signal Voltage <ul> <li>and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.4.7. The Minimum V<sub>DD</sub></li> </ul> </li> <li>2.5. Design of the Open-Data-Line 1-T Cell <ul> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> </ul> </li> <li>2.6. Design of the 2-T Cell <ul> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> </ul> </li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells <ul> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ul> </li> </ul></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |        | 2.2.2. Gain Cells                                       | 82  |
| <ul> <li>2.3.1. The Data-Line Arrangement</li> <li>2.3.2. The Data-Line Precharging Scheme</li> <li>2.4. Design of the Folded-Data-Line 1-T Cell</li> <li>2.4.1. The Lowest Necessary V<sub>t</sub> and Word Line Voltage</li> <li>2.4.2. The Minimum V<sub>DD</sub></li> <li>2.4.3. Signal Charge and Signal Voltage</li> <li>2.4.4. Noise Sources</li> <li>2.4.5. The Effective Signal Voltage</li> <li>and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.4.7. The Minimum V<sub>DD</sub></li> <li>2.5. Design of the Open-Data-Line 1-T Cell</li> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> <li>2.6. Design of the 2-T Cell</li> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells</li> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | 2.3.   | 1-T-Based Cells                                         | 85  |
| <ul> <li>2.3.2. The Data-Line Precharging Scheme</li> <li>2.4. Design of the Folded-Data-Line 1-T Cell</li> <li>2.4.1. The Lowest Necessary V<sub>i</sub> and Word Line Voltage</li> <li>2.4.2. The Minimum V<sub>DD</sub></li> <li>2.4.3. Signal Charge and Signal Voltage</li> <li>2.4.4. Noise Sources</li> <li>2.4.5. The Effective Signal Voltage</li> <li>and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.4.7. The Minimum V<sub>DD</sub></li> <li>2.5. Design of the Open-Data-Line 1-T Cell</li> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> <li>2.6. Design of the 2-T Cell</li> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells</li> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |        | 2.3.1. The Data-Line Arrangement                        | 85  |
| <ul> <li>2.4. Design of the Folded-Data-Line 1-T Cell <ul> <li>2.4.1. The Lowest Necessary V<sub>t</sub> and Word Line Voltage</li> <li>2.4.2. The Minimum V<sub>DD</sub></li> <li>2.4.3. Signal Charge and Signal Voltage</li> <li>2.4.4. Noise Sources</li> <li>2.4.5. The Effective Signal Voltage <ul> <li>and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.4.7. The Minimum V<sub>DD</sub></li> </ul> </li> <li>2.5. Design of the Open-Data-Line 1-T Cell <ul> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> </ul> </li> <li>2.6. Design of the 2-T Cell <ul> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> </ul> </li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells <ul> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ul> </li> </ul></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |        | 2.3.2. The Data-Line Precharging Scheme                 | 87  |
| <ul> <li>2.4.1. The Lowest Necessary V<sub>t</sub> and Word Line Voltage</li> <li>2.4.2. The Minimum V<sub>DD</sub></li> <li>2.4.3. Signal Charge and Signal Voltage</li> <li>2.4.4. Noise Sources</li> <li>2.4.5. The Effective Signal Voltage and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.4.7. The Minimum V<sub>DD</sub></li> <li>2.5. Design of the Open-Data-Line 1-T Cell</li> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> <li>2.6. Design of the 2-T Cell</li> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells</li> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | 2.4.   | Design of the Folded-Data-Line 1-T Cell                 | 87  |
| <ul> <li>2.4.2. The Minimum V<sub>DD</sub></li> <li>2.4.3. Signal Charge and Signal Voltage</li> <li>2.4.4. Noise Sources</li> <li>2.4.5. The Effective Signal Voltage and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.4.7. The Minimum V<sub>DD</sub></li> <li>2.5. Design of the Open-Data-Line 1-T Cell</li> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> <li>2.6. Design of the 2-T Cell</li> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells</li> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |        | 2.4.1. The Lowest Necessary $V_t$ and Word Line Voltage | 87  |
| <ul> <li>2.4.3. Signal Charge and Signal Voltage</li> <li>2.4.4. Noise Sources</li> <li>2.4.5. The Effective Signal Voltage and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.4.7. The Minimum V<sub>DD</sub></li> <li>2.5. Design of the Open-Data-Line 1-T Cell</li> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> <li>2.6. Design of the 2-T Cell</li> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells</li> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |        | 2.4.2. The Minimum $V_{DD}$                             | 91  |
| <ul> <li>2.4.4. Noise Sources</li> <li>2.4.5. The Effective Signal Voltage<br/>and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.4.7. The Minimum V<sub>DD</sub></li> <li>2.5. Design of the Open-Data-Line 1-T Cell</li> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> <li>2.6. Design of the 2-T Cell</li> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells</li> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |        | 2.4.3. Signal Charge and Signal Voltage                 | 92  |
| <ul> <li>2.4.5. The Effective Signal Voltage<br/>and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.4.7. The Minimum V<sub>DD</sub></li> <li>2.5. Design of the Open-Data-Line 1-T Cell</li> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> <li>2.6. Design of the 2-T Cell</li> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells</li> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |        | 2.4.4. Noise Sources                                    | 93  |
| <ul> <li>and the Gate-Over-Drive of SAs</li> <li>2.4.6. Noise Reduction</li> <li>2.4.7. The Minimum V<sub>DD</sub></li> <li>2.5. Design of the Open-Data-Line 1-T Cell</li> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> <li>2.6. Design of the 2-T Cell</li> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells</li> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |        | 2.4.5. The Effective Signal Voltage                     |     |
| <ul> <li>2.4.6. Noise Reduction</li> <li>2.4.7. The Minimum V<sub>DD</sub></li> <li>2.5. Design of the Open-Data-Line 1-T Cell</li> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> <li>2.6. Design of the 2-T Cell</li> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells</li> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |        | and the Gate-Over-Drive of SAs                          | 98  |
| <ul> <li>2.4.7. The Minimum V<sub>DD</sub></li> <li>2.5. Design of the Open-Data-Line 1-T Cell</li> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> <li>2.6. Design of the 2-T Cell</li> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells</li> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |        | 2.4.6. Noise Reduction                                  | 101 |
| <ul> <li>2.5. Design of the Open-Data-Line 1-T Cell <ul> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> </ul> </li> <li>2.6. Design of the 2-T Cell <ul> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> </ul> </li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells <ul> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |        | 2.4.7. The Minimum $V_{DD}$                             | 104 |
| <ol> <li>2.5.1. Noise-Generation Mechanism</li> <li>2.5.2. Concepts for Noise Reduction</li> <li>2.5.3. Data-Line Shielding Circuits</li> <li>2.6. Design of the 2-T Cell</li> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells</li> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 2.5.   | Design of the Open-Data-Line 1-T Cell                   | 104 |
| <ol> <li>2.5.2. Concepts for Noise Reduction         <ol> <li>2.5.3. Data-Line Shielding Circuits</li> <li>2.6. Design of the 2-T Cell</li> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> </ol> </li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells         <ol> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ol> </li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |        | 2.5.1. Noise-Generation Mechanism                       | 105 |
| <ol> <li>2.5.3. Data-Line Shielding Circuits</li> <li>2.6. Design of the 2-T Cell</li> <li>2.7. Design of Double-Gate Fully-Depleted SOI Cells</li> <li>3. Ultra-Low Voltage Nano-Scale SRAM Cells</li> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |        | 2.5.2. Concepts for Noise Reduction                     | 107 |
| <ol> <li>Design of the 2-1 Cell</li> <li>Design of Double-Gate Fully-Depleted SOI Cells</li> <li>Ultra-Low Voltage Nano-Scale SRAM Cells</li> <li>Introduction</li> <li>Trends in SRAM-Cell Developments</li> <li>Leakage Currents in the 6-T SRAM Cell</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 0.6    | 2.5.3. Data-Line Shielding Circuits                     | 110 |
| <ol> <li>Design of Double-Gate Fully-Depleted SOI Cells</li> <li>Ultra-Low Voltage Nano-Scale SRAM Cells</li> <li>Introduction</li> <li>Trends in SRAM-Cell Developments</li> <li>Leakage Currents in the 6-T SRAM Cell</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 2.6.   | Design of the 2-1 Cell                                  | 110 |
| <ol> <li>Ultra-Low Voltage Nano-Scale SRAM Cells</li> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | 2.7.   | Design of Double-Gate Fully-Depleted SOI Cells          | 112 |
| <ul> <li>3.1. Introduction</li> <li>3.2. Trends in SRAM-Cell Developments</li> <li>3.3. Leakage Currents in the 6-T SRAM Cell</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3. | Ultra- | Low Voltage Nano-Scale SRAM Cells                       | 119 |
| <ul><li>3.2. Trends in SRAM-Cell Developments</li><li>3.3. Leakage Currents in the 6-T SRAM Cell</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | 3.1.   | Introduction                                            | 119 |
| 3.3. Leakage Currents in the 6-T SRAM Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | 3.2.   | Trends in SRAM-Cell Developments                        | 120 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | 3.3.   | Leakage Currents in the 6-T SRAM Cell                   | 122 |

|    | 3.4.   | The Voltage Margin of the 6-T SRAM Cell                     | 124 |
|----|--------|-------------------------------------------------------------|-----|
|    |        | 3.4.1. Read and Write Voltage Margin                        | 125 |
|    |        | 3.4.2. Signal Charge                                        | 126 |
|    | 3.5.   | Improvements of the Voltage Margin of the 6-T SRAM Cell     | 130 |
|    |        | 3.5.1. Lithographically Symmetric Cell Layout               | 130 |
|    |        | 3.5.2. Power-Supply Controlled Cells                        | 131 |
|    |        | 3.5.3. Fully-Depleted SOI Cells                             | 135 |
|    | 3.6.   | The 6-T SRAM Cell Compared with the 1-T DRAM Cell           | 139 |
|    |        | 3.6.1. Cell Operations                                      | 139 |
|    |        | 3.6.2. Flip-Flop Circuits                                   | 140 |
|    |        | 3.6.3. The Minimum $V_{DD}$ of RAMs                         | 143 |
|    |        | 3.6.4. Soft-Error Immunity                                  | 146 |
|    |        | 3.6.5. Memory Cell Size                                     | 147 |
| 4. | Leaka  | ge Reduction for Logic Circuits in RAMs                     | 151 |
|    | 4.1.   | Introduction                                                | 151 |
|    | 4.2.   | Basic Concepts for Leakage Reduction of MOSTs               | 152 |
|    | 4.3.   | Basics of Leakage Reduction Circuits                        | 154 |
|    |        | 4.3.1. Basic Concepts                                       | 154 |
|    |        | 4.3.2. Comparisons between Reduction Circuits               | 157 |
|    | 4.4.   | Gate-Source Reverse Biasing Schemes                         | 158 |
|    |        | 4.4.1. Gate-Source Self-Reverse Biasing                     | 159 |
|    |        | 4.4.2. Gate-Source Offset Driving                           | 163 |
|    | 4.5.   | Applications to RAMs                                        | 166 |
|    |        | 4.5.1. Leakage Sources in RAMs                              | 167 |
|    |        | 4.5.2. Features of Peripheral Circuits of RAMs              | 169 |
|    |        | 4.5.3. Applications to DRAM Peripheral Circuits             | 170 |
|    |        | 4.5.4. Applications to SRAM Peripheral Circuits             | 176 |
| 5. | Variat | bility Issue in the Nanometer Era                           | 183 |
|    | 5.1.   | Introduction                                                | 183 |
|    | 5.2.   | $V_t$ Variation in the Nanometer Era                        | 183 |
|    | 5.3.   | Leakage Variations                                          | 184 |
|    | 5.4.   | Speed Variations of Logic Circuits                          | 185 |
|    | 5.5.   | Variations in V <sub>t</sub> Mismatch of Flip-Flop Circuits | 186 |
|    | 5.6.   | Solutions for the Reductions                                | 189 |
|    |        | 5.6.1. Redundancy and ECC                                   | 189 |
|    |        | 5.6.2. Symmetric Layouts for Flip-Flop Circuits             | 190 |
|    |        | 5.6.3. Controls of Internal Supply Voltages                 | 190 |
|    |        | 5.6.4. Raised Power Supply Voltage                          | 192 |
|    |        | 5.6.5. Fully-Depleted SOI                                   | 193 |
|    | A5.1.  | Derivation of maximum $V_t$ mismatch                        | 193 |
| 6. | Refere | ence Voltage Generators                                     | 199 |
|    | 6.1.   | Introduction                                                | 199 |
|    | 6.2.   | The $V_t$ -Referenced $V_{REF}$ Generator                   | 200 |

#### x Table of Contents

|    | 6.3.   | The $V_t$ -Difference $(\Delta V_t) V_{REF}$ Generator   | 203 |
|----|--------|----------------------------------------------------------|-----|
|    |        | 6.3.1. Basic $\Delta V_t V_{REF}$ Generator              | 203 |
|    |        | 6.3.2. Application of $\Delta V_t V_{REE}$ Generator     | 206 |
|    | 6.4.   | The Bandgap $V_{RFF}$ Generator                          | 209 |
|    |        | 6.4.1. Principle                                         | 209 |
|    |        | 6.4.2. Circuit Design                                    | 211 |
|    |        | 6.4.3. Variation of Reference Voltage                    | 214 |
|    |        | 6.4.4. The Bandgap $V_{PFF}$ Generators for Low          |     |
|    |        | Supply Voltage                                           | 215 |
|    | 6.5.   | The Reference Voltage Converter/Trimming Circuit         | 218 |
|    |        | 6.5.1. Basic Design                                      | 218 |
|    |        | 6.5.2. Design for Burn-In Test                           | 219 |
|    | 6.6.   | Layout Design of $V_{REF}$ Generator                     | 224 |
| 7. | Voltag | e Down-Converters                                        | 231 |
|    | 7.1.   | Introduction                                             | 231 |
|    | 7.2.   | The Series Regulator                                     | 233 |
|    |        | 7.2.1. DC Characteristics                                | 234 |
|    |        | 7.2.2. Transient Characteristics                         | 239 |
|    |        | 7.2.3. AC Characteristics and Phase Compensation         | 243 |
|    |        | 7.2.4. PSRR                                              | 262 |
|    |        | 7.2.5. Low-Power Design                                  | 265 |
|    |        | 7.2.6. Applications                                      | 267 |
|    | 7.3.   | The Switching Regulator                                  | 269 |
|    | 7.4.   | The Switched-Capacitor Regulator                         | 272 |
|    | 7.5.   | The Half $-V_{DD}$ Generator                             | 277 |
|    | A7.1.  | Relationship between Phase Margin and Loop Gain          | 279 |
| 8. | Voltag | e Up-Converters and Negative Voltage Generators          | 285 |
|    | 8.1.   | Introduction                                             | 285 |
|    | 8.2.   | Basic Voltage Converters with Capacitor                  | 287 |
|    |        | 8.2.1. Voltage Doubler                                   | 287 |
|    |        | 8.2.2. Negative Voltage Generator                        | 292 |
|    |        | 8.2.3. Applications to Memories                          | 295 |
|    | 8.3.   | Dickson-Type Voltage Multiplier                          | 300 |
|    |        | 8.3.1. Voltage Up-Converter                              | 300 |
|    |        | 8.3.2. Negative Voltage Generator                        | 305 |
|    | 8.4.   | Switched-Capacitor (SC)-Type Voltage Multipliers         | 307 |
|    |        | 8.4.1. Voltage Up-Converter and Negative Voltage         |     |
|    |        | Generator                                                | 307 |
|    |        | 8.4.2. Fractional Voltage Up-Converters                  | 307 |
|    | 8.5.   | Comparisons between Dickson-Type and SC-Type Multipliers | 309 |
|    |        | 8.5.1. Influences of Parasitic Capacitances              | 309 |
|    |        | 8.5.2. Charge Recycling Multiplier                       | 311 |
|    | 8.6.   | Voltage Converters with an Inductor                      | 313 |
|    |        |                                                          |     |

|     | 8.7.  | Level Monitor                                        | 317 |
|-----|-------|------------------------------------------------------|-----|
|     |       | 8.7.1. Level Monitor for Voltage Up-Converter        | 317 |
|     |       | 8.7.2. Level Monitor for Negative Voltage Multiplier | 318 |
|     | A8.1. | Efficiency Analysis of Voltage Up-Converters         | 319 |
|     |       | A8.1.1. Dickson-Type Charge Pump Circuit             | 319 |
|     |       | A8.1.2. Switched-Capacitor-Type Charge Pump Circuit  | 322 |
| 9.  | High- | Voltage Tolerant Circuits                            | 327 |
|     | 9.1.  | Introduction                                         | 327 |
|     | 9.2.  | Needs for High-Voltage Tolerant Circuits             | 327 |
|     | 9.3.  | Concepts of High-Voltage Tolerant Circuits           | 328 |
|     | 9.4.  | Applications to Internal Circuits                    | 330 |
|     |       | 9.4.1. Level Shifter                                 | 330 |
|     |       | 9.4.2. Voltage Doubler                               | 332 |
|     | 9.5.  | Applications to I/O Circuits                         | 333 |
|     |       | 9.5.1. Output Buffers                                | 333 |
|     |       | 9.5.2. Input Buffers                                 | 336 |
| Ind | lex   |                                                      | 339 |