
Do-All Computing in
Distributed Systems

Cooperation in the
Presence of Adversity

Distributed Systems
Cooperation in the

Presence of Adversity

Chryssis Georgiou
University of Cyprus

Cyprus

and

Alexander A. Shvartsman
Massachusetts Institute of Technology (MIT)

USA

Do-All Computing in

by

Chryssis Georgiou
University of Cyprus
Dept. Computer Science
P.O.Box 20537
1678 Nicosia, CYPRUS
chryssis@ucy.ac.cy

Alexander A. Shvartsman
University of Connecticut
Computer Science and Engineering
371 Fairfield Way
Storrs, CT 06268, USA
aas@cse.uconn.edu

Library of Congress Control Number: 2007937388

by Chryssis Georgiou and Alexander A. Shvartsman

ISBN-13: 978-0-387-30918-7

e-ISBN-13: 978-0-387-69045-2

Printed on acid-free paper.

 2008 Springer Science+Business Media, LLC.

All rights reserved. This work may not be translated or copied in whole or

in part without the written permission of the publisher (Springer

Science+Business Media, LLC, 233 Spring Street, New York, NY 10013,

USA), except for brief excerpts in connection with reviews or scholarly

analysis. Use in connection with any form of information storage and

retrieval, electronic adaptation, computer software, or by similar or

dissimilar methodology now know or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and

similar terms, even if the are not identified as such, is not to be taken as an

expression of opinion as to whether or not they are subject to proprietary

rights.

9 8 7 6 5 4 3 2 1

springer.com

Do-All Computing in Distributed Systems: Cooperation in the Presence of Adversity

To my wife Agni, and son Yiorgo
CG

To Sana, my wife and best friend
AAS

Contents

Foreword by Michel Raynal . XV

Authors’ Preface .XIX

1 Introduction . 1
1.1 Do-All Computing . 2
1.2 Do-All and Adversity . 4
1.3 Solving Do-All: Fault-Tolerance with Efficiency 6
1.4 Chapter Notes . 8

2 Distributed Cooperation Problems:
Models and Definitions . 11
2.1 Model of Computation . 11

2.1.1 Distributed Setting . 11
2.1.2 Communication . 11

2.2 Models of Adversity . 12
2.2.1 Processor Failure Types . 12
2.2.2 Network Partitions . 13
2.2.3 Adversaries and their Behavior . 13

2.3 Tasks and Do-All Computing . 14
2.3.1 The Do-All Problem . 15
2.3.2 The Omni-Do Problem . 16

2.4 Measures of Efficiency . 17
2.5 Chapter Notes . 19

List of Figures . XI

List of Symbols .XIII

VIII Contents

3 Synchronous Do-All with Crashes: Using Perfect
Knowledge and Reliable Multicast . 21
3.1 Adversarial Model . 22
3.2 Lower and Upper Bounds for Abstract Models 22

3.2.1 Modeling Knowledge . 22
3.2.2 Lower Bounds . 23
3.2.3 Upper Bounds . 28

3.3 Solving Do-All Using Reliable Multicast . 33
3.3.1 Algorithm AN . 34
3.3.2 Correctness of algorithm AN . 38
3.3.3 Analysis of Algorithm AN . 40
3.3.4 Analysis of Message-Passing Iterative Do-All 44

3.4 Open Problems . 45
3.5 Chapter Notes . 45

4 Synchronous Do-All with Crashes and Point-to-Point
Messaging . 47
4.1 The Gossip Problem . 48
4.2 Combinatorial Tools . 49

4.2.1 Communication Graphs . 49
4.2.2 Sets of Permutations . 50

4.3 The Gossip Algorithm . 51
4.3.1 Description of Algorithm Gossipε 51
4.3.2 Correctness of Algorithm Gossipε 55
4.3.3 Analysis of Algorithm Gossipε . 59

4.4 The Do-All Algorithm . 61
4.4.1 Description of Algorithm Doallε 62
4.4.2 Correctness of Algorithm Doallε 64
4.4.3 Analysis of Algorithm Doallε . 67

4.5 Open Problems . 72
4.6 Chapter Notes . 73

5 Synchronous Do-All with Crashes and Restarts 77
5.1 Adversarial Model . 78
5.2 A Lower Bound on Work for Restartable Processors 79
5.3 Algorithm AR for Restartable Processors 82

5.3.1 Description of Algorithm AR . 82
5.3.2 Correctness of Algorithm AR . 86
5.3.3 Complexity Analysis of Algorithm AR 89

5.4 Open Problems . 92
5.5 Chapter Notes . 93

Contents IX

6 Synchronous Do-All with Byzantine Failures 95
6.1 Adversarial Model . 96
6.2 Task Execution without Verification . 96

6.2.1 Known Maximum Number of Failures 96
6.2.2 Unknown Maximum Number of Failures 98

6.3 Task Execution with Verification . 98
6.3.1 Known Maximum Number of Failures 99
6.3.2 Unknown Maximum Number of Failures 111

6.4 Open Problems . 112
6.5 Chapter Notes . 112

7 Asynchrony and Delay-Sensitive Bounds 115
7.1 Adversarial Model and Complexity . 116
7.2 Delay-Sensitive Lower Bounds on Work . 118

7.2.1 Deterministic Delay-Sensitive Lower Bound 119
7.2.2 Delay-sensitive Lower Bound for Randomized

Algorithms . 121
7.3 Contention of Permutations . 125

7.3.1 Contention and Oblivious Tasks Scheduling 127
7.3.2 Generalized Contention . 128

7.4 Deterministic Algorithms Family DA. 130
7.4.1 Construction and Correctness of Algorithm DA(q) 131
7.4.2 Complexity Analysis of Algorithm DA(q) 134

7.5 Permutation Algorithms Family PA . 137
7.5.1 Algorithm Specification . 137
7.5.2 Complexity Analysis . 139

7.6 Open Problems . 142
7.7 Chapter Notes . 143

8 Analysis of Omni-Do in Asynchronous Partitionable
Networks . 145
8.1 Models of Adversity . 146
8.2 A Group Communication Service and Notation 148
8.3 View-Graphs . 150
8.4 Algorithm AX . 154

8.4.1 Description of the Algorithm . 154
8.4.2 Correctness of the Algorithm . 155

8.5 Analysis of Algorithm AX . 158
8.5.1 Work Complexity . 158
8.5.2 Message Complexity . 162
8.5.3 Analysis Under Adversary AF . 165

8.6 Open Problems . 165
8.7 Chapter Notes . 166

X Contents

9 Competitive Analysis of Omni-Do in Partitionable
Networks . 169
9.1 Model of Adversity, Competitiveness and Definitions 170

9.1.1 Adversary AGR . 171
9.1.2 Measuring Competitiveness . 173
9.1.3 Formalizing Computation Width . 174

9.2 Algorithm RS and its Analysis . 175
9.2.1 Description of Algorithm RS . 175
9.2.2 Analysis of Algorithm RS . 175
9.2.3 Deterministic Algorithms . 178

9.3 Lower Bounds . 179
9.4 Open Problems . 181
9.5 Chapter Notes . 181

10 Cooperation in the Absence of Communication 183
10.1 Adversity, Schedules, Waste, and Designs 184
10.2 Redundancy without Communication: a Lower Bound 187
10.3 Random Schedules . 188
10.4 Derandomization via Finite Geometries . 190
10.5 Open Problems . 192
10.6 Chapter Notes . 192

11 Related Cooperation Problems and Models 195
11.1 Do-All in Shared-Memory . 195
11.2 Do-All with Broadcast Channels . 200
11.3 Consensus and its Connection to Do-All . 202

References . 205

Index . 213

List of Figures

3.1 Oracle-based algorithm. 28
3.2 A local view for phase `+ 2. 35
3.3 Phase ` of algorithm AN . 37
3.4 A phase of algorithm AN. 37

4.1 Algorithm Gossipε, stated for processor v; πv(i) denotes the
ith element of permutation πv. 52

4.2 Algorithm Doallε, stated for processor v; πv(i) denotes the
ith element of permutation πv. 63

4.3 Classification of a phase i of epoch `; execution ξ is implied. . . . 67

5.1 A local view for phase `+ 4. 83
5.2 Phase ` of algorithm AR (text in italics highlights differences

between algorithm AR and algorithm AN). 84
5.3 A phase of algorithm AR. 85

6.1 Algorithm Cover . The code is for processor q. 97
6.2 Algorithm for the case f ≥ p/2. The code is for processor q.

The call to the procedure is made with P = [p], T = [n], and
ψ = f . 101

6.3 Algorithm for the case f < p/2. The code is for processor q.
The call parameters are P = [p], T = [n], and ψ = f 105

6.4 Subroutine Do Work and Verify . Code for processor q 107
6.5 Subroutine Checkpoint . Code for processor q. 108

7.1 Illustration of the adversarial strategy leading to the
delay-sensitive lower bound on total-work for randomized
algorithms. 125

7.2 Algorithm ObliDo. 127
7.3 The deterministic algorithm DA (p ≥ n). 132

XII List of Figures

7.4 Permutation algorithm and its specializations for PaRan1,
PaRan2, and PaDet (p ≥ n). 138

8.1 Example of a view-graph . 151
8.2 Input/Output Automata specification of algorithm AX. 156

9.1 An example of a (12, n)-DAG. 172

List of Symbols

p number of processors . 2
n number of tasks . 2
pid or pid unique processor identifier . 3
log logarithm to the base 2 . 5
P set of processor ids numbered from 1 to p 11
A adversary or adversarial model 14
A an algorithm . 14
E(A,A) set of all executions of algorithm A for adversary A 14
ξ an execution in E(A,A) . 14
ξ|A adversarial pattern of ξ caused by A 14
‖ξ|A‖ the weight of adversarial pattern ξ|A 14
tid or tid unique task identifier . 15
T set of task ids numbered from 1 to n 15
Do-AllA(n, p, f) Do-All problem for n tasks, p processors and

adversary A constrained to adversarial patterns
of weight less or equal to f . 15

r-Do-AllA(n, p, f) iterative Do-All problem for r sets of n tasks,
p processors, and adversary A constrained to
adversarial patterns of weight less or equal to f . . 15

Omni-DoA(n, p, f)Omni-Do problem for n tasks, p processors and
adversary A constrained to adversarial patterns
of weight less or equal to f . 16

S or SA(n, p, f) total-work or available processor steps
complexity required for an algorithm to solve
a problem of size n using p processors under
adversary A restricted to adversarial patterns of
weight no more than f . 17

ESA(n, p, f) Expected total-work complexity 17
W or WA(n, p, f) task-oriented work complexity 17
EWA(n, p, f) Expected task-oriented work complexity 18
M or MA(n, p, f) message complexity . 18

XIV List of Symbols

EMA(n, p, f) Expected message complexity 19
AC adversary causing processor crashes 22
Do-AllOA(n, p, f) Do-AllA(n, p, f) problem where processors are

assisted by oracle O . 23
r-Do-AllOA(n, p, f) r-Do-AllA(n, p, f) problem where processors are

assisted by oracle O . 23
GossipA(p, f) Gossip problem for p processors and adversary

A constrained to adversarial patterns of weight
less or equal to f . 48

St symmetric group . 50
ACR adversary causing processor crashes and restarts . . 78

A(κ)
CR maximal subset of ACR that contains only

κ-restricted adversarial patterns 79
AB adversary causing Byzantine processor failures . . . 96
AD adversary causing arbitrary delays between local

processors steps and arbitrary message delays 116

A(d)
D adversary causing arbitrary delays between local

processors steps and message delays up to d time
units . 116

AF adversary causing group fragmentations 146
AFM adversary causing group fragmentations and

merges . 147
AGR adversary causing arbitrary regroupings 171
AR adversary causing rendezvous 185

A(r)
R adversary causing at most r-way rendezvous 185

Foreword

Distributed computing was born in the late 1970s when researchers and prac-
titioners started taking into account the intrinsic characteristics of physically
distributed systems. The field then emerged as a specialized research area dis-
tinct from networking, operating systems, and parallel computing. Distributed
computing arises when one has to solve a problem in terms of distributed enti-
ties, usually called processors, nodes, agents, sensors, peers, actors, processes,
etc., such that each entity has only a partial knowledge of the many parame-
ters involved in the problem that has to be solved. While parallel computing
and real-time computing can be characterized respectively by the terms effi-
ciency and on time computing, distributed computing can be characterized by
the term uncertainty. This uncertainty is created by asynchrony, failures, un-
stable behaviors, non-monotonicity, system dynamism, mobility, connectivity
instability, etc. Mastering one form or another of uncertainty is pervasive in
all distributed computing problems.

The unprecedented growth of the Internet as a massive distributed network
in the last decade created a platform for new distributed applications that in
turn poses new challenges for distributed computing research. One such class
of distributed applications is comprised of computing-intensive problems that
in the past were relegated to the realm of massively parallel systems. The In-
ternet, with its millions of interconnected computers, presents itself as a natu-
ral platform where the availability of massive distributed computing resources
is seen as a compelling alternative to expensive specialized parallel supercom-
puters. Large networks, used as distributed supercomputers, scale much better
than tightly-coupled parallel machines while providing much higher potential
for parallel processing. However, harnessing the computing power contained
within large networks is challenging because, unlike the applications developed
for the controlled computing environments of purposefully-designed parallel
systems, applications destined for distributed systems must exist in the envi-
ronment fraught with uncertainty and adversity.

XVI Foreword

The field of distributed computing research, as many other areas of infor-
matics, has traditionally encompassed both science and engineering dimen-
sions. Roughly speaking, these can be seen as complementary facets: science
is to understand and engineering is to build. With respect to distributed com-
puting, we are often concerned with a science of abstraction, namely, creating
the right model for a problem and devising the appropriate mechanizable
techniques to solve it. This is particularly true in fault-tolerant, dynamic,
large-scale distributed computing where finding models that are realistic while
remaining abstract enough to be tractable, was, is, and still remains a real
challenge.

The monograph by Chryssis Georgiou and Alex Shvartsman presents a
very comprehensive study of massive cooperative computing in distributed
settings in the presence of adversity. They focus on a problem that meaning-
fully abstracts a network supercomputing paradigm, specifically where dis-
tributed computing agents cooperate on performing a large number of inde-
pendent tasks. Such a computation paradigm forms a cornerstone for solutions
to several computation-intensive problems ranging from distributed search to
distributed simulation and multi-agent collaboration. For the purposes of this
study, the authors define Do-All as the problem of multiple processors in
a network cooperatively performing a collection of independent tasks in the
presence of adversity, such as processor failures, asynchrony, and breakdowns
in communication. Achieving efficiency in such cooperation is difficult due to
the dynamic characteristics of the distributed environments in which com-
puting agents operate, including network failures, and processor failures that
can range from the benign crash failures to the failures where faulty com-
ponents may behave arbitrarily and even maliciously. The Do-All problem
and its iterative version is used to identify the trade-offs between efficiency
and fault-tolerance in distributed cooperative computing, and as a target for
algorithm development. The ultimate goal is to develop algorithms that com-
bine efficiency with fault-tolerance to the maximum extent possible, and that
can serve as building blocks for network supercomputing applications and,
more generally, for applications requiring distributed cooperation in the face
of adversity.

During the last two decades, significant research was dedicated to study-
ing the Do-All problem in various models of computation, including message-
passing, partitionable networks, and shared-memory models under specific as-
sumptions about synchrony/asynchrony and failures. This monograph presents
in a coherent and rigorous manner the lower bound results and the most sig-
nificant algorithmic solutions developed for Do-All in the message-passing
model, including partitionable networks. The topics chosen for presentation
include several relevant models of adversity commonly encountered in dis-
tributed computing and a variety of algorithmics illustrating important and
effective techniques for solving the problem of distributed cooperation. The
monograph also includes detailed complexity analysis of algorithms, assessing
their efficiency in terms of work, communication, and time.

Foreword XVII

As the aim of a theory is to codify knowledge in order for it to be trans-
mitted (to researchers, students, engineers, practitioners, etc), the research
results presented in this monograph are among the fundamental bases in dis-
tributed computing theory. When effective distributed cooperation is possible,
we learn why and how it works, and where there exist inherent limitations in
distributed cooperation, we learn what they are and why they exist.

Rennes, France Michel Raynal
September 2007

Authors’ Preface

With the advent of ubiquitous high bandwidth Internet connections, network
supercomputing is increasingly becoming a popular means for harnessing the
computing power of an enormous number of processes around the world. In-
ternet supercomputing comes at a cost substantially lower than acquiring a
supercomputer or building a cluster of powerful machines. Several Internet su-
percomputers are in existence today, for instance, Internet PrimeNet Server,
a project comprised of about 30,000 servers, PCs, and laptop computers, sup-
ported by Entropia.com, Inc., is a distributed, massively parallel mathematics
research Internet supercomputer. PrimeNet Server has sustained throughput
of over 1 teraflop. Another popular Internet supercomputer, the SETI@home
project, also reported its speed to be in teraflops.

In such distributed supercomputing settings it is often the case that a very
large number of independent tasks must be performed by an equally large
number of computers. Given the massive numbers of participating comput-
ers, it is invariably the case that non-trivial subsets of these machines may be
faulty, disconnected, experiencing delays, or simply off-line at any given point
in time. At such scales of distributed computing, failures are no longer an ex-
ception, but the norm. For example, a visitor to the network control center at
Akamai Technologies, a global Internet content and application delivery com-
pany, will immediately notice that the floor-to-ceiling monitor-paneled walls
of the main control room display a surprisingly large number of server icons
in red, indicating server failures. Yet the services delivered by the company’s
25,000 servers worldwide continue unaffected, and there is little alarm among
the engineers monitoring the displays. Dealing with failures is routine busi-
ness, provided the massively distributed system has built-in redundancy and
is able to combine efficiency with fault-tolerance.

In another example, Internet supercomputing, such as SETI@home, in-
volves large sets of independent tasks performed by distributed worker com-
puters. One of the major concerns involved in such computing environments is
the reliability of the results returned by the workers. While most participating
computers may be reliable, a large number of the workers have been known

XX Authors’ Preface

to return incorrect results for various reasons. Workers may return incorrect
results due to unintended failures caused, for example, by over-clocked pro-
cessors, or they may claim to have performed assigned work so as to obtain
incentives, such as getting higher rank on the SETI@home list of contributed
units of work. This problem already exists in the setting where the task allo-
cation is centralized, and assumed to be reliable. The problem becomes sub-
stantially more difficult when the task allocation also has to be implemented
in a highly-distributed fashion to provide the much needed parallelism for
computation speed-up and redundancy for fault tolerance. In such settings it
is extremely important to develop distributed algorithms that can be used to
ensure dependable and efficient execution of the very large numbers of tasks.

In this monograph we abstract the problem of distributed cooperation in
terms of the Do-All problem, defined as the problem of p processors in the
network, cooperatively performing n independent tasks, in the presence of ad-
versity. In solving this problem, we pursue the goal of combining the reliability
potential that comes with replicated processors in distributed computation,
with the speed-up potential of performing the large number of tasks in paral-
lel. The difficulty associated with combining fault-tolerance with efficiency is
that the two have conflicting means: fault-tolerance is achieved by introducing
redundancy, while efficiency is achieved by removing redundancy. We present
several significant advances in algorithms designed to solve the Do-All prob-
lem in distributed message-passing settings under various models of adversity,
such as processor crashes, asynchrony, message delays, network partitions, and
malicious processor behaviors. The efficiency of algorithms for Do-All is most
commonly assessed in terms of work and communication complexity, depend-
ing on the specific model of computation. Work is defined either as the total
number of computational steps taken by all available processors during the
computation or as the total number of task-oriented computational steps taken
by the processors. A computational step taken by a processor is said to be
task-oriented, if during that step the processor performs a Do-All task. We
refer to the first variation of work as total-work and the second variation of
work as task-oriented work. We develop corresponding complexity analyses
that show to what extent efficiency can be combined with fault-tolerance. We
also present lower bounds that capture theoretical limitations on the possibil-
ity of combining fault-tolerance and efficiency. In this work we ultimately aim
to provide robust, i.e., efficient and fault-tolerant, algorithms that will help
bridge the gap between abstract models of dependable network computing
and realistic distributed systems.

Monograph Roadmap

In Chapter 1 we provide motivation, introduce the distributed cooperation
problem Do-All and discuss several variants of the problem in different models
of computation.

Authors’ Preface XXI

In Chapter 2 we formal the basic message-passing model of computation
used in this monograph, and present several models of adversarial settings
studied in subsequent chapters. We define the nature of the tasks – the input
to the distributed cooperation problem. We define the Do-All problem, and its
counterpart for partitionable networks, the Omni-Do problem. We conclude
the chapter with the definitions of main complexity measures used in the
sequel: total-work, task-oriented work, and message complexity.

In Chapter 3 we study the Do-All problem for distributed settings with
processor crashes. We provide upper and lower bounds on work for solving
Do-All under the assumption of perfect knowledge, e.g., when an algorithm is
aided by an omniscient oracle. We put these result to use by developing an ef-
ficient and fault-tolerant algorithm for Do-All where processors communicate
by means of reliable broadcasts.

In Chapter 4 we develop a solution for the Do-All problem for the setting
with processor crashes, where processors communicate using point-to-point
messaging. This algorithm uses a gossip algorithm as a building block, also
presented in the chapter.

In Chapter 5 we give lower bounds on work for Do-All in the model where
processors are subject to crashes and restarts, and we develop and analyze an
algorithm for this model of adversity.

In Chapter 6 we study the complexity of Do-All in the adversarial model
where processors are subject to Byzantine failures, that is, where faulty pro-
cessors may behave arbitrarily and even maliciously. We provide several algo-
rithms and lower bound results under this model of adversity.

In Chapter 7 we study the upper and lower bounds of solving Do-All in
the setting where an adversary introduces processor asynchrony and message
delays. We present several algorithm for this model and provide their delay-
sensitive analysis.

In Chapter 8 we switch our attention to partitionable networks and the
Omni-Do problem. We give an efficient algorithm that solves Omni-Do in the
presence of network fragmentation and merges.

In Chapter 9 we study the Omni-Do problem in the model where the
network can undergo arbitrary reconfigurations. We assess upper and lower
bounds for the problem using competitive analysis.

In Chapter 10 we study Do-All in the setting where the adversary initially
starts processors in isolated singleton groups, and then allows the processor to
rendezvous. We analyze redundant work performed by the isolated processors
prior to rendezvous, and we present several scheduling strategies designed to
minimize redundant task executions.

Finally, in Chapter 11 we survey related problems and models, including
the problem of distributed cooperation in shared-memory models, algorithms
for the model where processors communicate through broadcast channels, and
we show a connection between Do-All and the distributed consensus problem.

The chapters of this monograph can of course be read in the sequential
order from Chapter 1 to Chapter 11. In the diagram that follows we show

XXII Authors’ Preface

alternative suggested paths through the monograph. Chapters 1 and 2 should
be read in sequence before other chapters. It is also recommended that Chap-
ters 8, 9, and 10 are read in sequence. The only remaining dependency is that
Chapter 3 is read before Chapter 5.

Chapter 1

Chapter 2

Chapter 3

Chapter 5

Chapter 4 Chapter 6

Chapter 7 Chapter 8

Chapter 9

Chapter 10Chapter 11

In presenting our message-passing algorithms, we aim to illustrate the most
interesting algorithmic techniques and paradigms, using a clear high-level level
pseudocode that is best suited to represent the nature of each algorithm.

Each chapter concludes with an overview of open problems relevant to the
topics presented in the chapter, and a section containing chapter notes, includ-
ing detailed bibliographic notes, and selected comparisons with and overviews
of related work.

Bibliographic Notes

At the end of each chapter we provide Chapter Notes that contain biblio-
graphic notes and overview related topics and results. The complete bibliog-
raphy follows the last chapter. Here we give additional pointers to conference
proceedings, archival journals, and books covering the various areas related
to distributed computing and fault-tolerant algorithms. Most results in this
monograph appeared as articles in journals or conference proceedings (see bib-
liography), additionally the main results in Chapters 3, 4, 6, 8, and 9 appear
in the PhD dissertation of the first author [43].

Authors’ Preface XXIII

Work on fault-tolerant distributed computation related to the content of
this monograph appear in the proceedings of conferences, in journals, and
in books. A reader interested in learning more about this ongoing research
as well as research beyond the scope of this volume will be well served by
consulting recent publication on such topics from the venues we list below.

The following conferences are examples of the most relevant fora for results
related to topics in this monograph: ACM symposium on Principles of Dis-
tributed Computing (PODC), ACM symposium on Parallel Algorithms and
Architectures (SPAA), ACM symposium on Theory of Computing (STOC),
ACM-SIAM symposium on Discrete Algorithms (SODA), IEEE symposium
on Foundations of Computer Science (FOCS), IEEE sponsored conference
on Distributed Computing Systems (ICDCS), EATCS sponsored symposium
on Distributed Computing (DISC), the conference on the Principles on Dis-
tributed Systems (OPODIS) and the colloquium on Structural Information
and Communication Complexity (SIROCCO). The most relevant journals in-
clude: Springer Distributed Computing, SIAM Journal on Computing, The-
oretical Computer Science, Information and Computation, Information Pro-
cessing Letters, Parallel Processing Letters, Journal of the ACM, Journal of
Algorithms, Journal of Discrete Algorithms, and Journal of Parallel and Dis-
tributed Computing.

The 1997 book by Kanellakis and Shvartsman [67] presents research results
for fault-tolerant cooperative computing in the parallel model of computation.
In particular, it studies the Do-All problem in the shared-memory model,
where it is referred to as the Write-All problem. The current monograph
deals with the message-passing models of computation and considers broader
adversarial settings inherent to these distributed models. The two monographs
follow similar presentation philosophies and it is reasonable to consider them
as complementary volumes. The current volume includes in Chapter 11 several
recent results on the Write-All problem that appeared since the publication
of the first monograph [67].

The book by Lynch [79] provides a wealth of information on distributed
computing issues, such as computational models, algorithms, fault-tolerance,
lower bounds and impossibility results. This include the consensus problem,
which is related to Do-All, and we discuss this relation in Chapter 11. Addi-
tionally, information on the Input/Output Automata used in our Chapter 8
can be found there. The book by Attiya and Welch [6] is another excellent
source of information on distributed computing issues, including cooperation.
The book of Guerraoui and Rodrigues [52] presents numerous important ab-
stractions for reliable distributed computing and includes detailed examples
of how these abstractions can be implemented and used in practice.

XXIV Authors’ Preface

Acknowledgements

Our research on robust distributed cooperation continues to be inspired by
the earlier work on fault-tolerant parallel computing of the late Paris Christos
Kanellakis (1953-1995). Paris is survived by his parents, General Eleftherios
and Roula Kanellakis, who have enthusiastically encouraged us to continue
his work through the long years following the tragic death of Paris, his wife
Maria-Teresa, and their children Alexandra and Stephanos. We warmly thank
General and Mrs. Kanellakis for their inspiration and support.

The material presented in this monograph includes results obtained by
the authors in collaboration with Bogdan Chlebus, Roberto De Prisco, An-
tonio Fernandez, Dariusz Kowalski, Greg Malewicz and Alexander Russell.
We thank them for the wonderful and fruitful collaborations—without their
contributions this monograph would not exist.

Our work on robust distributed cooperation also benefited from prior col-
laboration with several colleagues, and we gratefully acknowledge the contri-
butions of Jonathan Buss, Shlomi Dolev, Leszek Gasieniec, Dimitrios Michai-
lidis, Prabhakar Ragde, and Roberto Segala.

Special thanks are due to Nancy Lynch for reviewing an earlier version of
this work. Her insight and valuable feedback are greatly appreciated.

In undertaking the research that ultimately resulted in this monograph,
we were motivated by the work of other researchers who have also contributed
to the field of fault-tolerant cooperative computing. We will be remiss without
mentioning the names of Richard Anderson, Richard Cole, Cynthia Dwork,
Zvi Galil, Phillip Gibbons, Joe Halpern, Maurice Herlihy, Zvi Kedem, Andrzej
Lingas, Chip Martel, Keith Marzullo, Alan Mayer, Naomi Nishimura, Krishna
Palem, Arvin Park, Michael Rabin, Arvind Raghunathan, Nir Shavit, Paul
Spirakis, Ramesh Subramonian, Orli Waarts, Heather Woll, Moti Yung, Ofer
Zajicek, and Asaph Zemach.

This work was in part supported by the National Science Foundation
(NSF) Grants 9984778, 9988304, 0121277, 0311368, and by the NSF-NATO
Award 0209588. The work of the first author has also been partially supported
by research funds from the University of Cyprus.

We thank our Springer editor, Susan Lagerstrom-Fife, for her encourage-
ment and support, and Sharon Palleschi, editorial assistant at Springer, for
her valuable assistance during the preparation of this monograph.

Our warmest thanks go to Michel Raynal for writing the foreword of this
monograph; thank you for this honor, Michel.

Finally, we would like to thank our families.
CG: I thank my wife, Agni, for the emotional support she has given me and
the patience she has shown during the endless nights I spent working on this
monograph, while she took care of our angel, 21 months old son Yiorgo. You
both bring joy and meaning to my life and you are my source of strength and
inspiration. Agni, you are the love of my life. Yiorgo, you are my life.

Authors’ Preface XXV

AAS: My wife Sana gave me more affection, care, and happiness, than I could
have dreamed of. She spent many lonely nights being an epitome of patience,
while sustaining herself only by my assurances that I’ll belong to her yet again.
Thank you, my love. I thank my children, Ginger and Ted, for being there for
me when I needed you most. This time around you are grown-ups and I am
proud of you. I thank my step-son Arnold for his encouragement and interest.
I never thought that daily questions from a freshman “Are you done with the
book yet?” would do so much to energize the work of this professor. I am glad
to report: “We are done.”

Nicosia, Cyprus and Storrs, CT, USA Chryssis Georgiou
September 2007 Alexander A. Shvartsman

