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Foreword

Distributed computing was born in the late 1970s when researchers and prac-
titioners started taking into account the intrinsic characteristics of physically
distributed systems. The field then emerged as a specialized research area dis-
tinct from networking, operating systems, and parallel computing. Distributed
computing arises when one has to solve a problem in terms of distributed enti-
ties, usually called processors, nodes, agents, sensors, peers, actors, processes,
etc., such that each entity has only a partial knowledge of the many parame-
ters involved in the problem that has to be solved. While parallel computing
and real-time computing can be characterized respectively by the terms effi-
ciency and on time computing, distributed computing can be characterized by
the term uncertainty. This uncertainty is created by asynchrony, failures, un-
stable behaviors, non-monotonicity, system dynamism, mobility, connectivity
instability, etc. Mastering one form or another of uncertainty is pervasive in
all distributed computing problems.

The unprecedented growth of the Internet as a massive distributed network
in the last decade created a platform for new distributed applications that in
turn poses new challenges for distributed computing research. One such class
of distributed applications is comprised of computing-intensive problems that
in the past were relegated to the realm of massively parallel systems. The In-
ternet, with its millions of interconnected computers, presents itself as a natu-
ral platform where the availability of massive distributed computing resources
is seen as a compelling alternative to expensive specialized parallel supercom-
puters. Large networks, used as distributed supercomputers, scale much better
than tightly-coupled parallel machines while providing much higher potential
for parallel processing. However, harnessing the computing power contained
within large networks is challenging because, unlike the applications developed
for the controlled computing environments of purposefully-designed parallel
systems, applications destined for distributed systems must exist in the envi-
ronment fraught with uncertainty and adversity.
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The field of distributed computing research, as many other areas of infor-
matics, has traditionally encompassed both science and engineering dimen-
sions. Roughly speaking, these can be seen as complementary facets: science
is to understand and engineering is to build. With respect to distributed com-
puting, we are often concerned with a science of abstraction, namely, creating
the right model for a problem and devising the appropriate mechanizable
techniques to solve it. This is particularly true in fault-tolerant, dynamic,
large-scale distributed computing where finding models that are realistic while
remaining abstract enough to be tractable, was, is, and still remains a real
challenge.

The monograph by Chryssis Georgiou and Alex Shvartsman presents a
very comprehensive study of massive cooperative computing in distributed
settings in the presence of adversity. They focus on a problem that meaning-
fully abstracts a network supercomputing paradigm, specifically where dis-
tributed computing agents cooperate on performing a large number of inde-
pendent tasks. Such a computation paradigm forms a cornerstone for solutions
to several computation-intensive problems ranging from distributed search to
distributed simulation and multi-agent collaboration. For the purposes of this
study, the authors define Do-All as the problem of multiple processors in
a network cooperatively performing a collection of independent tasks in the
presence of adversity, such as processor failures, asynchrony, and breakdowns
in communication. Achieving efficiency in such cooperation is difficult due to
the dynamic characteristics of the distributed environments in which com-
puting agents operate, including network failures, and processor failures that
can range from the benign crash failures to the failures where faulty com-
ponents may behave arbitrarily and even maliciously. The Do-All problem
and its iterative version is used to identify the trade-offs between efficiency
and fault-tolerance in distributed cooperative computing, and as a target for
algorithm development. The ultimate goal is to develop algorithms that com-
bine efficiency with fault-tolerance to the maximum extent possible, and that
can serve as building blocks for network supercomputing applications and,
more generally, for applications requiring distributed cooperation in the face
of adversity.

During the last two decades, significant research was dedicated to study-
ing the Do-All problem in various models of computation, including message-
passing, partitionable networks, and shared-memory models under specific as-
sumptions about synchrony/asynchrony and failures. This monograph presents
in a coherent and rigorous manner the lower bound results and the most sig-
nificant algorithmic solutions developed for Do-All in the message-passing
model, including partitionable networks. The topics chosen for presentation
include several relevant models of adversity commonly encountered in dis-
tributed computing and a variety of algorithmics illustrating important and
effective techniques for solving the problem of distributed cooperation. The
monograph also includes detailed complexity analysis of algorithms, assessing
their efficiency in terms of work, communication, and time.
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As the aim of a theory is to codify knowledge in order for it to be trans-
mitted (to researchers, students, engineers, practitioners, etc), the research
results presented in this monograph are among the fundamental bases in dis-
tributed computing theory. When effective distributed cooperation is possible,
we learn why and how it works, and where there exist inherent limitations in
distributed cooperation, we learn what they are and why they exist.

Rennes, France Michel Raynal
September 2007
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With the advent of ubiquitous high bandwidth Internet connections, network
supercomputing is increasingly becoming a popular means for harnessing the
computing power of an enormous number of processes around the world. In-
ternet supercomputing comes at a cost substantially lower than acquiring a
supercomputer or building a cluster of powerful machines. Several Internet su-
percomputers are in existence today, for instance, Internet PrimeNet Server,
a project comprised of about 30,000 servers, PCs, and laptop computers, sup-
ported by Entropia.com, Inc., is a distributed, massively parallel mathematics
research Internet supercomputer. PrimeNet Server has sustained throughput
of over 1 teraflop. Another popular Internet supercomputer, the SETI@home
project, also reported its speed to be in teraflops.

In such distributed supercomputing settings it is often the case that a very
large number of independent tasks must be performed by an equally large
number of computers. Given the massive numbers of participating comput-
ers, it is invariably the case that non-trivial subsets of these machines may be
faulty, disconnected, experiencing delays, or simply off-line at any given point
in time. At such scales of distributed computing, failures are no longer an ex-
ception, but the norm. For example, a visitor to the network control center at
Akamai Technologies, a global Internet content and application delivery com-
pany, will immediately notice that the floor-to-ceiling monitor-paneled walls
of the main control room display a surprisingly large number of server icons
in red, indicating server failures. Yet the services delivered by the company’s
25,000 servers worldwide continue unaffected, and there is little alarm among
the engineers monitoring the displays. Dealing with failures is routine busi-
ness, provided the massively distributed system has built-in redundancy and
is able to combine efficiency with fault-tolerance.

In another example, Internet supercomputing, such as SETI@home, in-
volves large sets of independent tasks performed by distributed worker com-
puters. One of the major concerns involved in such computing environments is
the reliability of the results returned by the workers. While most participating
computers may be reliable, a large number of the workers have been known
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to return incorrect results for various reasons. Workers may return incorrect
results due to unintended failures caused, for example, by over-clocked pro-
cessors, or they may claim to have performed assigned work so as to obtain
incentives, such as getting higher rank on the SETI@home list of contributed
units of work. This problem already exists in the setting where the task allo-
cation is centralized, and assumed to be reliable. The problem becomes sub-
stantially more difficult when the task allocation also has to be implemented
in a highly-distributed fashion to provide the much needed parallelism for
computation speed-up and redundancy for fault tolerance. In such settings it
is extremely important to develop distributed algorithms that can be used to
ensure dependable and efficient execution of the very large numbers of tasks.

In this monograph we abstract the problem of distributed cooperation in
terms of the Do-All problem, defined as the problem of p processors in the
network, cooperatively performing n independent tasks, in the presence of ad-
versity. In solving this problem, we pursue the goal of combining the reliability
potential that comes with replicated processors in distributed computation,
with the speed-up potential of performing the large number of tasks in paral-
lel. The difficulty associated with combining fault-tolerance with efficiency is
that the two have conflicting means: fault-tolerance is achieved by introducing
redundancy, while efficiency is achieved by removing redundancy. We present
several significant advances in algorithms designed to solve the Do-All prob-
lem in distributed message-passing settings under various models of adversity,
such as processor crashes, asynchrony, message delays, network partitions, and
malicious processor behaviors. The efficiency of algorithms for Do-All is most
commonly assessed in terms of work and communication complexity, depend-
ing on the specific model of computation. Work is defined either as the total
number of computational steps taken by all available processors during the
computation or as the total number of task-oriented computational steps taken
by the processors. A computational step taken by a processor is said to be
task-oriented, if during that step the processor performs a Do-All task. We
refer to the first variation of work as total-work and the second variation of
work as task-oriented work. We develop corresponding complexity analyses
that show to what extent efficiency can be combined with fault-tolerance. We
also present lower bounds that capture theoretical limitations on the possibil-
ity of combining fault-tolerance and efficiency. In this work we ultimately aim
to provide robust, i.e., efficient and fault-tolerant, algorithms that will help
bridge the gap between abstract models of dependable network computing
and realistic distributed systems.

Monograph Roadmap

In Chapter 1 we provide motivation, introduce the distributed cooperation
problem Do-All and discuss several variants of the problem in different models
of computation.
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In Chapter 2 we formal the basic message-passing model of computation
used in this monograph, and present several models of adversarial settings
studied in subsequent chapters. We define the nature of the tasks – the input
to the distributed cooperation problem. We define the Do-All problem, and its
counterpart for partitionable networks, the Omni-Do problem. We conclude
the chapter with the definitions of main complexity measures used in the
sequel: total-work, task-oriented work, and message complexity.

In Chapter 3 we study the Do-All problem for distributed settings with
processor crashes. We provide upper and lower bounds on work for solving
Do-All under the assumption of perfect knowledge, e.g., when an algorithm is
aided by an omniscient oracle. We put these result to use by developing an ef-
ficient and fault-tolerant algorithm for Do-All where processors communicate
by means of reliable broadcasts.

In Chapter 4 we develop a solution for the Do-All problem for the setting
with processor crashes, where processors communicate using point-to-point
messaging. This algorithm uses a gossip algorithm as a building block, also
presented in the chapter.

In Chapter 5 we give lower bounds on work for Do-All in the model where
processors are subject to crashes and restarts, and we develop and analyze an
algorithm for this model of adversity.

In Chapter 6 we study the complexity of Do-All in the adversarial model
where processors are subject to Byzantine failures, that is, where faulty pro-
cessors may behave arbitrarily and even maliciously. We provide several algo-
rithms and lower bound results under this model of adversity.

In Chapter 7 we study the upper and lower bounds of solving Do-All in
the setting where an adversary introduces processor asynchrony and message
delays. We present several algorithm for this model and provide their delay-
sensitive analysis.

In Chapter 8 we switch our attention to partitionable networks and the
Omni-Do problem. We give an efficient algorithm that solves Omni-Do in the
presence of network fragmentation and merges.

In Chapter 9 we study the Omni-Do problem in the model where the
network can undergo arbitrary reconfigurations. We assess upper and lower
bounds for the problem using competitive analysis.

In Chapter 10 we study Do-All in the setting where the adversary initially
starts processors in isolated singleton groups, and then allows the processor to
rendezvous. We analyze redundant work performed by the isolated processors
prior to rendezvous, and we present several scheduling strategies designed to
minimize redundant task executions.

Finally, in Chapter 11 we survey related problems and models, including
the problem of distributed cooperation in shared-memory models, algorithms
for the model where processors communicate through broadcast channels, and
we show a connection between Do-All and the distributed consensus problem.

The chapters of this monograph can of course be read in the sequential
order from Chapter 1 to Chapter 11. In the diagram that follows we show
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alternative suggested paths through the monograph. Chapters 1 and 2 should
be read in sequence before other chapters. It is also recommended that Chap-
ters 8, 9, and 10 are read in sequence. The only remaining dependency is that
Chapter 3 is read before Chapter 5.

Chapter 1

Chapter 2

Chapter 3

Chapter 5

Chapter 4 Chapter 6

Chapter 7 Chapter 8

Chapter 9

Chapter 10Chapter 11

In presenting our message-passing algorithms, we aim to illustrate the most
interesting algorithmic techniques and paradigms, using a clear high-level level
pseudocode that is best suited to represent the nature of each algorithm.

Each chapter concludes with an overview of open problems relevant to the
topics presented in the chapter, and a section containing chapter notes, includ-
ing detailed bibliographic notes, and selected comparisons with and overviews
of related work.

Bibliographic Notes

At the end of each chapter we provide Chapter Notes that contain biblio-
graphic notes and overview related topics and results. The complete bibliog-
raphy follows the last chapter. Here we give additional pointers to conference
proceedings, archival journals, and books covering the various areas related
to distributed computing and fault-tolerant algorithms. Most results in this
monograph appeared as articles in journals or conference proceedings (see bib-
liography), additionally the main results in Chapters 3, 4, 6, 8, and 9 appear
in the PhD dissertation of the first author [43].
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Work on fault-tolerant distributed computation related to the content of
this monograph appear in the proceedings of conferences, in journals, and
in books. A reader interested in learning more about this ongoing research
as well as research beyond the scope of this volume will be well served by
consulting recent publication on such topics from the venues we list below.

The following conferences are examples of the most relevant fora for results
related to topics in this monograph: ACM symposium on Principles of Dis-
tributed Computing (PODC), ACM symposium on Parallel Algorithms and
Architectures (SPAA), ACM symposium on Theory of Computing (STOC),
ACM-SIAM symposium on Discrete Algorithms (SODA), IEEE symposium
on Foundations of Computer Science (FOCS), IEEE sponsored conference
on Distributed Computing Systems (ICDCS), EATCS sponsored symposium
on Distributed Computing (DISC), the conference on the Principles on Dis-
tributed Systems (OPODIS) and the colloquium on Structural Information
and Communication Complexity (SIROCCO). The most relevant journals in-
clude: Springer Distributed Computing, SIAM Journal on Computing, The-
oretical Computer Science, Information and Computation, Information Pro-
cessing Letters, Parallel Processing Letters, Journal of the ACM, Journal of
Algorithms, Journal of Discrete Algorithms, and Journal of Parallel and Dis-
tributed Computing.

The 1997 book by Kanellakis and Shvartsman [67] presents research results
for fault-tolerant cooperative computing in the parallel model of computation.
In particular, it studies the Do-All problem in the shared-memory model,
where it is referred to as the Write-All problem. The current monograph
deals with the message-passing models of computation and considers broader
adversarial settings inherent to these distributed models. The two monographs
follow similar presentation philosophies and it is reasonable to consider them
as complementary volumes. The current volume includes in Chapter 11 several
recent results on the Write-All problem that appeared since the publication
of the first monograph [67].

The book by Lynch [79] provides a wealth of information on distributed
computing issues, such as computational models, algorithms, fault-tolerance,
lower bounds and impossibility results. This include the consensus problem,
which is related to Do-All, and we discuss this relation in Chapter 11. Addi-
tionally, information on the Input/Output Automata used in our Chapter 8
can be found there. The book by Attiya and Welch [6] is another excellent
source of information on distributed computing issues, including cooperation.
The book of Guerraoui and Rodrigues [52] presents numerous important ab-
stractions for reliable distributed computing and includes detailed examples
of how these abstractions can be implemented and used in practice.
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