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Preface

Imaging is an interdisciplinary research area with profound applications in
many areas of science, engineering, technology, and medicine. The most prim-
itive form of imaging is visual inspection, which has dominated the area before
the technical and computer revolution era. Today, computer imaging covers
various aspects of data filtering, pattern recognition, feature extraction, com-
puter aided inspection, and medical diagnosis. The above mentioned areas are
treated in different scientific communities such as Imaging, Inverse Problems,
Computer Vision, Signal and Image Processing, . . ., but all share the common
thread of recovery of an object or one of its properties.

Nowadays, a core technology for solving imaging problems is regulariza-
tion. The foundations of these approximation methods were laid by Tikhonov
in 1943, when he generalized the classical definition of well-posedness (this
generalization is now commonly referred to as conditional well-posedness).
The heart of this definition is to specify a set of correctness on which it
is known a priori that the considered problem has a unique solution. In
1963, Tikhonov [371, 372] suggested what is nowadays commonly referred to
as Tikhonov (or sometimes also Tikhonov–Phillips) regularization. The ab-
stract setting of regularization methods presented there already contains all
of the variational methods that are popular nowadays in imaging. Morozov’s
book [277], which is the English translation of the Russian edition from 1974,
is now considered the first standard reference on Tikhonov regularization.

In the early days of regularization methods, they were analyzed mostly the-
oretically (see, for instance, [191,277,278,371–373]), whereas later on numer-
ics, efficient solutions (see, for instance, the monographs [111, 204, 207, 378]),
and applications of regularization methods became important (see, for in-
stance, [49,112–114]).

Particular applications (such as, for instance, segmentation) led to the
development of specific variational methods. Probably the most prominent
among them is the Mumford–Shah model [276, 284], which had an enor-
mous impact on the analysis of regularization methods and revealed chal-
lenges for the efficient numerical solution (see, e.g., [86, 88]). However, it is
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VIII Preface

notable that the Mumford–Shah method also reveals the common features
of the abstract form of Tikhonov regularization. In 1992, Rudin, Osher, and
Fatemi published total variation regularization [339]. This paper had an enor-
mous impact on theoretical mathematics and applied sciences. From an an-
alytical point of view, properties of the solution of regularization functionals
have been analyzed (see, for instance, [22]), and efficient numerical algorithms
(see [90,133,304]) have been developed.

Another stimulus for regularization methods has come from the develop-
ment of non-linear parabolic partial differential equations for image denoising
and image analysis. Here we are interested in two types of evolution equa-
tions: parabolic subdifferential inclusion equations and morphological equa-
tions (see [8, 9, 194]). Subdifferential inclusion equations can be associated in
a natural way with Tikhonov regularization functionals. This for instance ap-
plies to anisotropic diffusion filtering (see the monograph by Weickert [385]).
As we show in this book, we can associate non-convex regularization func-
tionals with morphological equations.

Originally, Tikhonov type regularization methods were developed with the
emphasis on the stable solution of inverse problems, such as tomographical
problems. These inverse problems are quite challenging to analyze and to
solve numerically in an efficient way. In this area, mainly simple (quadratic)
Tikhonov type regularization models have been used for a long time. In con-
trast, the underlying physical model in image analysis is simple (for instance,
in denoising, the identity operator is inverted), but sophisticated regulariza-
tion techniques are used. This discrepancy between the different scientific
areas led to a split.

The abstract formulation of Tikhonov regularization can be considered in
finite dimensional space setting as well as in infinite dimensional function
space setting, or in a combined finite-infinite dimensional space setting. The
latter is frequently used in spline and wavelet theory. Moreover, we mention
that Tikhonov regularization can be considered in a deterministic setting as
well as in a stochastic setting (see, for instance, [85,231]).

This book attempts to bridge the gap between the two research areas
of image analysis and imaging problems in inverse problems and to find a
common language. However, we also emphasize that our research is biased
toward deterministic regularization and, although we use statistics to motivate
regularization methods, we do not make the attempt to give a stochastic
analysis.

For applications of imaging, we have chosen examples from our own re-
search experience, which are denoising, telescope imaging, thermoacoustic
imaging, and schlieren tomography. We do not claim that these applications
are most representative for imaging. Certainly, there are many other active
research areas and applications that are not touched in this book.

Of course, this book is not the only one in the field of Mathematical Imag-
ing. We refer for instance to [26,98]. Imaging from an inverse problems point
of view is treated in [49]. There exists also a vast number of proceedings and



Preface IX

edited volumes that are concerned with mathematical imaging; we do not
provide detailed references on these volumes. Another branch of imaging is
mathematical methods in tomography, where also a vast amount of literature
exists. We mention exemplarily the books [232,288,289].

The objective of this book certainly is to bridge the gap between regu-
larization theory in image analysis and in inverse problems, noting that both
areas have developed relatively independently for some time.
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