Privacy-Preserving Data Mining

Models and Algorithms

ADVANCES IN DATABASE SYSTEMS Volume 34

Series Editors

Ahmed K. Elmagarmid

Purdue University West Lafayette, IN 47907 Amit P. Sheth Wright State University Dayton, Ohio 45435

Other books in the Series:

SEQUENCE DATA MINING, Guozhu Dong, Jian Pei; ISBN: 978-0-387-69936-3

DATA STREAMS: Models and Algorithms, edited by Charu C. Aggarwal; ISBN: 978-0-387-28759-1

- SIMILARITY SEARCH: The Metric Space Approach, P. Zezula, G. Amato, V. Dohnal, M. Batko; ISBN: 0-387-29146-6
- **STREAM DATA MANAGEMENT**, Nauman Chaudhry, Kevin Shaw, Mahdi Abdelguerfi; ISBN: 0-387-24393-3
- FUZZY DATABASE MODELING WITH XML, Zongmin Ma; ISBN: 0-387-24248-1
- MINING SEQUENTIAL PATTERNS FROM LARGE DATA SETS, Wei Wang and Jiong Yang; ISBN: 0-387-24246-5
- ADVANCED SIGNATURE INDEXING FOR MULTIMEDIA AND WEB APPLICATIONS, Yannis Manolopoulos, Alexandros Nanopoulos, Eleni Tousidou; ISBN: 1-4020-7425-5
- ADVANCES IN DIGITAL GOVERNMENT: Technology, Human Factors, and Policy, edited by William J. McIver, Jr. and Ahmed K. Elmagarmid; ISBN: 1-4020-7067-5
- INFORMATION AND DATABASE QUALITY, Mario Piattini, Coral Calero and Marcela Genero; ISBN: 0-7923-7599-8
- DATA QUALITY, Richard Y. Wang, Mostapha Ziad, Yang W. Lee: ISBN: 0-7923-7215-8
- THE FRACTAL STRUCTURE OF DATA REFERENCE: Applications to the Memory Hierarchy, Bruce McNutt; ISBN: 0-7923-7945-4
- SEMANTIC MODELS FOR MULTIMEDIA DATABASE SEARCHING AND BROWSING, Shu-Ching Chen, R.L. Kashyap, and Arif Ghafoor; ISBN: 0-7923-7888-1
- INFORMATION BROKERING ACROSS HETEROGENEOUS DIGITAL DATA: A Metadatabased Approach, Vipul Kashyap, Amit Sheth; ISBN: 0-7923-7883-0
- DATA DISSEMINATION IN WIRELESS COMPUTING ENVIRONMENTS, Kian-Lee Tan and Beng Chin Ooi; ISBN: 0-7923-7866-0
- MIDDLEWARE NETWORKS: Concept, Design and Deployment of Internet Infrastructure, Michah Lerner, George Vanecek, Nino Vidovic, Dad Vrsalovic; ISBN: 0-7923-7840-7
- ADVANCED DATABASE INDEXING, Yannis Manolopoulos, Yannis Theodoridis, Vassilis J. Tsotras; ISBN: 0-7923-7716-8
- MULTILEVEL SECURE TRANSACTION PROCESSING, Vijay Atluri, Sushil Jajodia, Binto George ISBN: 0-7923-7702-8

FUZZY LOGIC IN DATA MODELING, Guoqing Chen ISBN: 0-7923-8253-6

PRIVACY-PRESERVING DATA MINING: Models and Algorithms, edited by Charu C. Aggarwal and Philip S. Yu; ISBN: 0-387-70991-8

Privacy-Preserving Data Mining

Models and Algorithms

Edited by

Charu C. Aggarwal IBM T.J. Watson Research Center, USA

and

Philip S. Yu University of Illinois at Chicago, USA

Editors:

Charu C. Aggarwal IBM Thomas J. Watson Research Center 19 Skyline Drive Hawthorne NY 10532 charu@us.ibm.com Philip S. Yu Department of Computer Science University of Illinois at Chicago 854 South Morgan Street Chicago, IL 60607-7053 psyu@cs.uic.edu

Series Editors Ahmed K. Elmagarmid Purdue University West Lafayette, IN 47907 Amit P. Sheth Wright State University Dayton, Ohio 45435

ISBN 978-0-387-70991-8 e-DOI 10.1007/978-0-387-70992-5

e-ISBN 978-0-387-70992-5

Library of Congress Control Number: 2007943463

© 2008 Springer Science+Business Media, LLC.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

In recent years, advances in hardware technology have lead to an increase in the capability to store and record personal data about consumers and individuals. This has lead to concerns that the personal data may be misused for a variety of purposes. In order to alleviate these concerns, a number of techniques have recently been proposed in order to perform the data mining tasks in a privacy-preserving way. These techniques for performing privacy-preserving data mining are drawn from a wide array of related topics such as data mining, cryptography and information hiding. The material in this book is designed to be drawn from the different topics so as to provide a good overview of the important topics in the field.

While a large number of research papers are now available in this field, many of the topics have been studied by different communities with different styles. At this stage, it becomes important to organize the topics in such a way that the relative importance of different research areas is recognized. Furthermore, the field of privacy-preserving data mining has been explored independently by the cryptography, database and statistical disclosure control communities. In some cases, the parallel lines of work are quite similar, but the communities are not sufficiently integrated for the provision of a broader perspective. This book will contain chapters from researchers of all three communities and will therefore try to provide a balanced perspective of the work done in this field.

This book will be structured as an edited book from prominent researchers in the field. Each chapter will contain a survey which contains the key research content on the topic, and the future directions of research in the field. Emphasis will be placed on making each chapter self-sufficient. While the chapters will be written by different researchers, the topics and content is organized in such a way so as to present the most important models, algorithms, and applications in the privacy field in a structured and concise way. In addition, attention is paid in drawing chapters from researchers working in different areas in order to provide different points of view. Given the lack of structurally organized information on the topic of privacy, the book will provide insights which are not easily accessible otherwise. A few chapters in the book are not surveys, since the corresponding topics fall in the emerging category, and enough material is not available to create a survey. In such cases, the individual results have been included to give a flavor of the emerging research in the field. It is expected that the book will be a great help to researchers and graduate students interested in the topic. While the privacy field clearly falls in the emerging category because of its recency, it is now beginning to reach a maturation and popularity point, where the development of an overview book on the topic becomes both possible and necessary. It is hoped that this book will provide a reference to students, researchers and practitioners in both introducing the topic of privacy-preserving data mining and understanding the practical and algorithmic aspects of the area.

Contents

Preface			V
List of Fi	igures		xvii
List of FiguresxviList of Tablesxx1An Introduction to Privacy-Preserving Data MiningCharu C. Aggarwal, Philip S. Yu1.1. Introduction1.2. Privacy-Preserving Data Mining Algorithms1.3. Conclusions and Summary1.3. Conclusions and Summary7References32A General Survey of Privacy-Preserving Data Mining Models and Algorithms12.1. Introduction12.2. The Randomization Method12.2.1 Privacy Quantification12.2.2 Adversarial Attacks on Randomization12.2.3 Randomization Methods for Data Streams12.2.4 Multiplicative Perturbations12.2.5 Data Swapping12.3.1 The k-Anonymity Framework22.3.2 Personalized Privacy-Preservation22.3.3 Utility Based Privacy Preservation22.3.4 Sequential Releases2			
1			
An Intro	duction to	o Privacy-Preserving Data Mining	1
Charu C.	Aggarw	val, Philip S. Yu	
1.1.	Introd	uction	1
1.2.	Privac	y-Preserving Data Mining Algorithms	3
1.3.	Conclu	usions and Summary	7
Refe	rences		8
2			
		ey of Privacy-Preserving Data Mining Models and	11
U		al, Philip S. Yu	
		*	11
2.2.	The Ra	andomization Method	13
	2.2.1	Privacy Quantification	15
			18
			18
			19
			19
2.3.	-	•	20
			20
		•	24
			24
		*	25
		•	26
	2.3.6	The <i>t</i> -closeness Model	27
	2.3.7	Models for Text, Binary and String Data	27
2.4.		buted Privacy-Preserving Data Mining	28
	2.4.1	Distributed Algorithms over Horizontally Partitioned Data Sets	30
	2.4.2	Distributed Algorithms over Vertically Partitioned Data	31
	2.4.3	Distributed Algorithms for k-Anonymity	32

	2.5.	Privac	y-Preservation of Application Results	32
		2.5.1	Association Rule Hiding	33
		2.5.2	Downgrading Classifier Effectiveness	34
		2.5.3	Query Auditing and Inference Control	34
	2.6.	Limita	tions of Privacy: The Curse of Dimensionality	37
	2.7.	Applic	cations of Privacy-Preserving Data Mining	38
		2.7.1	Medical Databases: The Scrub and Datafly Systems	39
		2.7.2	Bioterrorism Applications	40
		2.7.3	Homeland Security Applications	40
		2.7.4	Genomic Privacy	42
	2.8.	Summ	ary	43
	Refere	ences		43
3				
Α			erence Control Methods for Privacy-Preserving Data	53
	Minin		_	
Jos	·	ningo-F		~ 4
	3.1.	Introd		54
	3.2.		sification of Microdata Protection Methods	55
	3.3.		bative Masking Methods	58
			Additive Noise	58
			Microaggregation	59
			Data Wapping and Rank Swapping	61
			Rounding	62
			Resampling	62
		3.3.6	PRAM	62
		3.3.7	MASSC	63
	3.4.		erturbative Masking Methods	63
		3.4.1	Sampling	64
		3.4.2	Global Recoding	64
		3.4.3	Top and Bottom Coding	65
		3.4.4	Local Suppression	65
	3.5.		etic Microdata Generation	65
		3.5.1	Synthetic Data by Multiple Imputation	65
		3.5.2	5 5 1	66
		3.5.3	y yr r c	66
		3.5.4	Partially Synthetic Data by Cholesky Decomposition	67
		3.5.5	Other Partially Synthetic and Hybrid Microdata Approaches	67
		3.5.6	Pros and Cons of Synthetic Microdata	68
	3.6.	Tradin	g off Information Loss and Disclosure Risk	69
		3.6.1	Score Construction	69
		3.6.2	R-U Maps	71
		3.6.3	k-anonymity	71
	3.7.	Conclu	usions and Research Directions	72
	Refere	ences		73

4				
M	easures	of Anor	nymity	81
			bramanian	
	4.1.			81
			What is Privacy?	82
			Data Anonymization Methods	83
			A Classification of Methods	84
	4.2.		ical Measures of Anonymity	85
			Query Restriction	85
			Anonymity via Variance	85
	4.0		Anonymity via Multiplicity	86
	4.3.		bilistic Measures of Anonymity	87
		4.3.1 4.3.2	Measures Based on Random Perturbation Measures Based on Generalization	87 90
			Utility vs Privacy	90 94
	4.4.		utational Measures of Anonymity	94
	т.т.	4.4.1	Anonymity via Isolation	97
	4.5.		usions and New Directions	97
	т.Э.	4.5.1	New Directions	98
	Refer	ences		99
~				
5	A	D		105
	•		ata Mining: A Survey	105
V.	5.1.	, S. De C Introdi	Capitani di Vimercati, S. Foresti, and P. Samarati	105
	5.2.	11101 0 0	onymity	103
	5.3.			110
		-	thms for Enforcing k-Anonymity	
	5.4.		nymity Threats from Data Mining Association Rules	117 118
		5.4.1		118
	5.5.		onymity in Data Mining	110
	5.6.		mize-and-Mine	120
	5.0. 5.7.	•		123
	5.7.		and-Anonymize	126
		5.7.1	Enforcing k-Anonymity on Association Rules Enforcing k-Anonymity on Decision Trees	120
	5 0	5.7.2		
	5.8.	Conclu		133 133
	-	owledgn	lients	133
	Refer	ences		134
6				
	•		omization Methods for Privacy-Preserving Data Mining	137
Ch			al, Philip S. Yu	105
	6.1.	Introd		137
	6.2.		struction Methods for Randomization	139 139
		6.2.1 6.2.2	The Bayes Reconstruction Method The EM Reconstruction Method	139
		6.2.2	Utility and Optimality of Randomization Models	141

ix

	6.3.	Applications of Randomization 6.3.1 Privacy-Preserving Classification with Randomization	144 144
		6.3.2 Privacy-Preserving OLAP	145
		6.3.3 Collaborative Filtering	145
	6.4.	The Privacy-Information Loss Tradeoff	146
	6.5.	Vulnerabilities of the Randomization Method	149
	6.6.	Randomization of Time Series Data Streams	151
	6.7.	Multiplicative Noise for Randomization	152
		6.7.1 Vulnerabilities of Multiplicative Randomization	153
		6.7.2 Sketch Based Randomization	153
	6.8.	Conclusions and Summary	154
	Refere	ences	154
7	a		157
	Data M	of Multiplicative Perturbation for Privacy-Preserving Aining	157
Ke	ke Chei	n and Ling Liu	
	7.1.	Introduction	158
		7.1.1 Data Privacy vs. Data Utility	159
	7.0	7.1.2 Outline	160
	7.2.	Definition of Multiplicative Perturbation	161
		7.2.1 Notations7.2.2 Rotation Perturbation	161 161
		7.2.3 Projection Perturbation	162
		7.2.4 Sketch-based Approach	164
		7.2.5 Geometric Perturbation	164
	7.3.	Transformation Invariant Data Mining Models	165
		7.3.1 Definition of Transformation Invariant Models	166
		7.3.2 Transformation-Invariant Classification Models	166
		7.3.3 Transformation-Invariant Clustering Models	167
	7.4.	Privacy Evaluation for Multiplicative Perturbation	168
		7.4.1 A Conceptual Multidimensional Privacy Evaluation Model	168
		7.4.2 Variance of Difference as Column Privacy Metric	169
		7.4.3 Incorporating Attack Evaluation	170
		7.4.4 Other Metrics	171
	7.5.	Attack Resilient Multiplicative Perturbations	171
		7.5.1 Naive Estimation to Rotation Perturbation7.5.2 ICA-Based Attacks	171 173
		7.5.3 Distance-Inference Attacks	173
		7.5.4 Attacks with More Prior Knowledge	176
		7.5.5 Finding Attack-Resilient Perturbations	177
	7.6.	Conclusion	177
		owledgment	178
	Refere	6	179
8			
		of Quantification of Privacy Preserving Data Mining Algorithms	183
Eli		ino, Dan Lin and Wei Jiang	101
	8.1.	Introduction	184
	8.2.	Metrics for Quantifying Privacy Level	186
		8.2.1 Data Privacy	186

		8.2.2	Result Privacy	191
	8.3.	Metrics	s for Quantifying Hiding Failure	192
	8.4.		s for Quantifying Data Quality	193
		8.4.1	Quality of the Data Resulting from the PPDM Process	193
		8.4.2	Quality of the Data Mining Results	198
	8.5.	Comple	exity Metrics	200
	8.6.	How to	Select a Proper Metric	201
	8.7.		sion and Research Directions	202
	Refere	ences		202
9				
	Survey	of Utilit	y-based Privacy-Preserving Data	207
			n Methods	
Mi	ng Hua	and Jia	n Pei	
	9.1.	Introdu		208
		9.1.1	What is Utility-based Privacy Preservation?	209
	9.2.		of Utility-based Privacy Preservation Methods	210
		9.2.1	Privacy Models	210
		9.2.2	Utility Measures	212
	0.0	9.2.3	Summary of the Utility-Based Privacy Preserving Methods	214
	9.3.		Based Anonymization Using Local Recoding	214
		9.3.1 9.3.2	Global Recoding and Local Recoding	215
		9.3.2 9.3.3	Utility Measure Anonymization Methods	216 217
		9.3.3 9.3.4	Summary and Discussion	217
	9.4.		ility-based Privacy Preserving Methods in Classification Prob-	219
	9.4.	lems	inty-based i fivacy i reserving idenious in classification i rob-	219
		9.4.1	The Top-Down Specialization Method	220
		9.4.2	The Progressive Disclosure Algorithm	224
		9.4.3	Summary and Discussion	228
	9.5.	Anony	mized Marginal: Injecting Utility into Anonymized Data Sets	228
		9.5.1	Anonymized Marginal	229
		9.5.2	Utility Measure	230
		9.5.3	Injecting Utility Using Anonymized Marginals	231
		9.5.4	Summary and Discussion	233
	9.6.	Summa		234
	Ackno	wledgm	lents	234
	Refere	ences		234
10				
Mi	ning A	ssociatio	on Rules under Privacy Constraints	239
	-	Haritsa	,	
	10.1.	Introdu	iction	239
	10.2.		m Framework	240
		- • •	Database Model	240
			Mining Objective	241
			Privacy Mechanisms	241
			Privacy Metric	243
		10.2.5	Accuracy Metric	245

Contents	ï
----------	---

10.3. 10.4.	The FRAPP Framework	246 251
	10.4.1 Reconstruction Model	252
	10.4.2 Estimation Error	253
	10.4.3 Randomizing the Perturbation Matrix	256
	10.4.4 Efficient Perturbation	256
	10.4.5 Integration with Association Rule Mining	258
10.5.	1	259
	Closing Remarks	263
Ackno	owledgments	263
Refere	ences	263
11 A Survey	of Association Rule Hiding Methods for Privacy	267
•	S. Verykios and Aris Gkoulalas-Divanis	207
	Introduction	267
11.1.		267
11.3.		270
11.4.		271
	11.4.1 Heuristic Approaches	272
	11.4.2 Border-based Approaches	277
	11.4.3 Exact Approaches	278
	Other Hiding Approaches	279
11.6.		281
11.7.	Discussion and Future Trends	284
11.8.	Conclusions	285
Refere	ences	286
12		201
of Co	of Statistical Approaches to Preserving Confidentiality ntingency Table Entries	291
	C. Fienberg and Aleksandra B. Slavkovic	
	Introduction	291
12.2.	The Statistical Approach Privacy Protection	292
12.3.	Datamining Algorithms, Association Rules, and Disclosure Limitation	294
12.4.	Estimation and Disclosure Limitation for Multi-way Contingency Tables	295
12.5.	Two Illustrative Examples	301
	12.5.1 Example 1: Data from a Randomized Clinical Trial12.5.2 Example 2: Data from the 1993 U.S. Current Population	301
	Survey	305
12.6.	Conclusions	308
	owledgments	309
Refere	e	309
13		_
A Survey Data	of Privacy-Preserving Methods Across Horizontally Partitioned	313
Murat Ka	ntarcioglu	
13.1.	Introduction	313

13.2.	Basic Cryptographic Techniques for Privacy-Preserving Distributed Data Mining	315
13.3.	Common Secure Sub-protocols Used in Privacy-Preserving Distributed Data Mining	318
13.4.	Privacy-preserving Distributed Data Mining on Horizontally	010
10111	Partitioned Data	323
13.5.	Comparison to Vertically Partitioned Data Model	326
13.6.	* *	327
13.7.	Limitations of the Cryptographic Techniques Used in Privacy- Preserving Distributed Data Mining	329
13.8.	Privacy Issues Related to Data Mining Results	330
	Conclusion	332
Refer		332
14		227
A Survey Data	of Privacy-Preserving Methods Across Vertically Partitioned	337
Jaideep V	laidya	
	Introduction	337
14.2.	Classification	341
	14.2.1 Naïve Bayes Classification	342
	14.2.2 Bayesian Network Structure Learning	343
	14.2.3 Decision Tree Classification	344
14.3.	8	346
14.4.	8	347
14.5.	Outlier detection	349
	14.5.1 Algorithm	351
	14.5.2 Security Analysis	352
	14.5.3 Computation and Communication Analysis	354
14.6.		355
Refere	ences	356
15		
A Survey Metho	of Attack Techniques on Privacy-Preserving Data Perturbation ods	359
Kun Liu, (Chris Giannella, and Hillol Kargupta	
15.1.	Introduction	360
15.2.	Definitions and Notation	360
15.3.	Attacking Additive Data Perturbation	361
	15.3.1 Eigen-Analysis and PCA Preliminaries	362
	15.3.2 Spectral Filtering	363
	15.3.3 SVD Filtering	364
	15.3.4 PCA Filtering	365
	15.3.5 MAP Estimation Attack	366
	15.3.6 Distribution Analysis Attack	367
	15.3.7 Summary	367
15.4.	Attacking Matrix Multiplicative Data Perturbation	369
	15.4.1 Known I/O Attacks	370
	15.4.2 Known Sample Attack	373
	15.4.3 Other Attacks Based on ICA	374

Contents

		15.4.4 Summary	375
	15.5.	Attacking k-Anonymization	376
	15.6.	Conclusion	376
	Ackno	owledgments	377
	Refere	ences	377
16			
16 D::		ta Anglusia sia Ostant Datudatian	383
	vale Da bbi Nis	ata Analysis via Output Perturbation	303
K0		Introduction	383
		The Abstract Model – Statistical Databases, Queries, and Sanitizers	385
	16.3.		388
	10.5.	16.3.1 Interpreting the Privacy Definition	390
	16.4.	The Basic Technique: Calibrating Noise to Sensitivity	394
	10111	16.4.1 Applications: Functions with Low Global Sensitivity	396
	16.5.	Constructing Sanitizers for Complex Functionalities	400
		16.5.1 k-Means Clustering	401
		16.5.2 SVD and PCA	403
		16.5.3 Learning in the Statistical Queries Model	404
	16.6.	Beyond the Basics	405
		16.6.1 Instance Based Noise and Smooth Sensitivity	406
		16.6.2 The Sample-Aggregate Framework	408
		16.6.3 A General Sanitization Mechanism	409
		Related Work and Bibliographic Notes	409
		owledgments	411
	Refere	ences	411
17			
AS	Survey	of Query Auditing Techniques for Data Privacy	415
		Nabar, Krishnaram Kenthapadi, Nina Mishra and Rajeev Motwani	
		Introduction	415
	17.2.	Auditing Aggregate Queries	416
		17.2.1 Offline Auditing	417
		17.2.2 Online Auditing	418
	17.3.	Auditing Select-Project-Join Queries	426
	17.4.	Challenges in Auditing	427
	17.5.	Reading	429
	Refere	ences	430
10			
18 D=:		ad the Dimensionality Course	433
		nd the Dimensionality Curse Aggarwal	455
Ch		Introduction	433
	18.2.	The Dimensionality Curse and the k -anonymity Method	435
	18.3.	The Dimensionality Curse and Condensation	441
	18.4.	The Dimensionality Curse and the Randomization Method	446
	10.7.	18.4.1 Effects of Public Information	446
		18.4.2 Effects of High Dimensionality	450
		18.4.3 Gaussian Perturbing Distribution	450
		18.4.4 Uniform Perturbing Distribution	455

Cont	tents		XV
1	18.5.	The Dimensionality Curse and l -diversity	458
		Conclusions and Research Directions	459
F	Refere	nces	460
19			
	onaliz	ed Privacy Preservation	461
		und Xiaokui Xiao	
		Introduction	461
1	19.2.	Formalization of Personalized Anonymity	463
		19.2.1 Personal Privacy Requirements	464
		19.2.2 Generalization	465
1	19.3.	Combinatorial Process of Privacy Attack	467
		19.3.1 Primary Case	468
		19.3.2 Non-primary Case	469
1	19.4.	Theoretical Foundation	470
		19.4.1 Notations and Basic Properties	471
		19.4.2 Derivation of the Breach Probability	472
1	19.5.	Generalization Algorithm	473
		19.5.1 The Greedy Framework	474
		19.5.2 Optimal SA-generalization	476
1	19.6.	Alternative Forms of Personalized Privacy Preservation	478
		19.6.1 Extension of <i>k</i> -anonymity	479
1	07	19.6.2 Personalization in Location Privacy Protection	480
		Summary and Future Work	482
ŀ	Refere	nces	485
20			
	-	eserving Data Stream Classification	487
		Ke Wang, Ada Wai-Chee Fu, Rong She, and Jian Pei	
2	20.1.	Introduction	487
		20.1.1 Motivating Example	488
		20.1.2 Contributions and Paper Outline	490
		Related Works	491
2	20.3.	Problem Statement 20.3.1 Secure Join Stream Classification	493 493
		20.3.2 Naive Bayesian Classifiers	494
2	20.4.	Our Approach	495
-	20.1.	20.4.1 Initialization	495
		20.4.2 Bottom-Up Propagation	496
		20.4.3 Top-Down Propagation	497
		20.4.4 Using NBC	499
		20.4.5 Algorithm Analysis	500
2	20.5.	Empirical Studies	501
		20.5.1 Real-life Datasets	502
		20.5.2 Synthetic Datasets	504
-		20.5.3 Discussion	506
_	20.6.	Conclusions	507
ŀ	Refere	nces	508

List of Figures

5.1	Simplified representation of a private table	108
5.2	An example of domain and value generalization hierarchies	109
5.3	Classification of k-anonymity techniques [11]	110
5.4	Generalization hierarchy for QI={Marital_status, Sex}	111
5.5	Index assignment to attributes Marital_status and Sex	112
5.6	An example of set enumeration tree over set $\mathcal{I} = \{1, 2, 3\}$	
	of indexes	113
5.7	Sub-hierarchies computed by Incognito for the table in	
	Figure 5.1	114
5.8	Spatial representation (a) and possible partitioning	
	(b)-(d) of the table in Figure 5.1	116
5.9	An example of decision tree	119
5.10	Different approaches for combining k-anonymity and	
	data mining	120
5.11	An example of top-down anonymization for the private	104
5 10	table in Figure 5.1	124
5.12	Frequent itemsets extracted from the table in Figure 5.1	127
5.13	An example of binary table	128
5.14	Itemsets extracted from the table in Figure 5.13(b)	128
5.15	Itemsets with support at least equal to 40 (a) and	
	corresponding anonymized itemsets (b)	129
5.16	3-anonymous version of the tree of Figure 5.9	131
5.17	Suppression of occurrences in non-leaf nodes in the tree	
	in Figure 5.9	132
5.18	Table inferred from the decision tree in Figure 5.17	132
5.19	11-anonymous version of the tree in Figure 5.17	132
5.20	Table inferred from the decision tree in Figure 5.19	133
6.1	Illustration of the Information Loss Metric	149
7.1	Using known points and distance relationship to infer	
	the rotation matrix	175

9.1	A taxonomy tree on categorical attribute Education	221
9.2	A taxonomy tree on continuous attribute Age	221
9.3	Interactive graph	232
9.4	A decomposition	232
10.1	CENSUS ($\gamma = 19$)	261
10.2	Perturbation Matrix Condition Numbers ($\gamma = 19$)	262
13.1	Relationship between Secure Sub-protocols and Privacy	
	Preserving Distributed Data Mining on Horizontally	
	Partitioned Data	323
14.1	Two dimensional problem that cannot be decomposed	
	into two one-dimensional problems	340
15.1	Wigner's semi-circle law: a histogram of the eigenvalues of $\frac{A+A'}{2\sqrt{2p}}$ for a large, randomly generated A	363
17.1	Skeleton of a simulatable private randomized auditor	423
18.1	Some Examples of Generalization for 2-Anonymity	435
18.2	Upper Bound of 2-anonymity Probability in an	
	Non-Empty Grid Cell	439
18.3	Fraction of Data Points Preserving 2-Anonymity with Data Dimensionality (Gaussian Clusters)	440
18.4	Minimum Information Loss for 2-Anonymity (Gaussian	
	Clusters)	445
18.5	Randomization Level with Increasing Dimensionality,	
	Perturbation level = $8 \cdot \sigma^o (UniDis)$	457
19.1	Microdata and generalization	462
19.2	The taxonomy of attribute Disease	463
19.3	A possible result of our generalization scheme	466
19.4	The voter registration list	468
19.5	Algorithm for computing personalized generalization	474
19.6	Algorithm for finding the optimal SA-generalization	478
19.7	Personalized k-anonymous generalization	480
20.1	Related streams / tables	489
20.2	The join stream	489
20.3	Example with 3 streams at initialization	496
20.4	After bottom-up propagations	498
20.5	After top-down propagations	499
20.6	UK road accident data (2001)	502
20.7	Classifier accuracy	503
20.8	Time per input tuple	503

20.9	Classifier accuracy vs. window size	505
20.10	Classifier accuracy vs. concept drifting interval	505
20.11	Time per input tuple vs. window size	506
20.12	Time per input tuple vs. blow-up ratio	506
20.13	Time per input tuple vs. number of streams	507

List of Tables

3.1	Perturbative methods vs data types. "X" denotes applica-	50
~ ~	ble and "(X)" denotes applicable with some adaptation	58
3.2	Example of rank swapping. Left, original file; right,	(2)
	rankswapped file	62
3.3	Non-perturbative methods vs data types	64
9.1a	The original table	209
9.2b	A 2-anonymized table with better utility	209
9.3c	A 2-anonymized table with poorer utility	209
9.4	Summary of utility-based privacy preserving methods	214
9.5a	3-anonymous table by global recoding	215
9.6b	3-anonymous table by local recoding	215
9.7a	The original table	223
9.8b	The anonymized table	223
9.9a	The original table	225
9.10b	The suppressed table	225
9.11a	The original table	229
9.12b	The anonymized table	229
	Age Marginal	229
9.14b	(Education, AnnualIncome) Marginal	229
10.1	CENSUS Dataset	260
10.2	Frequent Itemsets for $sup_{min} = 0.02$	260
12.1	Results of clinical trial for the effectiveness	
	of an analgesic drug	302
12.2	Second panel has LP relaxation bounds, and third panel	
	has sharp IP bounds for cell entries in Table 1.1 given	
	[R CST] conditional probability values	303
12.3	Sharp upper and lower bounds for cell entries in Ta-	
	ble 12.1 given the $[CSR]$ margin, and LP relaxation	
	bounds given $[R CS]$ conditional probability values	304
12.4	Description of variables in CPS data extract	305

12.5 12.6	Marginal table [<i>ACDGH</i>] from 8-way CPS table Summary of difference between upper and lower bounds for small cell counts in the full 8-way CPS table under	306
	Model 1 and under Model 2	307
14.1	The Weather Dataset	338
14.2	Arbitrary partitioning of data between 2 sites	339
14.3	Vertical partitioning of data between 2 sites	340
15.1	Summarization of Attacks on Additive Perturbation	368
15.2	Summarization of Attacks on Matrix Multiplicative	
	Perturbation	375
18.1	Notations and Definitions	441

xxii