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Abstract. The importance of high-performance communication to the success of Grid 
applications makes it critical to develop communication protocols that can take full 
advantage of the underlying bandwidth when system conditions permit, can back-off in 
response to observed (or predicted) contention within the network, and can accurately 
distinguish between these two situations. Achieving this goal requires the development 
of classification mechanisms that are both accurate and efficient enough to execute in 
real time. In this paper, we discuss one such classifier that is based on the analysis of 
the patterns of packet loss and the application of Bayesian statistics. We describe two 
different analysis techniques that we apply to such patterns, one based on complexity 
theory and one based on a simple measure of the distance between successive packet 
losses. In addition, we discuss the integration of the classification mechanism into the 
control structures of an existing high-performance data transfer system for 
computational Grids. We present empirical results showing that the classifier is 
extremely accurate, efficient enough to execute in real time, and that utilizing the 
information it provides can have a tremendous impact on the performance of a large-
scale data transfer.  
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1   Introduction 

Computational Grids create powerful distributed computing systems by connecting 
geographically distributed computational/storage facilities via high-performance 
networks. Such systems can aggregate tremendous computational power on a single 
large-scale problem, enabling scientific discovery in areas that were heretofore 
impossible to explore. Critical to the success of such large-scale Grid applications is a 
high-performance networking infrastructure that can efficiently move extreme-scale 
data sets between nodes on the Grid. However, even though advances in networking 
technologies have significantly increased the bandwidth available to Grid 
applications, actually obtaining a large percentage of such bandwidth has turned out 
to be a difficult issue.  
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One problem is that TCP, the transport protocol of choice for most wide-area data 
transfers, was not designed for and does not perform well in the high-bandwidth, 
high-delay networks typical of computational Grids. This has led to significant 
research activity aimed at modifying TCP itself to make it compatible with this new 
network environment (e.g., Highspeed TCP [15]), as well as systems that monitor the 
end-to-end network to diagnose and fix performance problems (e.g., [2, 22]). An 
alternative strategy has been the development of application-level protocols that can 
largely circumvent the performance issues of TCP. This includes, for example, UDP-
based protocols (e.g., FOBS[10], UDT[16] ), and approaches that spawn multiple 
TCP streams for a single data flow (e.g., GridFTP [4]).  

   UDP-based protocols can be attractive for two reasons: First, some applications 
require a smooth transfer rate that can be difficult to obtain with TCP. Second, such 
protocols are well-suited for high-bandwidth, high-delay network environment and 
are able to obtain a significant percentage of the underlying bandwidth. However, 
because UDP-based protocols execute at the application level, the protocol developer 
must provide a mechanism to detect and respond fairly to competing traffic flows. 
Also, application-level protocols can lose data packets for any number of reasons 
unrelated to network congestion. This second issue can result in very poor 
performance if the control mechanisms interpret such loss as growing network 
contention and, in response, trigger very aggressive congestion control actions.  

    This research is developing a classification mechanism that can be used by 
UDP-based protocols to distinguish between data loss caused by network contention 
from loss caused by factors outside of the network domain. In particular, we focus on 
distinguishing between network contention and contention for CPU resources. This 
distinction is important because contention for CPU cycles can be a major contributor 
to packet loss in UDP-based protocols. This happens, for example, when the 
receiver’s socket-buffer becomes full, additional data bound for the receiver arrives at 
the host, and the receiver is switched out and thus unavailable to pull such packets off 
of the network. The receiver could be switched out for any number of reasons 
including preemption by a higher priority system process, interrupt processing, paging 
activity, and multi-tasking. This last point is particularly important in a Grid 
environment where resource availability, including the CPU cycles allocated to a 
particular application, can fluctuate significantly during the execution of a long-
running application.  

    To illustrate the importance of this issue, consider a data transfer with a sending 
rate of one gigabit per second and a packet size of 1024 bytes. Given these 
parameters, a packet will arrive at the receiving host around every 7.9 micro-seconds, 
which is approximately the amount of time required to perform a context switch on 
the TeraGrid systems [3] used in this research (as measured by Lmbench [21]).  Thus 
the receiver does not need to be switched-out long before packets can begin to get 
dropped. We have observed, for example, tens to hundreds of packets being dropped 
when the operating system creates three to four new processes.  

    This paper discusses the development of a classification mechanism for the 
causes of data loss that is both very accurate and highly efficient. Also, we show how 
it is integrated into the control structures of an existing UDP-based data transfer 
system, and provide experimental results showing that the use of the classifier can 
result in significant performance gains. The classification mechanism is based on the 



analysis of what we term packet-loss signatures, which show the distribution (or 
pattern) of those packets that successfully traversed the end-to-end transmission path 
and those that did not. These signatures are essentially large selective-
acknowledgment packets that are collected by the receiver and delivered to the sender 
upon request. We chose the name “packet-loss signatures” based on previous studies 
showing that different causes of data loss have different “signatures” [12]. In this 
paper, we briefly describe how the signatures are analyzed and used by the classifier, 
and direct the interested reader to this same paper for a detailed discussion of the 
approach.  

    The major contribution of this paper is showing how a classification system can 
be developed, integrated into the control mechanisms of a data transfer system, and 
used to increase performance. This paper should be of interest to a large segment of 
the Grid community given the interest in and importance of exploring new approaches 
by which data transfers can be made more intelligent and efficient.    

    The rest of the paper is organized as follows. In Section 2, we discuss related 
work. In Section 3, we describe FOBS, the data transfer system in which the 
classification mechanism is implemented. We provide an overview of the 
classification algorithms in Section 4. In Section 5, we discuss the experimental 
design and provide the experimental results in Section 6. We provide our conclusions 
in Section 7.  

 
2    Related Work 
 
The issue of distinguishing between causes of data loss has received significant 
attention within the context of TCP for hybrid wired/wireless networks (e.g., [5, 6, 
8]). The idea is to distinguish between losses caused by network congestion and 
losses caused by errors in the wireless link, and to trigger TCP’s aggressive 
congestion control mechanisms only in the case of congestion-induced losses. This 
ability to classify the root cause of data loss, and to respond accordingly, has been 
shown to improve the performance of TCP in this network environment [5, 20]. These 
classification schemes are based largely on simple statistics on observed round-trip 
times, observed throughput, or the inter-arrival time between ACK packets[7, 20]. 
Debate remains, however, as to how well techniques based on such simple statistics 
can classify loss [20]. Another approach being pursued is the use of Hidden Markov 
Models where the states are characterized by the mean and standard deviation of the 
distribution of round-trip times [20].  

   Our research has similar goals, although we are developing a finer-grained 
classification system to distinguish between network contention and contention for 
CPU resources. Another major difference is that the analysis of packet-loss signatures 
appears to be a more robust classifier than (for example) statistics on round-trip times, 
and could be substituted for such statistics within the mathematical frameworks 
established in these related works.  

   Also related are efforts such as Web100 [22] and Pathdiag [1], that provide 
sophisticated monitoring systems and tools with which performance issues in TCP 
networks can be diagnosed and fixed. The goal of these systems is to provide ordinary 
users, i.e., those without significant networking expertise, with high-performance 



networking in a completely transparent manner. A major difference between our work 
and these related projects is the timescale at which each operates. In particular, these 
projects are iterative in nature, with possible consultation with network administrators 
between iterations. Our classification mechanism performs on a much smaller 
timescale, where it very quickly computes the probability that the cause of data loss 
was within the network or outside of the network. However, it is unable to diagnose 
performance problems such as inadequate buffer sizes, under-configured network 
paths, or problems with the software stack as these related works can provide. Thus 
while the goal of providing high-performance networking are shared, the problems 
being addressed are quite different. In fact, such work is orthogonal to our efforts in 
that any improvements to the networking infrastructure such projects can provide 
would also benefit the performance of our data transfer system.  
   Research into other application-level alternatives to TCP is also related (e.g.,[17]). 
However, projects such as this do not attempt to determine the root cause(s) of packet 
loss that is a major focus of this research.   

3    Data Transfer System 
 
The test-bed for this research is FOBS1: a high-performance data transfer system for 
computational Grids [10]. FOBS is a UDP-based data transfer system that provides 
reliability through a selective-acknowledgment and retransmission mechanism. It is 
precisely the information contained within the selective-acknowledgment packets that 
is collected and analyzed by the classification mechanism. FOBS can be executed as a 
window-based protocol where all packets within the current transmission window are 
put onto the network at a constant sending rate. It can also be used as a rate-based 
system, where a constant sending rate is used until a congestion event occurs, at 
which point a new sending rate is determined based on the long-term loss rate.  
    FOBS is multi-threaded to take advantage of nodes with multiple processors or 
processors with multiple cores. In such cases, the classification mechanism can 
execute as a separate thread that runs concurrently with the ongoing transfer. In fact, 
we have observed that when the data sender is executing on a dedicated node with 
dual-processors, there is no additional cost incurred by executing the classifier (that 
is, the data transfer rate is unchanged when it is executed). 
 
3.1 Congestion Control  
 
An important design goal for FOBS is that it competes fairly with other network 
flows. Toward this end, FOBS uses a modified version of the TCP Friendly Rate 
Control (TFRC) protocol [18] for its congestion control. TFRC is equation-based, 
where the sending rate is computed as a function of the steady-state loss rate. The 
primary difference is that FOBS replaces the TFRC response function with that 
derived for Highspeed TCP [15], a more aggressive version of TCP for high-
performance network environments with very low loss rates. The use of this more 
aggressive congestion control mechanism is completely appropriate given that FOBS 
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is designed for the well-provisioned, high-bandwidth, high-delay networks associated 
with computational Grids, and is not intended for the Internet1 environment.  
   We do not discuss the derivation of the HighSpeed TCP response function here, and 
direct the interested reader to [15] for a complete analysis. For our purposes, it is 
sufficient to note that a parameter termed Low_Window is defined, which sets the 
lower bound on the congestion window at which the HighSpeed TCP response 
function will be used. That is, if the current congestion window is greater than 
Low_Window, then the HighSpeed response function will be used to determine the 
size of the next congestion window in the event of packet loss. This response function 
is defined as: 
  
(1) 

./12.0 835.0pw = 
 
Otherwise, the standard TCP response function will be used2: 
 
(2)    w /2.1= p
 
where w is the size of the next congestion window and p is the loss rate.  
   
3.1.1 Integration of Classifier into FOBS 
 
While the algorithms used by the classification mechanism are somewhat complex, 
the way the information is used by the controller is relatively simple. When a 
congestion event occurs, the classifier is queried to determine the cause of such loss. 
The classifier then assigns a probability to the event that the data loss was caused by 
contention for CPU resources (and thus one minus this probability that the cause of 
loss was network related). If the probability exceeds a certain threshold that the cause 
of data loss was CPU related (currently set at 95%), then no corrective action is taken 
and the loss rate is not modified. Otherwise, the cumulative loss rate is updated 
appropriately, and Equation (1) or (2) is invoked to determine the new sending rate 
(depending upon the size of the current congestion window).  
 
4   Classification Mechanism 
 
Having discussed how the results of the classification mechanism are used in FOBS, 
we briefly discuss how these probabilities are computed. The interested reader is 
directed to [12, 13] for a complete discussion of the statistical analysis.  
 
4.1 Classification Metrics 
 
The classification mechanism is based on the application of Bayesian statistics,   
which centers on how the value of certain metrics can be used to identify a cause of 
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packet loss. Assume there are two causes of data loss: network contention and CPU 
contention. The idea is to find a metric that has very different statistical properties 
under the two causes of data loss, the greater the difference the more accurate the 
classification.   

     Our research has identified two excellent metrics upon which the classification 
mechanism is based, both of which are derived from the packet-loss signatures. The 
first metric is the complexity of the packet-loss signatures that is derived using 
techniques from symbolic dynamics. In symbolic dynamics[19], the packet-loss 
signature is viewed as a sequence of symbols drawn from a finite discrete set, which 
in our case is two symbols: 1 and 0.  One diagnostic that quantifies the amount of 
structure in the sequence is complexity. There are numerous ways to quantify 
complexity. In this discussion, we have chosen the approach of d’Alessandro and 
Politi [9] which has been applied with success to quantify the complexity and 
predictability of time series of hourly precipitation data [14]. The approach of 
d’Alessandro and Politi is to view the stream of 1s and 0s as a language and focus on 
subsequences (or words) of length n in the limit of increasing values of n (i.e., 
increasing word length). First-order complexity, denoted by C1, is a measure of the 
richness of the language’s vocabulary and represents the asymptotic growth rate of 
the number of admissible words of fixed length n occurring within the string as n 
becomes large. The number of admissible words of length n, denoted by Na(n), is 
simply a count of the number of distinct words of length n found in the given 
sequence. The first-order complexity (C1) is defined as  

 
 

(3)    C
1 
= lim (log2 Na(n)) / n .  

        n−>∞  
 

The first-order complexity metric characterizes the level of randomness or periodicity 
in a string of symbols. A string consisting of only one symbol will have one 
admissible word for each value of n, and will thus have a value of C1 = 0. A purely 
random string will, in the limit, have a value of C1 = 1. A string that is comprised of a 
periodic sequence, or one comprising only a few periodic sequences, will tend to have 
low values of C1. We have developed simple empirical models that relate complexity 
measures to the different causes of data loss as a function of the loss rate, and it is 
these models that are used by the classification mechanism.  

    While the calculation of complexity measures is simple and efficient, the size of 
the words that can be examined in real time (without negatively affecting 
performance) is somewhat limited. In the experiments reported here, the maximum 
word size was set to n = 17, which was sufficient for discerning the basic structure of 
the signatures (i.e., either random or periodic) when the loss rate was greater than 
approximately 0.0004. However, for significantly lower loss rates, the dropped 
packets (and the corresponding 0s in the packet-loss signatures) were too far apart to 
be detected with a word size of 17. While increasing the word size can help, it cannot 
be increased enough to detect the randomness in the string at very low loss rates. 
Thus, complexity measures are unable to serve as a classification metric at very low 
loss rates. 



To address this issue, we developed another metric based on the distance between two 
consecutive dropped packets. The idea is that the fundamental structure of the packet-
loss signatures will not be significantly different at very low loss rates, and thus data 
loss caused by CPU contention will still be largely contiguous in the signature, and 
loss caused by NIC contention will still be random. To develop this metric, we define 
“success” as two consecutive packet drops (i.e., two consecutive 0s in the signature). 
We then performed a large number of experiments to learn the proportion of 
successes for each cause of data loss at very low loss rates. These proportions were 
then used as parameters to a beta distribution (that provides the probability of a given 
proportion of successes), in hopes that the statistical properties of the distribution 
would be very different under different causes of packet loss. The beta distribution 
takes two parameters, a and b, and has the following density function, where p is the 
proportion of successes. 

 
(4)    pa-1 (1-p)b-1

 
Figure (1) shows the considerable difference in the statistical properties of the 
complexity metric under both causes of data loss. Figure (1) further shows the 
empirical data models derived in association with complexity measures. This figure 
demonstrates quite clearly the power of this metric in distinguishing between causes 
of data loss. Due to space constraints, we do not show the differences of the statistical 
properties for the beta distribution.  
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                                                                 Figure 1. This figure shows the mean complexity measures at each data bin, 
and 95% confidence intervals around the mean, for each cause of data loss. 
Also, it shows how the data lay along the fitted data model.   

 
5. Experimental Design  

 
All experiments were conducted on the TeraGrid [3]: a high-performance 
computational Grid that connects various supercomputing facilities via networks 



operating at 40 gigabits per second. The two facilities used in these experiments were 
the San Diego Supercomputing Center (SDSC), and the National Center for 
Supercomputing Applications (NCSA, located at the University of Illinois, Urbana). 
The host platform at each facility was an IA-64 Linux cluster where each compute 
node consisted of dual 1.5 GHz Intel Itanium2 processors. The operating system at 
both facilities was Linux 2.4.21SMP.  Each compute node had a gigabit Ethernet 
connection to the TeraGrid network.  

    We were interested in whether or not the classification mechanism could 
improve performance in the case where data loss was caused by contention for CPU 
resources. To test this, we executed one set of transfers where the results of the 
classification system were used by the controller, and another set where they were not 
used (and thus all data loss was assumed to be network related). We implemented a 
background process on the data receiver which periodically caused data to be 
dropped. The number of packets lost per congestion event was based largely on 
operating system behavior (e.g., process scheduling), and was thus somewhat out of 
our control. However, the long-term loss rate in all experiments was on the order of 
0.0002. We performed three long data transfers (of about 3 hours each), under each 
condition (i.e., results of classifier used/not used). The results of interest were the 
percentage of successful classifications and the throughput achieved in each instance. 
The classifier used the beta distribution to compute the required probabilities when 
the loss rate was <= 0.0004. Otherwise, the complexity measures were used.  

    We used the technique of direct-execution simulation [11] to determine the 
throughput achieved in each situation. In this approach, the behavior of the network 
connection, the behavior of the system in the presence of contention for CPU 
resources, and the packet-loss signatures generated by such contention, were all 
obtained by actually executing the data transfer. That is, there was an ongoing data 
transfer between NCSA and SDSC and a physical background process that created 
contention for CPU resources. The resulting packet-loss signatures were generated by 
such contention, and these signatures were analyzed by the classification mechanism 
in real time (i.e., as the transfer was progressing). Thus all of these aspects of the 
problem were real.  

   However, the results of the classification were provided to the simulator, which 
then determined the new (virtual) sending rate and new (virtual) loss rate by applying 
the congestion control mechanism described in Section (3.1). The simulator then 
computed the number of (virtual) seconds that had elapsed since its last invocation, 
and, based on this and the previous (virtual) sending rate, determined the amount of 
data that would have been transferred during that time. It is the throughput calculated 
by the simulation that is presented in the experimental results discussed in the 
following section.  

   We chose to use this approach because the physical network connection between 
the nodes on the TeraGrid was limited by the one gigabit link between the compute 
nodes and the backbone network. We wanted to study the impact of the classification 
mechanism with essentially the same parameters as those used to define the 
HighSpeed TCP response function, which assumed a 10 gigabit per second 
connection.  

 
 



6. Experimental Results 
 

Total  trials Percentage 
of 

inconclusive 
classifications 

Percentage 
of incorrect 

classifications 

P(CPU|CPU) Av. TP with 
Classifier 

Av. TP 
without 
Classifier 

 
265 

 
5.6% 

 
0.7% 

 
94% 

 
8697 mps 

 

 
168 mps 

The results of these experiments are shown in the table above. Column 1 shows that 
there were 265 congestion events in all six trials combined. Column 2 shows the 
percentage of the congestion events for which the classification was inconclusive 
(returning a probability of 50% for each cause of data loss). Such inconclusive 
classifications generally occurred at very low loss rates (i.e., less than 0.0001). 
Column 3 shows the percentage of incorrect diagnoses (0.7%, or 2 out of 265), where 
the classifier diagnosed the loss as being network related when it was in fact CPU 
related. This again occurred at very loss rates.  Column 4 shows the percentage of 
times that the classifier diagnosed the loss as being CPU related when this was in fact 
the cause (94%). Columns 6 and 7 show the average throughput in megabits per 
second when the results of the classifier were being utilized (column 6), and when 
they were not (column 7).  

   As can be seen, the diagnostic abilities of the classification mechanism were 
quite good, correctly diagnosing the cause of data loss 94% of the time. When it was 
unsuccessful, it returned an inconclusive rather than incorrect diagnosis in a vast 
majority of cases (15 out of 17). These results also demonstrate that having a real-
time classification mechanism can significantly improve performance when the cause 
of data loss is contention for CPU resources (in fact, by orders of magnitude). These 
are all very encouraging results.  

 
7 Conclusions 

 
In this paper, we have presented a highly accurate classification mechanism that 

can distinguish between data loss caused by contention for CPU resources from that 
caused by network contention at loss rates as low as 0.0001. We have also shown that 
the classifier can be quite easily integrated into the control structure of FOBS, an 
existing high-performance data transfer system for computational Grids. We further 
discussed that the classifier is efficient enough to execute in real time, incurring no 
reduction in the transfer rate when the data sender is executing on a dedicated dual-
processor node. Otherwise, we have observed a performance penalty of 
approximately 12%. However, the results presented here show that this is a very low 
price to pay when the cause of data loss is largely CPU related.  

   One question that this research does not answer is how often data will be lost due 
to contention for CPU resources. Given the highly dynamic nature of a Grid 
environment, it is reasonable to think that contention for CPU resources can become 
problematic during the execution of a long-running application. In such 
circumstances, the technology descried here could be quite useful. However, if data 
loss were always caused by network contention, then this technology would not be 



particularly helpful. Extensive monitoring of long-running Grid applications may help 
to shed light on this question.   
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