
Real Time Classification Mechanism for the Causes of
Data Loss and its Integration into a High Performance

Data Transfer System for Grid Computing

Phillip M. Dickens

Department of Computer Science, University of Maine, Orono, Maine 04469
dickens@umcs.maine.edu

Abstract. The importance of high-performance communication to the success of Grid
applications makes it critical to develop communication protocols that can take full
advantage of the underlying bandwidth when system conditions permit, can back-off in
response to observed (or predicted) contention within the network, and can accurately
distinguish between these two situations. Achieving this goal requires the development
of classification mechanisms that are both accurate and efficient enough to execute in
real time. In this paper, we discuss one such classifier that is based on the analysis of
the patterns of packet loss and the application of Bayesian statistics. We describe two
different analysis techniques that we apply to such patterns, one based on complexity
theory and one based on a simple measure of the distance between successive packet
losses. In addition, we discuss the integration of the classification mechanism into the
control structures of an existing high-performance data transfer system for
computational Grids. We present empirical results showing that the classifier is
extremely accurate, efficient enough to execute in real time, and that utilizing the
information it provides can have a tremendous impact on the performance of a large-
scale data transfer.

Keywords: Communication protocols; high-performance networks;
Classification Mechanisms; Grid Computing

1 Introduction

Computational Grids create powerful distributed computing systems by connecting
geographically distributed computational/storage facilities via high-performance
networks. Such systems can aggregate tremendous computational power on a single
large-scale problem, enabling scientific discovery in areas that were heretofore
impossible to explore. Critical to the success of such large-scale Grid applications is a
high-performance networking infrastructure that can efficiently move extreme-scale
data sets between nodes on the Grid. However, even though advances in networking
technologies have significantly increased the bandwidth available to Grid
applications, actually obtaining a large percentage of such bandwidth has turned out
to be a difficult issue.

mailto:dickens@umcs.maine.edu

One problem is that TCP, the transport protocol of choice for most wide-area data
transfers, was not designed for and does not perform well in the high-bandwidth,
high-delay networks typical of computational Grids. This has led to significant
research activity aimed at modifying TCP itself to make it compatible with this new
network environment (e.g., Highspeed TCP [15]), as well as systems that monitor the
end-to-end network to diagnose and fix performance problems (e.g., [2, 22]). An
alternative strategy has been the development of application-level protocols that can
largely circumvent the performance issues of TCP. This includes, for example, UDP-
based protocols (e.g., FOBS[10], UDT[16]), and approaches that spawn multiple
TCP streams for a single data flow (e.g., GridFTP [4]).

 UDP-based protocols can be attractive for two reasons: First, some applications
require a smooth transfer rate that can be difficult to obtain with TCP. Second, such
protocols are well-suited for high-bandwidth, high-delay network environment and
are able to obtain a significant percentage of the underlying bandwidth. However,
because UDP-based protocols execute at the application level, the protocol developer
must provide a mechanism to detect and respond fairly to competing traffic flows.
Also, application-level protocols can lose data packets for any number of reasons
unrelated to network congestion. This second issue can result in very poor
performance if the control mechanisms interpret such loss as growing network
contention and, in response, trigger very aggressive congestion control actions.

 This research is developing a classification mechanism that can be used by
UDP-based protocols to distinguish between data loss caused by network contention
from loss caused by factors outside of the network domain. In particular, we focus on
distinguishing between network contention and contention for CPU resources. This
distinction is important because contention for CPU cycles can be a major contributor
to packet loss in UDP-based protocols. This happens, for example, when the
receiver’s socket-buffer becomes full, additional data bound for the receiver arrives at
the host, and the receiver is switched out and thus unavailable to pull such packets off
of the network. The receiver could be switched out for any number of reasons
including preemption by a higher priority system process, interrupt processing, paging
activity, and multi-tasking. This last point is particularly important in a Grid
environment where resource availability, including the CPU cycles allocated to a
particular application, can fluctuate significantly during the execution of a long-
running application.

 To illustrate the importance of this issue, consider a data transfer with a sending
rate of one gigabit per second and a packet size of 1024 bytes. Given these
parameters, a packet will arrive at the receiving host around every 7.9 micro-seconds,
which is approximately the amount of time required to perform a context switch on
the TeraGrid systems [3] used in this research (as measured by Lmbench [21]). Thus
the receiver does not need to be switched-out long before packets can begin to get
dropped. We have observed, for example, tens to hundreds of packets being dropped
when the operating system creates three to four new processes.

 This paper discusses the development of a classification mechanism for the
causes of data loss that is both very accurate and highly efficient. Also, we show how
it is integrated into the control structures of an existing UDP-based data transfer
system, and provide experimental results showing that the use of the classifier can
result in significant performance gains. The classification mechanism is based on the

analysis of what we term packet-loss signatures, which show the distribution (or
pattern) of those packets that successfully traversed the end-to-end transmission path
and those that did not. These signatures are essentially large selective-
acknowledgment packets that are collected by the receiver and delivered to the sender
upon request. We chose the name “packet-loss signatures” based on previous studies
showing that different causes of data loss have different “signatures” [12]. In this
paper, we briefly describe how the signatures are analyzed and used by the classifier,
and direct the interested reader to this same paper for a detailed discussion of the
approach.

 The major contribution of this paper is showing how a classification system can
be developed, integrated into the control mechanisms of a data transfer system, and
used to increase performance. This paper should be of interest to a large segment of
the Grid community given the interest in and importance of exploring new approaches
by which data transfers can be made more intelligent and efficient.

 The rest of the paper is organized as follows. In Section 2, we discuss related
work. In Section 3, we describe FOBS, the data transfer system in which the
classification mechanism is implemented. We provide an overview of the
classification algorithms in Section 4. In Section 5, we discuss the experimental
design and provide the experimental results in Section 6. We provide our conclusions
in Section 7.

2 Related Work

The issue of distinguishing between causes of data loss has received significant
attention within the context of TCP for hybrid wired/wireless networks (e.g., [5, 6,
8]). The idea is to distinguish between losses caused by network congestion and
losses caused by errors in the wireless link, and to trigger TCP’s aggressive
congestion control mechanisms only in the case of congestion-induced losses. This
ability to classify the root cause of data loss, and to respond accordingly, has been
shown to improve the performance of TCP in this network environment [5, 20]. These
classification schemes are based largely on simple statistics on observed round-trip
times, observed throughput, or the inter-arrival time between ACK packets[7, 20].
Debate remains, however, as to how well techniques based on such simple statistics
can classify loss [20]. Another approach being pursued is the use of Hidden Markov
Models where the states are characterized by the mean and standard deviation of the
distribution of round-trip times [20].

 Our research has similar goals, although we are developing a finer-grained
classification system to distinguish between network contention and contention for
CPU resources. Another major difference is that the analysis of packet-loss signatures
appears to be a more robust classifier than (for example) statistics on round-trip times,
and could be substituted for such statistics within the mathematical frameworks
established in these related works.

 Also related are efforts such as Web100 [22] and Pathdiag [1], that provide
sophisticated monitoring systems and tools with which performance issues in TCP
networks can be diagnosed and fixed. The goal of these systems is to provide ordinary
users, i.e., those without significant networking expertise, with high-performance

networking in a completely transparent manner. A major difference between our work
and these related projects is the timescale at which each operates. In particular, these
projects are iterative in nature, with possible consultation with network administrators
between iterations. Our classification mechanism performs on a much smaller
timescale, where it very quickly computes the probability that the cause of data loss
was within the network or outside of the network. However, it is unable to diagnose
performance problems such as inadequate buffer sizes, under-configured network
paths, or problems with the software stack as these related works can provide. Thus
while the goal of providing high-performance networking are shared, the problems
being addressed are quite different. In fact, such work is orthogonal to our efforts in
that any improvements to the networking infrastructure such projects can provide
would also benefit the performance of our data transfer system.
 Research into other application-level alternatives to TCP is also related (e.g.,[17]).
However, projects such as this do not attempt to determine the root cause(s) of packet
loss that is a major focus of this research.

3 Data Transfer System

The test-bed for this research is FOBS1: a high-performance data transfer system for
computational Grids [10]. FOBS is a UDP-based data transfer system that provides
reliability through a selective-acknowledgment and retransmission mechanism. It is
precisely the information contained within the selective-acknowledgment packets that
is collected and analyzed by the classification mechanism. FOBS can be executed as a
window-based protocol where all packets within the current transmission window are
put onto the network at a constant sending rate. It can also be used as a rate-based
system, where a constant sending rate is used until a congestion event occurs, at
which point a new sending rate is determined based on the long-term loss rate.
 FOBS is multi-threaded to take advantage of nodes with multiple processors or
processors with multiple cores. In such cases, the classification mechanism can
execute as a separate thread that runs concurrently with the ongoing transfer. In fact,
we have observed that when the data sender is executing on a dedicated node with
dual-processors, there is no additional cost incurred by executing the classifier (that
is, the data transfer rate is unchanged when it is executed).

3.1 Congestion Control

An important design goal for FOBS is that it competes fairly with other network
flows. Toward this end, FOBS uses a modified version of the TCP Friendly Rate
Control (TFRC) protocol [18] for its congestion control. TFRC is equation-based,
where the sending rate is computed as a function of the steady-state loss rate. The
primary difference is that FOBS replaces the TFRC response function with that
derived for Highspeed TCP [15], a more aggressive version of TCP for high-
performance network environments with very low loss rates. The use of this more
aggressive congestion control mechanism is completely appropriate given that FOBS

1 Fast Object-Based Data Transfer System

is designed for the well-provisioned, high-bandwidth, high-delay networks associated
with computational Grids, and is not intended for the Internet1 environment.
 We do not discuss the derivation of the HighSpeed TCP response function here, and
direct the interested reader to [15] for a complete analysis. For our purposes, it is
sufficient to note that a parameter termed Low_Window is defined, which sets the
lower bound on the congestion window at which the HighSpeed TCP response
function will be used. That is, if the current congestion window is greater than
Low_Window, then the HighSpeed response function will be used to determine the
size of the next congestion window in the event of packet loss. This response function
is defined as:

(1)

./12.0 835.0pw =

Otherwise, the standard TCP response function will be used2:

(2) w /2.1= p

where w is the size of the next congestion window and p is the loss rate.

3.1.1 Integration of Classifier into FOBS

While the algorithms used by the classification mechanism are somewhat complex,
the way the information is used by the controller is relatively simple. When a
congestion event occurs, the classifier is queried to determine the cause of such loss.
The classifier then assigns a probability to the event that the data loss was caused by
contention for CPU resources (and thus one minus this probability that the cause of
loss was network related). If the probability exceeds a certain threshold that the cause
of data loss was CPU related (currently set at 95%), then no corrective action is taken
and the loss rate is not modified. Otherwise, the cumulative loss rate is updated
appropriately, and Equation (1) or (2) is invoked to determine the new sending rate
(depending upon the size of the current congestion window).

4 Classification Mechanism

Having discussed how the results of the classification mechanism are used in FOBS,
we briefly discuss how these probabilities are computed. The interested reader is
directed to [12, 13] for a complete discussion of the statistical analysis.

4.1 Classification Metrics

The classification mechanism is based on the application of Bayesian statistics,
which centers on how the value of certain metrics can be used to identify a cause of

−2 As noted by the authors, this equation assumes a loss rate that is less than 10 where the

effects of TCP retransmit timeouts can be largely ignored.

2

packet loss. Assume there are two causes of data loss: network contention and CPU
contention. The idea is to find a metric that has very different statistical properties
under the two causes of data loss, the greater the difference the more accurate the
classification.

 Our research has identified two excellent metrics upon which the classification
mechanism is based, both of which are derived from the packet-loss signatures. The
first metric is the complexity of the packet-loss signatures that is derived using
techniques from symbolic dynamics. In symbolic dynamics[19], the packet-loss
signature is viewed as a sequence of symbols drawn from a finite discrete set, which
in our case is two symbols: 1 and 0. One diagnostic that quantifies the amount of
structure in the sequence is complexity. There are numerous ways to quantify
complexity. In this discussion, we have chosen the approach of d’Alessandro and
Politi [9] which has been applied with success to quantify the complexity and
predictability of time series of hourly precipitation data [14]. The approach of
d’Alessandro and Politi is to view the stream of 1s and 0s as a language and focus on
subsequences (or words) of length n in the limit of increasing values of n (i.e.,
increasing word length). First-order complexity, denoted by C1, is a measure of the
richness of the language’s vocabulary and represents the asymptotic growth rate of
the number of admissible words of fixed length n occurring within the string as n
becomes large. The number of admissible words of length n, denoted by Na(n), is
simply a count of the number of distinct words of length n found in the given
sequence. The first-order complexity (C1) is defined as

(3) C
1
= lim (log2 Na(n)) / n .

 n−>∞

The first-order complexity metric characterizes the level of randomness or periodicity
in a string of symbols. A string consisting of only one symbol will have one
admissible word for each value of n, and will thus have a value of C1 = 0. A purely
random string will, in the limit, have a value of C1 = 1. A string that is comprised of a
periodic sequence, or one comprising only a few periodic sequences, will tend to have
low values of C1. We have developed simple empirical models that relate complexity
measures to the different causes of data loss as a function of the loss rate, and it is
these models that are used by the classification mechanism.

 While the calculation of complexity measures is simple and efficient, the size of
the words that can be examined in real time (without negatively affecting
performance) is somewhat limited. In the experiments reported here, the maximum
word size was set to n = 17, which was sufficient for discerning the basic structure of
the signatures (i.e., either random or periodic) when the loss rate was greater than
approximately 0.0004. However, for significantly lower loss rates, the dropped
packets (and the corresponding 0s in the packet-loss signatures) were too far apart to
be detected with a word size of 17. While increasing the word size can help, it cannot
be increased enough to detect the randomness in the string at very low loss rates.
Thus, complexity measures are unable to serve as a classification metric at very low
loss rates.

To address this issue, we developed another metric based on the distance between two
consecutive dropped packets. The idea is that the fundamental structure of the packet-
loss signatures will not be significantly different at very low loss rates, and thus data
loss caused by CPU contention will still be largely contiguous in the signature, and
loss caused by NIC contention will still be random. To develop this metric, we define
“success” as two consecutive packet drops (i.e., two consecutive 0s in the signature).
We then performed a large number of experiments to learn the proportion of
successes for each cause of data loss at very low loss rates. These proportions were
then used as parameters to a beta distribution (that provides the probability of a given
proportion of successes), in hopes that the statistical properties of the distribution
would be very different under different causes of packet loss. The beta distribution
takes two parameters, a and b, and has the following density function, where p is the
proportion of successes.

(4) pa-1 (1-p)b-1

Figure (1) shows the considerable difference in the statistical properties of the
complexity metric under both causes of data loss. Figure (1) further shows the
empirical data models derived in association with complexity measures. This figure
demonstrates quite clearly the power of this metric in distinguishing between causes
of data loss. Due to space constraints, we do not show the differences of the statistical
properties for the beta distribution.

0.300

0.400

0.500

0.600

0.700

0.000 0.010 0.020 0.030 0.040 0.050

Fitted Data Models

Loss Rate

C
o
m

p
le

x
it
y
 M

e
a
s
u
re

s

Net Contention
Fitted Data Model
CPU Contention
Fitted Data Model

 Figure 1. This figure shows the mean complexity measures at each data bin,
and 95% confidence intervals around the mean, for each cause of data loss.
Also, it shows how the data lay along the fitted data model.

5. Experimental Design

All experiments were conducted on the TeraGrid [3]: a high-performance
computational Grid that connects various supercomputing facilities via networks

operating at 40 gigabits per second. The two facilities used in these experiments were
the San Diego Supercomputing Center (SDSC), and the National Center for
Supercomputing Applications (NCSA, located at the University of Illinois, Urbana).
The host platform at each facility was an IA-64 Linux cluster where each compute
node consisted of dual 1.5 GHz Intel Itanium2 processors. The operating system at
both facilities was Linux 2.4.21SMP. Each compute node had a gigabit Ethernet
connection to the TeraGrid network.

 We were interested in whether or not the classification mechanism could
improve performance in the case where data loss was caused by contention for CPU
resources. To test this, we executed one set of transfers where the results of the
classification system were used by the controller, and another set where they were not
used (and thus all data loss was assumed to be network related). We implemented a
background process on the data receiver which periodically caused data to be
dropped. The number of packets lost per congestion event was based largely on
operating system behavior (e.g., process scheduling), and was thus somewhat out of
our control. However, the long-term loss rate in all experiments was on the order of
0.0002. We performed three long data transfers (of about 3 hours each), under each
condition (i.e., results of classifier used/not used). The results of interest were the
percentage of successful classifications and the throughput achieved in each instance.
The classifier used the beta distribution to compute the required probabilities when
the loss rate was <= 0.0004. Otherwise, the complexity measures were used.

 We used the technique of direct-execution simulation [11] to determine the
throughput achieved in each situation. In this approach, the behavior of the network
connection, the behavior of the system in the presence of contention for CPU
resources, and the packet-loss signatures generated by such contention, were all
obtained by actually executing the data transfer. That is, there was an ongoing data
transfer between NCSA and SDSC and a physical background process that created
contention for CPU resources. The resulting packet-loss signatures were generated by
such contention, and these signatures were analyzed by the classification mechanism
in real time (i.e., as the transfer was progressing). Thus all of these aspects of the
problem were real.

 However, the results of the classification were provided to the simulator, which
then determined the new (virtual) sending rate and new (virtual) loss rate by applying
the congestion control mechanism described in Section (3.1). The simulator then
computed the number of (virtual) seconds that had elapsed since its last invocation,
and, based on this and the previous (virtual) sending rate, determined the amount of
data that would have been transferred during that time. It is the throughput calculated
by the simulation that is presented in the experimental results discussed in the
following section.

 We chose to use this approach because the physical network connection between
the nodes on the TeraGrid was limited by the one gigabit link between the compute
nodes and the backbone network. We wanted to study the impact of the classification
mechanism with essentially the same parameters as those used to define the
HighSpeed TCP response function, which assumed a 10 gigabit per second
connection.

6. Experimental Results

Total trials Percentage
of

inconclusive
classifications

Percentage
of incorrect

classifications

P(CPU|CPU) Av. TP with
Classifier

Av. TP
without
Classifier

265

5.6%

0.7%

94%

8697 mps

168 mps

The results of these experiments are shown in the table above. Column 1 shows that
there were 265 congestion events in all six trials combined. Column 2 shows the
percentage of the congestion events for which the classification was inconclusive
(returning a probability of 50% for each cause of data loss). Such inconclusive
classifications generally occurred at very low loss rates (i.e., less than 0.0001).
Column 3 shows the percentage of incorrect diagnoses (0.7%, or 2 out of 265), where
the classifier diagnosed the loss as being network related when it was in fact CPU
related. This again occurred at very loss rates. Column 4 shows the percentage of
times that the classifier diagnosed the loss as being CPU related when this was in fact
the cause (94%). Columns 6 and 7 show the average throughput in megabits per
second when the results of the classifier were being utilized (column 6), and when
they were not (column 7).

 As can be seen, the diagnostic abilities of the classification mechanism were
quite good, correctly diagnosing the cause of data loss 94% of the time. When it was
unsuccessful, it returned an inconclusive rather than incorrect diagnosis in a vast
majority of cases (15 out of 17). These results also demonstrate that having a real-
time classification mechanism can significantly improve performance when the cause
of data loss is contention for CPU resources (in fact, by orders of magnitude). These
are all very encouraging results.

7 Conclusions

In this paper, we have presented a highly accurate classification mechanism that

can distinguish between data loss caused by contention for CPU resources from that
caused by network contention at loss rates as low as 0.0001. We have also shown that
the classifier can be quite easily integrated into the control structure of FOBS, an
existing high-performance data transfer system for computational Grids. We further
discussed that the classifier is efficient enough to execute in real time, incurring no
reduction in the transfer rate when the data sender is executing on a dedicated dual-
processor node. Otherwise, we have observed a performance penalty of
approximately 12%. However, the results presented here show that this is a very low
price to pay when the cause of data loss is largely CPU related.

 One question that this research does not answer is how often data will be lost due
to contention for CPU resources. Given the highly dynamic nature of a Grid
environment, it is reasonable to think that contention for CPU resources can become
problematic during the execution of a long-running application. In such
circumstances, the technology descried here could be quite useful. However, if data
loss were always caused by network contention, then this technology would not be

particularly helpful. Extensive monitoring of long-running Grid applications may help
to shed light on this question.

References

[1]. Enabling High Performance Data Transfers. http://www.psc.edu/networking/projects/tcptune/
[2]. Net100: Development of Network Aware Operating Systems.
 http://www.csm.ornl.gov/~dunigan/net100/
[3]. The Teragrid Project. http://www.teragrid.org
[4]. Allcock, W., et.al. Secure, Efficient Data Transport and Replica Management for High-

Performance Data-Intensive Computing. In the Proceedings of the IEEE Mass Storage
Conference, (2001).

[5]. Balakrishnan, S., Padmanabhan, V., Seshan, S. and Katz, R. A Comparison of Mechanisms for
Improving TCP Performance Over Wireless Links. IEEE/ACM Transactions of Networking, 5
(6). 756-769.

[6]. Balakrishnan, S., Seshan, S., Amir, E. and Katz, R., Improving TCP/IP performance over
wireless networks. In the Proceedings of the ACM MOBICON, (1995). November 1995.

[7]. Barman, D. and Matta, I., Effectiveness of Loss Labeling in Improving TCP Performance in
Wired/Wireless Networks. In the Proceedings of the ICNP 2002: The 10th IEEE International
Conference on Network Protocols, (Paris, France, 2002). November 2002.

[8]. Biaz, S. and Vaidya, N., Discriminating Congestion Losses From Wireless Losses using Inter-
Arrival Times at the Receiver. In the Proceedings of the IEEE Symposium ASSET '99,
(Richardson, TX, 1999). March 1999.

[9]. D'Alessandro, G. and Politi, A. Hierarchical Approach to Complexity with Applications to
Dynamical Systems. Physical Review Letters, 64 (14). 1609-1612.April 1990.

[10]. Dickens, P., FOBS: A Lightweight Communication Protocol for Grid Computing. In the
Proceedings of the Europar 2003, (2003).

[11]. Dickens, P., Heidelberger, P. and Nicol, D. Parallelized Direct Execution Simulation of
Message-Passing Parallel Programs. IEEE Transactions on Parallel and Distributed Systems, 7
(10). 1090-1105.October 1996.

[12]. Dickens, P., Larsen, J. and Nicol, D., Diagnostics for Causes of Packet Loss in a High
Performance Data Transfer System. In the Proceedings of the 2004 IPDPS Conference: The
18th INternational Parallel and Distributed Processing Symposium, (Santa Fe, New Mexico,
2004).

[13]. Dickens, P. and Peden, J., Towards a Bayesian Statistical Model for the Classification of Causes
of Data Loss. In the Proceedings of the International Conference on High Performance
Computing and Communications, LNCS 3726.

[14]. Elsner, J. and Tsonis, A. Complexity and Predictability of Hourly Precipitation. Journal of the
Atmospheric Scinces, 50 (3). 400-405.

[15]. Floyd, S. Modifying TCP's Congestion Control for High Speeds. http://www.aciri.org/floyd
[16]. Gu, Y., Hong, X. and Grossman, R.L., Experiences in Design and Implementation of a High

Performance Transport Protocol. In the Proceedings of the SC 2004, (Pittsburgh, PA).
November 6 - 12.

[17]. Hacker, T., Noble, B. and Athey, B., Improving Throughput and Maintaining Fairness using
Parallel TCP. In the Proceedings of the IEEE INFOCOM '04, (2004).

[18]. Handley, M., Floyd, S., Padhye, J. and Widmer, J. [RFC 3448] TCP Friendly Rate Control
(TFRC): Protocol Specification.

[19]. Hao, B.-L. Elementary Symbolic Dynamics and Chaos in Dissipative SystemsWorld Scientific,
1988.

[20]. Liu, J., Matta, I. and Crovella, M., End-To-End Inference of Loss Nature in a Hybrid
Wired/Wireless Environment. In the Proceedings of the Modeling and Optimization in Mobile,
Ad Hoc, and Wireless Networks (WiOpt '03), (Sophia-Antipolis, France, 2003).

[21]. LMbench. http://www.bitmover.com/lmbench/
[22]. Mathis, M., Heffner, J. and Reddy, R. Web100: Extended TCP instrumentation for research,

education and diagnosis. ACM Computer Communications Review, 33 (3).July 2003.

http://www.psc.edu/networking/projects/tcptune/
http://www.csm.ornl.gov/%7Edunigan/net100/
http://www.teragrid.org/
http://www.aciri.org/floyd
http://www.bitmover.com/lmbench/

