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SYNONYMS 

 

Ear biometrics = Ear Recognition 

Force Field Feature Extraction = Field Line Feature Extraction; 

Convergence Feature Extraction = Convergence 

 

 

 

DEFINITION  

 

Hurley et al [1,2,3] have developed a pair of invertible linear transforms called the 

force field transform and potential energy transform which transforms an ear im-

age into a force field by pretending that pixels have a mutual attraction proportional to 

their intensities and inversely to the square of the distance between them rather like 

Newton's Law of Universal Gravitation. Underlying this force field there is an asso-

ciated potential energy field which in the case of an ear takes the form of a smooth 

surface with a number of peaks joined by ridges.  The peaks correspond to potential 

energy wells and to extend the analogy the ridges correspond to potential energy 

channels. Since the transform also turns out to be invertible, all of the original infor-

mation is preserved and since the otherwise smooth surface is modulated by these 

peaks and ridges, it is argued that much of the information is transferred to these fea-

tures and that therefore they should make good features. An analysis of the mechanism 

of this algorithmic field line feature extraction approach leads to a more powerful 

method called convergence feature extraction based on the divergence of force 

direction revealing even more information in the form of anti-wells and anti-channels. 

 

 



 

MAIN BODY TEXT 

1  Introduction 

The last 10 years or so has seen increasing interest in ears as a biometric with signigi-

cant contributions from computer vision researchers [1,2,3,4,5,6,7,8].  In this context 

we have developed the Force Field Transform which effectively filters an ear image 

by convolving it with a huge inverse square kernel more than four times the size of the 

image, the force then being the gradient of the resulting massively smoothed image.  

Force field feature extraction subsequently exploits the directinonal properties of the 

force field to automaticlally locate ear features in the form of potential channels and 

wells. The force field paradigm allows us to draw upon a wealth of proven techniques 

from vector field calculus; for example we exploit the divergence operator on the 

force field direction yielding a nonlinear operator which we call convergence of force 

direction leading to the even more powerfutl convergence feature extration.  The ex-

treme kernel size results in the smoothed image having a general dome shape which 

gives rise to brightness sensitivity issues, but we argue by showing that the field line 

features are hardly distorted that this will have little overall effect and this conclusion 

is borne out by including brightness variation in our recognition tests.  On the other 

hand, the dome shape leads to an automatic extraction advantage and this is demon-

strated by using deliberately poorly registered and poorly extracted images in recogni-

tion tests and then comparing the results with those for PCA (principal component 

analysis) under the same conditions, where we see that the ear images have to be accu-

rately extracted and registered for PCA to achieve comparable results.  The technique 

is validated by achieving a recognition rate of 99.2% on a set of 252 ear images taken 

from the XM2VTS face database [10].  Not only is the inherent automatic extraction 

advantage demonstrated but we also show that it performs even more favourably 

against PCA under variable brightness conditions, and we also demonstrate its excel-

lent noise performance by showing that noise has little effect on recognition results. 

Thus we have validated the technique by achieving good ear recognition results, and 

in the process we have contributed to the mounting evidence that the human ear has 

considerable biometric value. 

 

2   Ear Feature Extraction 

2.1   Force Field Feature Extraction 

Here we describe the force field transform and algorithmic field line feature extraction 

before introducing convergence feature extraction.  The mathematical concepts we use 

can be found in basic works on electromagnetics [9] and a more detailed description of 

the transform can be found in [3].  We consider faster computation using convolution 



 

and the FFT (Fast Fourier Transform) and also consider the question of brightness 

sensitivity both theoretically and by demonstration. 

The image is first transformed to a force field by treating the pixels as an array of 

mutually attracting particles that attract each other according to the product of their 

intensities and inversely to the square of the distances between them.  Each pixel is 

assumed to generate a spherically symmetrical force field so that the total force F(rj) 

exerted on a pixel of unit intensity at the pixel location with position vector rj by a 

remote pixels with position vector ri and pixel intensities P(ri) is given by the vector 

summation, 
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The underlying energy field E(rj) is similarly described by, 
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To calculate the force and energy fields for the entire image these calculations should 

be performed for every pixel but this requires the number of applications of equations 

1 and 2 to be proportional to the square of the number of pixels, so for faster calcula-

tion the process is treated as a convolution of the image with the force field corres-

ponding to a unit value test pixel, and then invoking the Convolution Theorem to 

perform the calculation as a frequency domain multiplication, the result of which is 

then transformed back into the spatial domain.  The force field equation for an M N 

pixel image becomes, 

)]()([1 imageforcefieldunitNMforcefield                      (3) 

where  stands for the Fourier Transform and 
1
 for its inverse. Figure 1 shows 

how to implement this in Mathcad in which 1j denotes the complex operator and cfft 

and icfft denote the Fourier and inverse Fourier transforms, respectively.  Also, be-

cause the technique is based on a natural force field there is the prospect of a hardware 

implementation in silicon by mapping the image pixels to electric charges, which 

would lead to very fast real time force field calculation. 
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Figure 1  Force field by convolution in Mathcad.  

Figure 4(a) demonstrates field line feature extraction for an ear image where a set of 

44 test pixels is arranged around the perimeter of the image and allowed to follow the 

field direction so that their trajectories form field lines which capture the general flow 

of the force field.  The test pixel positions are advanced in increments of one pixel 

width, and the test pixel locations are maintained as real numbers, producing a 

smoother trajectory than if they were constrained to occupy exact pixel grid locations.  

Notice the two obvious potential wells in the lower part of the field. 

    The effect of brightness change will first be analysed by considering its effect on 

the energy field and then confirmed by visual experiment.  Should the individual pixel 

intensity be scaled by a factor a and also have and an additive intensity component b, 

we would have, 
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We see that scaling the pixel intensity by the factor a merely scales the energy intensi-

ty by the same factor a, whereas adding an offset b is more troublesome, effectively 

adding a pure energy component corresponding to an image with constant pixel inten-

sity b.  The effect of the offset and scaling is shown in Figure Figure 2 with the channels 

superimposed.  We see that scaling by a factor of 10 in (e) has no effect as expected.  

The original image in (a) has a mean value of 77 and a standard deviation of 47.  Im-

ages (b) to (d) show the effect of progressively adding offsets of one standard devia-

tion.  At one standard deviation the effect is hardly noticeable and even at 3 standard 

deviations the change is by no means catastrophic as the channel structure alters little.  

We therefore conclude that operational lighting variation in a controlled biometrics 

environment will have little effect.  These conclusions are borne out by the results of 

the corresponding recognition experiments in Table 1. 



 

 

o               
(a) original         (b) 1 std. dev.    (c) 2 std. devs.   (d) 3 std. devs.  (e) scaled 10 

Figure 2  Effect of additive and multiplicative brightness changes 

2.2   Convergence Feature Extraction 

The analytical method came about as a result of analyzing in detail the mechanism of 

field line feature extraction.  As shown in Figure 4(d), when the arrows usually used 

to depict a force field are replaced with unit magnitude arrows, thus modeling the 

directional behavior of exploratory test pixels, it becomes apparent that channels and 

wells arise as a result of patterns of arrows converging towards each other, at the inter-

faces between regions of almost uniform force direction.  As this brings to mind the 

divergence operator of vector calculus, it was natural to investigate the nature of any 

relationship that might exist between channels and wells and this operator.  This re-

sulted not only in the discovery of a close correspondence between the two, but also 

revealed extra information corresponding to the interfaces between diverging arrows, 

leading to a more general description of channels and wells in the form of a mathemat-

ical function in which wells and channels are revealed to be peaks and ridges respec-

tively in the function value.  The new function maps the force field to a scalar field, 

taking the force as input and returning the additive inverse of the divergence of the 

force direction.  The function will be referred to as the force direction convergence 

field C(r) or just convergence for brevity.  A more formal definition is given by 
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rf , A is incremental area, and ld  is its boundary outward normal.   

This function is real valued and takes negative values as well as positive ones where 

negative values correspond to force direction divergence.  Figure 3 shows a particular 

implementation of convergence in Mathcad where FF represents the force field and 

DF is the direction field. 
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Figure 3  Convergence implemented in Mathcad 

 

We must also stress that convergence is non-linear because it is based on force direc-

tion rather than force.  This nonlinearity means that we are obliged to perform the 

operations in the order shown; we cannot take the divergence of the force and then 

divide by the force magnitude.  Div(grad/|grad|)  (div grad)/|grad|.  This is quite easi-

ly illustrated by a simple example using the scalar field e
x
 in Equation 6, 

1

|grad|grad)/ (div

0

|)grad|(grad/ div       

x

x

x

x

x

x

x

x

e

e

e

e

e

e

e

e
i

i
                         (6) 

where i is a unit vector in the x direction.  This illustrates that even though conver-

gence looks very much like a Laplacian operator, it definitely is not. 

 

 
     (a)  field lines           (b) convergence field      (c) superimposition       (d) force direction   

Figure 4  Convergence field 

Figure 4 shows the relationship between field lines (a) and convergence (b) by merg-

ing the two fields in (c).  A small rectangular section of the force direction field indi-

cated by a small rectangular insert in (a) and (b) is shown magnified in (d).  We can 



 

see clearly how channels coincide with white convergence ridges and also that wells 

coincide with convergence peaks which appear as bright spots.  Notice the extra in-

formation in the center of the convergence map that is not in the field line map.  Nega-

tive convergence values representing antichannels appear as dark bands, and positive 

values corresponding to channels appear as white bands.  We see that the antichannels 

are dominated by the channels, and that the antichannels tend to lie within the confines 

of the channels.  Notice also the correspondence between converging arrows and 

white ridges, and between diverging arrows and black ridges.  The features detected 

tend to form in the center of the field due to its overall dome shape, with channels and 

wells tending to follow intensity ridges and peaks whereas antichannels and antiwells 

tend to follow intensity troughs and hollows. 

 

3   Ear Recognition 

The technique was validated on a set of 252 ear images taken from 63 subjects se-

lected from the XM2VTS face database [10] by multiplicative template matching of 

ternary thresholded convergence maps where levels less than minus one standard 

deviation are mapped to -1, whilst those greater than one standard deviation map to 

+1, and those remaining map to 0.  A threshold level of one standard deviation was 

chosen experimentally resulting in the template channel thickness shown in Figure 

5(c).  This figure also shows a rectangular exclusion zone centered on the convergence 

magnitude centroid; the centroid of the convergence tends to be stable with respect to 

the ear features and this approach has the added advantage of removing unwanted 

outliers such as bright spots caused by spectacles.  The size of the rectangle was cho-

sen as 71 51 pixels by adjusting its proportions to give a good fit for the majority of 

the convergence maps.   Notice how for image 000-2 which is slightly lower than the 

other three, that the centroid-centered rectangle has correctly tracked the template 

downwards. 



 

 

 

  
  000-1-L1    000-2-L1      000-3-L1     000-4-L1 

(a) 

(b) 

(c) 

(a) 141 101 Ear images     (b) Convergence fields     (c) Thresholded convergence maps 

Figure 5  Feature extraction for subject 000 

The inherent automatic extraction advantage was demonstrated by deliberately not 

accurately extracting or registering the ears in the sense that the database consists of 

141 101 pixel images where the ears have only an average size of 111 73 and are 

only roughly located by eye in the center of these images.  This can be seen clearly in 

Figure 5(a) where we see a marked variation both in vertical and horizontal ear-

location, and also that there is a generous margin surrounding the ears.  The force field 

technique gives a correct classification rate of 99.2% on this set, whereas running 

PCA [11] on the same set gives a result of only 62.4% but when the ears are accurate-

ly extracted by cropping to the average ear size of 111 73, running PCA then gives a 

result of 98.4%, thus demonstrating the inherent extraction advantage.  The first image 

of the four samples from each of the 63 subjects was used in forming the PCA cova-

riance matrix.  Figure 6 shows the first 4 eigenvectors for the 111x73-pixel images.  

The effect of brightness change by addition was also tested where we see that in the 

worst case where every odd image is subjected to an addition of 3 standard deviations 

the force field results only change by 2%. whereas those for PCA under the same 

conditions fall by 36%, or by 16% for normalized intensity PCA, thus confirming that 

the technique is robust under variable lighting conditions. 



 

 

Figure 6  First 4 eigenvectors for 111 73 pixel images 

 

Image type method passes 
Noise 

20log10S/N 
CCR 

bright. add. 

(std devs.) 
decidability 

141 101 with 

deliberately poor 

extraction and 

registration 

FFE 250/252 Nil 99.2% 0 3.432 

FFE 251/252 18dB 99.6% 0 3.488 

FFE 249/252 12dB 98.8% 0 3.089 

FFE 241/252 6dB 95.6% 0 1.886 

FFE 250/252 Nil 99.2% 1 3.384 

FFE 247/252 Nil 98.0% 2 3.137 

FFE 245/252 Nil 97.2% 3 2.846 

PCA 118/189 Nil 62.4% 0 1.945 

111 73 with 

accurate 

extraction and 

registration 

PCA 186/189 Nil 98.4% 0 3.774 

PCA 186/189 18dB 98.4% 0 3.743 

PCA 186/189 12dB 98.4% 0 3.685 

PCA 177/189 6dB 93.6% 0 3.606 

PCA 130/189 Nil 68.8% 1 1.694 

PCA 120/189 Nil 63.6% 2 0.878 

PCA 118/189 Nil 62.4% 3 0.476 

PCA 181/189 Nil 95.6% 1 normalized 3.171 

PCA 172/189 Nil 91.0% 2 normalized 1.91 

PCA 166/189 Nil 82.5% 3 normalized 1.14 

Table 1  Comparison of force field (FFE) and PCA recognition results 

These results are presented in Table 1 where we also include the decidability index 

after Daugman [12] which combines the mean and standard deviation of the intra-class 

and inter-class measurement distributions giving a good single indication of the nature 

of the results.  This index 'd  measures how well separated the distributions are, since 

recognition errors are caused by their overlap.  The measure aims to give the highest 

scores to distributions with the widest separation between means, and smallest stan-

dard deviations. If the two means are μ1and μ2 and the two standard deviations are 
1
 

and 
2
 then 'd  is defined as 
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Notice that the best case index for PCA is slightly higher than the value of 3.43 ob-

tained for the 141 101 images but this could be attributed to the reduction in data set 

size from 252 to 189 and also to the fact that the images have been more fully ex-

tracted for PCA.  We have also included noise performance figures where noise has 

been modeled as additive noise with a zero mean Gaussian distribution  The signal to 

noise ratios of 6dB, 12dB, and 18dB used are calculated as 20log10(S/N). We see that 

the technique enjoys excellent noise tolerance where even for an extreme noise ratio 

of 6dB the performance only falls by about 3.6%.  Interestingly at a ratio of 18dB the 

recognition rate actually improves over the noiseless recognition rate, but this must be 

put down to the combination of small changes and the random nature of the noise 

process.  For reference we have also included the corresponding noise results for PCA 

under the same conditions, where we see that PCA also performs well under noisy 

conditions but not quite as well as FFE at 6dB where the fall is about 4.8%. 

SUMMARY 

In the context of ear biometrics we have developed a linear transform that transforms 

an ear image, with very powerful smoothing and without loss of information, into a 

smooth dome shaped surface whose special shape facilitates a novel form of feature 

extraction that extracts the essential ear signature without the need for explicit ear 

extraction. We have shown that the technique is robust under variable lighting condi-

tions both by analysis and also by experiment.  We have described convergence fea-

ture extraction and shown that it is a powerful extension to field line feature extrac-

tion. We have validated the technique by experiment where we have shown that it 

compares favourably with PCA especially under variable lighting conditions.  In the 

process we have contributed to the mounting evidence in support of the recognition 

potential of the human ear for biometrics. 

RELATED ENTRIES 

Forensic Evidence of Ears 

Holistic Ear Biometrics 

Overview of Ear Biometrics 
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DEFINITIONAL ENTRY 

 

Force Field Transform 

 

An invertible linear transform which transforms an image into a force field by pretend-

ing that pixels have a mutual attraction proportional to their intensities and inversely 

to the square of the distance between them rather like Newton’s Law of Universal 

Gravitation. Each pixel is assumed to generate a spherically symmetrical force field so 

that the total force )( jrF exerted on a pixel of unit intensity at the pixel location with 

position vector jr by a remote pixels with position vector ir  and pixel intensi-

ties )( iP r is given by the vector summation, 
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In order to calculate the force field for the entire image, this equation should be ap-

plied at every pixel position in the image. In practice this computation would be done 

in the frequency domain using Equation 9 where  stands for FFT and 
1
stands for 

inverse FFT. 

 

imageforcefieldunitNMforcefield 1
          (9) 

 

For a more detailed explanation see physical analogies for ear recognition. 

 



 

DEFINITIONAL ENTRY 

 

Potential Energy Transform 

 

An invertible linear transform which transforms an image into an energy field by treat-

ing the pixels as an array of particles that act as the source of a Gaussian potential 

energy field. It is assumed that there is a spherically symmetrical potential energy field 

generated by each pixel, so that )( jE r  is the total potential energy imparted to a 

pixel of unit intensity at the pixel location with position vector jr by the energy fields 

of remote pixels with position vectors 
ir and pixel intensities )( iP r , and is given by 

the scalar summation, 
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To calculate the energy field for the entire image Equation 10 should be applied at 

every pixel position. For efficiency this is actually calculated in the frequency domain 

using Equation 11 where  stands for FFT and 
1
stands for inverse FFT. 

 

imagedenergyfielunitNMdenergyfiel 1
       (11) 

 

For a more detailed explanation see physical analogies for ear recognition. 



 

DEFINITIONAL ENTRY  

 

Force Field Feature Extraction 

 

The overall objective in defining feature space is to reduce the dimensionality of the 

original pattern space, whilst maintaining discriminatory power for classification. To 

meet this objective in the context of ear biometrics a novel force field transformation 

has been developed which treats the image as an array of mutually attracting particles 

that act as the source of a Gaussian force field. Underlying the force field there is a 

scalar potential energy field, which in the case of an ear takes the form of a smooth 

surface that resembles a small mountain with a number of peaks joined by ridges. The 

peaks correspond to potential energy wells and to extend the analogy the ridges cor-

respond to potential energy channels. Since the transform also turns out to be inverti-

ble, and since the surface is otherwise smooth, information theory suggests that much 

of the information is transferred to these features, thus confirming their efficacy. Force 

field feature extraction, using an algorithm similar to gradient descent, exploits the 

directional properties of the force field to automatically locate these channels and 

wells, which then form the basis of the characteristic ear features. For a more detailed 

explanation see physical analogies for ear recognition. 

 



 

DEFINITIONAL ENTRY 

 

Convergence Feature Extraction 

 

Convergence provides a more general description of channels and wells than force 

field feature extraction. It takes the form  of a mathematical function in which wells 

and channels are revealed to be peaks and ridges, respectively in the function value.  

This function maps the force field F(r) to a scalar field C(r), taking the force as input, 

and returning the additive inverse of the divergence of the force direction, and is de-

fined by,
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where  
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rF
rf  is the force direction, A  is incremental area, and ld  is its boun-

dary outward normal.   This function is  real valued and takes negative values as well 

as positive ones where negative values correspond to force direction divergence.  Note 

that the function is non-linear because it is based on force direction and therefore must 

be calculated in the given order. For a more detailed explanation see physical analo-

gies for ear recognition. 

 

 


