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ABSTRACT

A simple and inexpensive pseudo-random number
generator has been designed and built using linear feed-
back shift registers to generate rectangular and gaussian
distributed numbers. The device has been interfaced to a
Nova computer to provide a high speed source of random
numbers.

The two distributionshave been checked with the
following tests: (1) Frequency test (ii) Autocorrelation
test and (iii) d2—test. Results of each test have been
compared Qith the expected theoretical values. Finally,

a comparison of the generating speed has been made between
this new generator and the existing old software generators.

This 28-bit generator is especially desirablé in
random simulation and Montg Carlo applicaticn if randomness,

speed and cost are the main consideration in the design.
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CHAPTER 1

INTRODUCTION

1.1 Purpose of the project

In a wide variety of simulation and modelling
studies where digital computers are used, a need usually
arises for random number sequences. It is for such app-
lications that most pseudo-random number (PRNG) are de-
signed and built.

The PRNG's existing in the laboratory are either too
slow or they are not as random as the user wants them to be.
The need for a new generator which is both fast and has a
longer non-repeating sequence has led to the design and im-
plementation of the device reported in this project, namely,
a PRNG which could give rectangular distributed or gaussian
distributed numbers.

The objective of the project was to build such a

PRNG using hardware and interface it to the Nova computer.

1.2 Theory(12253)

The term "random" when applied to numbers or sequences

relates to their origion rather than the numbers or sequences

(1)

themselves. By this definition, one could never be able to

construct any sequence which 1s absolutely random. However, a
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pseudo-random number sequence éan be constructed quite easily
using a PRNG. The sequence so produced will be regarded as
random if it can pass certain tests on the properties of
randomness.

It has been proved that a n-stage shift register will
cycle through all its possible states if a sultable feedback

element is used.(2>(Fig. 1.1)

f(xl,xg, el SX)

Fig. 1.1 General feedback shift register(FSR)

A special subclass which employs modulo-2 additions
of the register stages is very important because such func-
tion can be shown to be linear.(l) In general, to get a
pseudo-random number of m-binary digits involves taking m
elements out from the n-stage FSR and have them packed to-
gether. It may be interpreted as a number when suitable
weighting is assigned to the various digit position. In
this way, a number N which lies in the range 0<Ns2™-1 may

be created. Zero is a forbidden state because it will

make the sequence staticnary.



The numbers coming out from the PSR will be uni-
formly distributed in the range of (l,2m—1). Every number
(or possible state) in this range has equal probability of
occurance.

Repeated convolutions of a uniform distribution
will give rise to an approximation to a gaussian distri-

(3)

bution. Convolution of two distributions corresponds

to finding the resultant probability density function of
the two independent random variables being added together.
Using convolution theory, the gaussian distribution in this

project is generated by adding twelve consecutive rect-

angular numbers together.

1.3 Implementation

All the required logic to build the PRNG is done
using hardware. The device is interfaced to the Nova to
facilitate software control. An overall view of the system
is shown in Fig. 1.2.

The usef can select distribution and set a start-
ing number(seed) in the FSR 1f desired. This option allows
one to reproduce a random number sequence. Then, the 28-
stage FSR will shift 28 times to the right before it settles
to give a 24 bit number selected from a rectangular distri-

bution. (extracted from stages 0 through 23) At this moment,

the computer will fetch the number into the specified
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accumulators.

If a gaussian number is selected, twelve constcutive
rectangular numbers from the FSR will be added together to
give a sample from a gaussian distribution. The addition
is done by software in the Nova. Only 20 bits from the 24-
bit rectangular sample(stage 4 through 23) are used in each
addition.

Rate of clock pulse used is about 2.5 Mhz. It would
mean a minimum of 11.2 microseconds 1s needed to generate a |

sample from a rectangular distribution.

The reason to shift the FSR 28 times is to ensure
that maximum length can be obtained while inter-correlation

between consecutive numbers is minimized.



CHAPTER 2

HARDWARE DESIGN

The purpose of the hardware is to generate uniformly
distributed numbers. Using this source, gaussian distributed

numbers can be created through addition.

2.1 Rectangular distribution

Detailed hardware diagrams are shown in Fig. 2.1 to
Fig. 2.5.
The following is a flowchart showing the procedure

to get a rectangular distributed number.

ant to

NO lay a seed

into the

Set the seed by performing The generator has been
DOA O 42 & DOB 1 42 instru. given a device code of
L2,

0



0,

Start the device The S pulse will set Busy to 1(Fig.
by the instru. 2.1). It also initiates the Master
NIOS 42 Clock(Fig. 2.2) which will start

shifting the FSR(Fig. 2.3) and incre-

menting the 28-counter(Fig. 2.2).

Check Shift the FSR to the right 28 times.

to see if The Done flag will be set if the

NGO
Shittin -
& Caunting Done=1 counter has counted up to 28. By

Continue testing the Done flag with an

YE&S
SKPDN 42 instru., one will know
whether there is a rectangular no.

ready to be input.

Bring the number

in by the instru. The 24-bit rectangular number will
DIAC 0 42 be inside AC1l and ACO(low order).
DIB 1 42 and (Fig. 2.5) The C pulse will clear
reset the counter the counter , Done and Busy flag.

to zero
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There are three stages’in getting a rectangular
number:
1. Laying of a seed (Output from computer)
2. Generation by shifting the FSR 28 times to the
right.
3. Input (Input to computer)

In each step the command is coming from the Nova.

Laying of a seed

The random sequence can start at a certain state by
setting a number into the FSR at the beginning. The number
should be inside AC1l and ACO(lower order) before the follow-
ing instructions are performed:

DOA 0 42

DOB 1 42
These two instructions will load

bit 0 through 15 of ACO into stage 0 through 15 of

FSR(Fig. 2.3). and bit 0 through 11 of ACl into

stage 16 through 27 of FSR.

Null state is avolded by software described in
chapter 3. Fig. 2.6 shows a timing diagram of the signals

during loading.
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Clock C
a 1 (load signal)
as
1Q (1f°
2Q l——ltsons
2Qaa r_]
CLK input Ca {—1 (strobe singal)
b L (load signal)
CLK input Cb (_1, (strobe signal)

Fig. 2.6 Timing signals when a seed is laid

(Symbols referred to Fig. 2.3)

Generation of the number

After a seed is provided, the device will be started
by the instruction NIOS 42. The S pulse will set Busy to 1
and initiate the Master Clock. Clock C will start shifting the
FSR while at the same time incrementing the 28-counter. When
the counter reaches 28, the Done flag will be set. The Master
Clock will be stopped because Busy is clear at this moment.
The present state of stages 0 through 23 of the FSR will be

taken as the desired rectangular number in binary. If an-
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other number is required, the whole generating procedure may

be repeated. Fig. 2.7 gives a timing picture of the generat-
ion of a rectangular number.

+r, 93¢ ved b y
{Dev complete

Busy (1) _

set by
S Pulse

Done (1)
2PONS
Clock C __J Z4

20813 ” J
28-counter —_— 2 3 45 28 o
\b %

Dev complete

a wo. i5 reqdy Clear
+o be input pulse

Fig. 2.7 Timing synchronization in generating

a rectangular number

Input
The computer can check whether there is a number

ready for input by testing the Done flag of the device.
If Done is set to 1 input procedure may be initiated. The

input sequence is as follow:

SKPDN 42 ;test to see if Done=1

JMP .-1 ;no, keep testing

DIAC 0 42 ;yes, input and clear counter
DIB 1 42 sinput

After input, bit 0 through 15 of ACO(lower order word) will

contain stage 8 through 23 of the FSR and bit 8 through 15
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of AC1l will contain stage 0 through stage 7 of the FSR.

2.2 Gaussian distribution

The gaussian number is created by adding twelve
consecutive rectangular numbers together. Details of
generation is depicted in Fig. 1.2(b). Instead of adding
the whole 24 bit number, only the least significant 20 bits
are added together each time. It 1s done to sult the float-
ing point notation of the Nova. Hence, the addition result

will never exceed 24 bits in length.



CHAPTER 3

SOFTWARE CONTROL

The PRNG can be called from a Basic or a Fortran

environment under the Real-time Disk Operating System(RDOS)

of the Nova.

3.1

Fortran callable subroutines

(5)6}7)

Three subroutines have been implemented in the

Fortran environment. Their function and calling sequence

are as follow.

(a)

(o)

(c)

CALL RAND(X,XMEAN,STD) for rectangular distribution.
where X = returned rectangular distributed number.
XMEAN = mean of the distribution.
STD = standard deviation of the distribution.
X,XMEAN and STD are numeric variables.
CALL RANG(X,XMEAN,STD) for gaussian distribution.
Everything will be similar to (a) except that X will
be the returned gaussian distributed number.
CALL SEED(S) for laying a seed in the generator.
where S = the starting value(seed) which would be
loaded into the FSR of the generator. Arbitrary seed
will be used if S is zero.

S 1s a numeric variable.

18
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A listing of each subroutine is attached at the

end of the chapter.

3.2 Basic callable subroutines<5’6’7)

Similar to the Fortran calls, there are three options
avallable 1in BasicG.

(a) CALL 5,X,M,S for rectangular distribution.

where X = returned rectangular distributed number.
M = mean of the distribution.
S = standard deviation of the distribution.

X is a numeric variable. M and S are numeric expressions.
(b) CALL 6,X,M,S for gaussian distribution.
Everything will be similar to (a) except that X will
be the returned gaussian number.
(¢) CALL 7,8 for laying of a seed.
where S = seed which would be locaded into the FSR of
the generator. Arbitrary seed will be used
if S is zero.
S is a numeric expression.
A listing of each subroutine is not provided because
it is very similar to the corresponding Fortran subroutine
except for the linkage between Basic and the assembly lang-

uage subroutine.
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IR EES SR EEEEEEEEESEELESEEEEEEEEEELETESESEEEEEESEEETELEREE S ST

3 THI S FORTRAN CALLABLE ROUTINE WILL RETURN A RECTANGIILAR
DI STRIBUTED NUMBER TGO THE CALLING PROGRAM.
3 THE CARLLING SEQUENCE IS

CALL RAND(Xs XMEAN, STD)

\ee

SWHERE

H X = RETHRNED RANDOM NO.

H XMEAN = MEAN FOR THE DISTRIBUTION
3 STI = STANDARD DEVIATION WANTED

SWRITTEN BY CLEMENT LA
;DATE:  JULY 2d9,77.

3 5K ok oK ok 5k K R 3K K oK 3K K K o ok ok Kok sk oK K K ok o 3K oK oK oK oK K o K oK 3K ok ok ok K 3K oK oK 5K 5K 3k ok oK oK 3K ok 5K K 3K 5k K 3K 3K K K oK K K K o K

.TITL RAND
LENT RAND
<EXTD «CPYL
JEXTHN FRET
«NREL
5
RAND ¢ JSR @.CPYL JENTER ROUTINE
NIOS 42 3START DEVICE
St 11 :
poAa 1 Té sNORMAL MODE
LA 2 EXPR s EXPR=EXPONENT TO BE ADDE
SKPDM 42
JUIP .-1
DIAC € 4z 3 INPUT AND CLEAR DEVICE
DIB 1 42
ADD 2 1 SFLOAT THE NUYBER
STA 1 TEMP
S5TA ¥ TEMP+1
LA ¢ «TEMP
DOBP @ T4 3LOAD FPH WITH NUMBER

JCONVERT THE NUMBER TO STANDARD DEVIATE WITH MEAN=¢ AND $TD=1

LPA 1 RM

DOAS 1 74 3 SUB. SINGLE
LDA € RSTD

POAP & T4 sMULT . SINGLE



SADD 1IN USER

«TEmP
TEMP:
EXPR:

DEFINED MEAN AND
LDA 25-16553

DOAP 2 T4

LDA 15-16¢€,3

DoOA 1 74

LDA #,-1€7,3
DOBS 2 74
FRET

o+ 1

2.5

ot 1
3.4641¢ 1€
o+ 1

.BLK 2
gaveew

« END

T

D

21

SMULT .

3ADD IN MEAN
3 STORE NUMBER

JRM=INTRINSIC MEAN

3 C1/RSTD)=INTRINSIC

SINGLE WITH STD

STD
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$ 5K kK K >k 5K 5K 3 5K o ok ok ok K 5k K 3k 3 3K sk oK 5K 5k % ok ok ok %k ok ok %k % K 3K % 5 ok ok oK 5K ok 5K %k % 3k ok %k 3K >k %k %k %k >k 3k ok o 5k 3 % K o Ak

3 THIS FORTRAN CALLABLE ROUTINE WILL RETIRN A GALJSSI AN
SDISTRIBUTED NUMBER TO THE CALLING PROGRAM.

3 THE CALLING SEQUENCE IS

3 CALL RANG (X, AMEANSs STD)

SWHERE

3 X = RETURNED GAUSSI AN NO.
3 AMEAN = MEAN FOR THE DIST.

3 STD = STANDARD DEVIATION WANTED

SWRITTEN BY CLEMENT LAM
SDATE: JULY 28,77.

3 ok >k ok ok 3K oK Kook ok ok ok ok ok sk ok ok ok Sk koK dkook sk ok ok ok sk ok ok ok sk ok Sk ok sk 3K ok kK K K ok ok 3Kk ok oK %k K Kk sk K Xk kR 3K 3k 3k ok Xk ok kok %k

.TITL RANG
<ENT RANG
+EXTD .CPYL
+EXTN FRET
«NREL

-

S
RANG : JSR @.CPYL
NIOS 42 3 START DEVICE
STA 3 POINT , 3SAVE STACK POINTER
suUB 3 3 :
STA 3 TEMP+1
Lo 3 Té SWRITE STATUS, NORMAL MODE
LDA 1 CONST SINITIALIZE COUNT=12
STA 1 COUNT
SKPDLN 42
JUP e-1

5LOOP IS A ROUTINE TO GEMERATE THE GAUSSIAN NO.

1.OOP ¢ pIac ¢ 4z 5 INPUT AND CLEAR DEVICE
DIBS 1 42 SINPUT AND RESTART DEVICE
Lba 2 117 3SAVE BITS 12 TO 15
AND 2 1
LA 2 TEMP+1

SDOUBLE PRECISION ADDITION. RESULT IS IN ACZ & 3
ADLZ » 2 SdC
Iwe 3 3
AP 1 3

STA 2 ThmP+1
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DSZ COUNT 3COUNT=C 7

JoiP LOOP 3MN0Os CONTINUE TO ADD

LDA 1 EXPG 3YESs FLOAT THE GAUSSI AN NO.
ADD 1 3 3ADD IN EXPONENT

STA 3 TEMWP
Lba ¢ TEMP
DOBP @ 74 3LOAD SINGLE

3CONVERT TO STANDARD DEVIATE, ¢=¢ & STD=1
SINTRINSIC STD=1

LA 1 Giv
DOAS 1 74 3 SUB SING

sADD IN USER DEFINED MEAN AND STD

LDA 2 POINT
LDA 3,-165,2

DOAP 3,74 sMULT SING
LDA 1:"166:2 c
DOA 1 T4 3 ADD ST NG

LDA Z25-1€7+2

DOBS 2 74 3 STORE SINGLE
FRET s RETURN
Gl ¢ 1 , 56M=INTRINSIC MEAN OF DIST
€.

POINT: ¢
COMNST: 14
COUNT ¢ %
M17: 17
EXPG: varaee
JTEMP: «+1
TEMP : ¢

v

«END
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3%****************************************************************
3 TO LAY A SEED IN THE RANDOM NIMBER CENERATER

CALL SEED(S)

&
X
m
)
[‘1‘\

S = DESIRED STARTING NUMBER.
IF S=¢.s SEED WILL BE ARB.
S COULD BE ANY REAL NO.

e we er lee  lee

3WRITTEN BY CLEMENT LAM
3DATE: JULY 28,77.

5 2K 3k Kok ok oK KR R K K A K K K K K K K K K K K K K A R 3K oK 3K oK ok 3Kk K R K R K K K K K K ok 3K K K K oK 3K Kk K K R K K K KK K K K

.TITL SEED
JENT SEED
+EXTD CPYL
JEXTH FRET
+NREL
3

SEED: JSR @ .CPYL
LDA 25,-167,3
LDA ¥s€,2

MoV £ ¢ SNR 3TEST FOR & SEED

FRET 5 SEED=0 .5 RETURN.

LbAa 1 1 2

DOA & 42 3LOAD SEED INTO THE GENERATER
DOB 1 42

FRET

< END



CHAPTER 4

TESTS AND OBSERVATION

The PRNG was subjected to three statistical tests.
They were

(i) Frequency test

(ii) Correlation test

(111) a°-test

4,1 Frequency test(l’S)

In this ftest, one.divides the possible existence
interval of the numbers in equal non-overlapping intervals
and tallies the amount of numbers in each interval. The
probability density function and the distribution fﬁnction
of the generated numbers can be obtained by examining the

tally in each interval.

4,1.1 Rectangular distribution

The interval examined was (0,1). It was divided
into 1000 channels or bins and 106 numbers were sampled
and sorted into the corresponding channel.

If the numbers are uniformly distributed in (0,1),
then one would expect each channel to contain 1000+J1000

numbers. If the numbers of elements inside a channel is

25
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plotted against the channel numbef, a horizontal line should
be obtained.

Fig. 4.1 shows the actual frequency curve obtained
by the above mentioned method. It 1s quite a close approxi-
mation of the uniform distribution. Further look at Fig. 4.3
indicates that the distribution obtained is statistically
acceptable. The normal standard deviation is equal to J1000.
It can be seen that all non-zero channels lie within the 346
limit. The integral distribution curve shown in Fig. 4.2
further reinforces the indication that the distribution so

obtained is uniform.

4,1.2 Gaussian distribution

The interval being examined was (0,12). It was again
divided into 1000 channels and 106 numbers were sampled.

From Fig. 4.4, the frequency curve obtained from plot-
ting the tally in each channel against the channel number
appears like a gaussian distribution. Almost all counts are
inside the 3€ limit. For comparison the analytical description
of a gaussian distribution is plotted on the same graph. This
reveals good agreement suggesting the random source is stat-
istically acceptable. The integral distribution curve in

Fig. 4.5 further supports thils inference.
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L.,2 Correlation test(1’3)

The autocorrelation function of a function f(t) is

defined as
]
R(k) = /[ f(t)f(t-k)dt
-od
To check whether a sequence X is random, one can find
the autocorrelation between X, and x where k is the lag in

n+k

the generation order and compare them with the expected values.

§,2.1 Rectangular distribution

The sequence examined had a mean equal to 0 and stand-
ard deviation equal to 1.

Autocorrelation at lag k is given by

N
R(k) = ZS X X where N i1s the number of elements
n ntk
NI
- X _ 2
Expected value of R(0) = 2: x x 0= ES X
nsg n=j
upper \
— limt
But x2 = X2f(x)dx where f(x) is the probability
lower . .
bimi density function

v.l.
] (x=0)°F(x)dx
i

Variance of the distribution

=1



therefore, ES an = N* x° = N
Expected value of R(0) = N

Expected value of R(k), k # 0

If X, and X, are independent of each other,in

+k

another words, they are uncorrelated, then

N

— ——

R(k) = jz *n # *nty

n =

33

But the expected value of the sequence is equal to

its mean. Therefore,

L N
R(k) = Z 0%0 = 0 k¢ O

nzy

For N = 128, one would expect if the sequence is

uncorrelated

R(0) 128

0 k # 0

R(k)

Table 4.1 shows the autocorrelations of the rect-

angular distribution with expected mean = 0 and expected

standard deviation = 1.



34

Table 4.1 Autocorrelations of the rectangular distribution

Number of elements used (N) = 128
Number of repeated trials = 5000
lag k R(k) lag k R(k)

0 128.02 11 0.02
1 -0.08 12 0.24
2 0.00 13 ~-0.04
3 0.11 14 0.28
4 -0.07 15 0.11
5 0.15 16 0.30
6 ~0.11 17 ~0.40
7 -0.03 18 0.16
8 -0.15 19 0.05
9 0.04 20 -0.11
10 -0.02

Mean value of R(1) to R(20) = 0.02

The autocorrelations agree quite closely with the

expected values. Should more trials were performed, corre-

lations at higher lags would have come closer to zero,
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4,2.2 Gaussian distribution

The sequence being examined has an expected mean
of 0 and expected standard deviation eQuals 1.

128 numbers were used in each autocorrelation test.
By calculation similar to that of section 4.2.1, the expected
autocorrelations are as follow:

R(0) 128

R(k) 0 k #0
Table 4.2 below shows the actual autocorrelations of
the gaussian distribution with mean = 0 and standard deviation

= 1,

Table 4.2 Autocorrelation of the gaussian distribution

Number of elements (N) = 128

Number of repeated trails = 10,000

lag k R(k)" lag k R(k)

0 128.02 10 -0.12
1 ~0.10 11 0.12
2 -0.03 12 0.19

0.01 13 -0.10
4 -0.06 14 ~0.09
5 0.06 15 -0.07
6 0.05 16 0.05

.06 17 0.04

-3
|
o
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8 0.09 h 18 0.13
9 -0.17 19 -0.08
20 -0.09
Mean value of R(1l) to R(20) = -0.01

The actual autocorrelations are very close to the
expected values. Thils shows that the gaussian distribution
so generated is quite a good approximation to the true
gaussian which has the same mean and standard deviation.
4.3 d2—test(l’3)

The frequency test and the autocorrelation test are
developed for use in connection with random sampling and
that Monte Carlc applications seem to require other tests.
The d2—test is designed for this purpose.

Assume that the random numbers(uniform distribution)
lie within the interval (0,1) and regard four consecutive
random numbers as the coordinates of two points in the unit
squére. Determine the square of distanée between the two
points (d2). If the numbers are rectangularly distributed

over (0,1), then the distribution function of d2 is given by
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vs2 - 8/3s2 + 84/2 when 826 1
p(dg s9) = 1/3 + (® - 2)s% + 4(s? -1)% + 8/3(s°-1)3/?
- su/2 - 4s%gec™1s when 1< szs 2

The test consists in comparing the frequencies of
a set of d°-values obtained from a sequence generated by a
random number generator with the theoretical probabilities.

Table 4.3 shows the calculated theoretical values
and the actual values for a given s. The sample space is

4

10 d2—va1ues.

Table 4.3 d2—test

52 Theoretical p(d%<s2) Actual p(d2532)
0.1 0.235 0.236
0.3 0.549 0.552
0.5 0.753 0.752
0.7 0.882 0.886
1.0 0.975 0.973
1.01 0.976 0.974
1.1 0.986 0.987
1.5 0.999 0.999
1.8 1.000 1.000

2.0 1.000 1.000
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As one can see, the experimental results agree closely

with the theoretical values.

4.4 Speed consideration

One of the reasons to build this PRNG is because of
time-saving consideration. O0lder generators are either too
slow or the size of the sequence is too small. In building
this PRNG, one of the objectives was to speed up the gener-
ation time, especlally for the gaussian distribution.

Table 4.4 compares the speed of the new generator

with the previous software generator.

Table 4.4 Speed of existing generators

Generator Programming Time to generate lOL1l numbers
Environment Rectangular Gaussian
New Fortran - 3.85 sec. 5.70 sec.
(28 bits) Basic 21.30 sec. 24 .40 sec
Assembly 0.15 sec. 1.90 sec.
- 01a Basic 26.60 sec. 80 sec.
(32 bits)
Data General's Basic 16.40 sec | @ —=-—-
(16 bits)
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It can be seen that a big improvement in speed
is achieved for the gaussian distribution. As a matter of
fact, the generator is capable of generating one rectangular
number in about 11.2 microseconds. All the time has been
wasted ih program linkage and system commands when working
in the high level language environment.

The generator provided by Data General 1s faster than
the existing ones. However, it does not produce samples which
obey any of the randomness tests. It is not desirable when

numbers with a greater degree of randomness are required.



4o

CHAPTER 5

CONCLUSION

The rectangular and gaussian distributions produced
as a result of the PRNG have been proved to be a very good
approximation of the corresponding theoretical distributions
judging from the test results. It 1s relatively inexpensive
and easy to construct such a PRNG using shift registers.
When cost and time are the main concern, this type of PRNG
is most suitable.
The following points are worth mentioning.
1. The clocking frequency could be increased considerably
to speed up the generation time. The fact that a large
portion of the time in getting a number is wastéd in
system linkage(Table 4.4) makes it quite meaningless to
increase the clockling frequency unless the user is will-
ing to work in an assembly language environment.
2. The gaussian distribution can be generated by hardware.
The whole circuitry will become a lot more complex. As
long as useful instructions can be squeezed in between gen-
eration time of a rectangular number, the time saved is not
significant. In fact, the required hardware to generate the
gaussian distribution has been implemented and it only im-
proved the speed in a Fortran environment marginally while

no significant improvement was observed in Basic. However,
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the required circulitry became twice as complex as that for
the rectangular distribution. In the light of maintenance
of the hardware, software generation has been implemented

for the generation of normally distributed variables.



MAXIMUM-LENGTH SHIFT-REGISTER-SEQUENCE

APPENDIX A
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(")

The table below shows some of the maximum-length

shift-register-sequence generators requiring a single

modulo-2 adder.

Feedback from shift-register stages n

and m to modulo-2 adder, which feeds stage 1.

n m or n-m 27 =1
3 1 7
b 1 15

; 5 2 31

l 6 1 63
7 1l or 3 127

' 9 4 511
10 3 1023
11 2 2047
15 1,4 or 7 32,767

l 18 7 262,143
20 3 1,048,575
21 2 2,097,151
22 1 4,194,303
23 5 or 9 8,388,607




25
28
31
33

3 or 7

3,9 or 13
3,6,7 or 13
13

L3

33,554,431
268,435,455
2,147,483,647
8,589,934,591




APPENDIX B

. C. LAYOUT

1 2 3 4 5
7408 7403 74194 7403
_ (stage (1/0)

o)

6 7 8 9 10
7476 | | 7400 THTY 74194 7403
(1/0)

11 12 13 14 15
74161 7411 7432 { 7u194 7403
(I/0)

16 17 18 19 20
U123 7408 7408 74194 | | 7403
(Clock (1/0)

21 22 23 24 25
74123 7408 7486 7419k 7403
(1/0)

26 27 28 29 30
74123 74194 74194 7403
(27th) (1/0)
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