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ABSTRACT 

A simple and inexpensive pseudo-random number 

generator has been designed and built using linear feed­

back shift registers to generate rectangular and gaussian 

distributed numbers. The device has been interfaced to a 

Nova computer to provide a high speed source of random 

numbers. 

The two distributionshave been checked with the 

following tests: (i) Frequency test (ii) Autocorrelation 

test and (iii) d 2-test. Results of each test have been 

compared with the expected theoretical values. Finally, 

a comparison of the generating speed has been made between 

this new generator and the existing old software generators. 

This 28-bit generator is especially desirable in 

random simulation and Monte Carlo application if randomness, 

speed and cost are the main consideration in the design. 
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CHAPTER 1 

INTRODUCTION 

1.1 Purpose of the project 

In a wide variety of simulation and modelling 

studies where digital computers are used, a need usually 

arises for random number sequences. It is for such app-

lications that most pseudo-random number(PRNG) are de­

signed and built. 
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The PRNG's existing in the laboratory are either too 

slow or they are not as random as the user wants them to be. 

The need for a new generator which is both fast and has a 

longer non-repeating. sequence has led to the design and im­

plementation of the device reported in this project, namely, 

a PRNG which could give rectangular distributed or gaussian 

distributed numbers. 

The objective of the project was to build such a 

PRNG using hardware and interface it to the Nova computer. 

1.2 Theory(l, 2 , 3 ) 

The term "random" when applied to numbers or sequences 

relates to their origion rather than the numbers or sequences 

themselves. (l) By this definition, one could never be able to 

construct any sequence which is absolutely random. However, a 
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pseudo-random number sequence can be constructed quite easily 

using a PRNG. The sequence so produced will be regarded as 

random if it can pass certain tests on the properties of 

randomness. 

It has been proved that a n-stage shift register will 

cycle through all its possible states if a suitable feedback 

element is used. ( 2 )(Fig. 1.1) 

,x ) 
n 

Fig. 1.1 General feedback shift register(FSR) 

A special subclass which employs modulo-2 additions 

of the register stages is very important because such func­

tion can be shown to be linear. (l) In general, to get a 

pseudo-random number of m-binary digits involves taking m 

elements out from then-stage FSR and have them packed to-

gether. It may be interpreted as a number when suitable 

weighting is assigned to the various digit position. In 

this way, a number N which lies in the range O<N~2m-l may 

be created. Zero is a forbidden state because it will 

make the sequence stationary. 
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The numbers coming out from the FSR will be uni­

formly distributed in the range of (l,2m-l). Every number 

(or possible state) in this range has equal probability of 

occurance. 

Repeated convolutions of a uniform distribution 

will give rise to an approximation to a gaussian distri­

bution. C3 ) Convolution of two distributions corresponds 

to finding the resultant probability density function of 

the two independent random variables being added together. 

Using convolution theory, the gaussian distribution in this 

project is generated by adding twelve consecutive rect-

angular numbers together. 

1.3 Implementation 

All the required logic to build the PRNG is done 

using hardware. The device is interfaced to the Nova to 

facilitate software control. An overall view of the system 

is shown in Fig. 1.2. 

The user can select distribution and set a start-

ing number(seed) in the FSR if desired. This option allows 

one to reproduce a random number sequence. Then, the 28-

stage FSR will shift 28 times to the right before it settles 

to give a 24 bit number selected from a rectangular distri-

bution.(extracted from stages 0 through 23) At this moment, 

the computer will fetch the number into the specified 
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accumulators. 

If a gaussian number is selected, twelve constcutive 

rectangular numbers from the FSR will be added together to 

give a sample from a gaussian distribution. The addition 

is done by software in the Nova. Only 20 bits from the 24-

bit rectangular sample(stage 4 through 23) are used in each 

addition. 

Rate of clock pulse used is about 2.5 Mhz. It would 

mean a minimum of 11.2 microseconds is needed to generate a 

sample from a rectangular distribution. 

The reason to shift the FSR 28 times is to ensure 

that maximum length can be obtained while inter-correlation 

between consecutive numbers is minimized. 
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CHAPTER 2 

HARDWARE DESIGN 

The purpose of the hardware is to generate uniformly 

distributed numbers. Using this source, gaussian distributed 

numbers can be created through addition. 

2.1 Rectangular distribution 

Detailed hardware diagrams are shown in Fig. 2.1 to 

Fig. 2.5. 

The following is a flowchart showing the procedure 

to get a rectangular distributed number. 

Start 

Set the seed by performing 

DOA 0 42 & DOB 1 42 instru. 

The generator has been 

given a device code of 

42. 



Start the device 

by the instru. 

NIOS 42 

Bring the number 

in by the instru. 

DIAC 0 42 

DIB 1 42 and 

reset the counter 

to zero 

8 

The S pulse will set Busy to l(Fig. 

2.1). It also initiates the Master 

Clock(Fig. 2.2) which will start 

shifting the FSR(Fig. 2.3) and incre­

menting the 28-counter(Fig. 2.2). 

Shift the FSR to the right 28 times. 

The Done flag will be set if the 

counter has counted up to 28. By 

testing the Done flag with an 

SKPDN 42 instru., one will know 

whether there is a rectangular no. 

ready to be input. 

The 24-bit rectangular number will 

be inside ACl and ACO(low order). 

(Fig. 2.5) The C pulse will clear 

the counter , Done and Busy flag. 
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number: 

There are three stages in getting a rectangular 

1. Laying of a seed (Output from computer) 

2. Generation by shifting the FSR 28 times to the 

right. 

3. Input (Input to computer) 

In each step the command is coming from the Nova. 

Laying of a seed 

The random sequence can start at a certain state by 

setting a number into the FSR at the beginning. The number 

should be inside ACl and ACO(lower order) before the follow­

ing instructions are performed: 

DOA 0 42 

DOB 1 42 

These two instructions will load 

bit 0 through 15 of ACO into stage 0 through 15 of 

FSR(Fig. 2.3). and bit 0 through 11 of ACl into 

stage 16 through 27 of FSR. 

Null state is avoided by software described in 

chapter 3. Fig. 2.6 shows a timing diagram of the signals 

during loading. 

14 



Clock C 

a 

lQ 

2Q 

CLK input Ca 

b 

CLK input Cb 

_J 
__Jl~'o_o_n_~~~~~~~~~~­

___n~·-~o_n_~~~~~~~~~ 

_n ___ _ 
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(load signal) 

(strobe singal) 

(load signal) 

(strobe signal) 

Fig. 2.6 Timing signals when a seed is laid 

(Symbols referred to Fig. 2.3) 

Generation of the number 

After a seed is provided, the device will be started 

by the instruction NIOS 42. The S pulse will set Busy to 1 

15 

and initiate the Master Clock. Clock C will start shifting the 

FSR while at the same time incrementing the 28-counter. When 

the counter reaches 28, the Done flag will be set. The Master 

Clock will be stopped because Busy is clear at this moment. 

The present state of stages 0 through 23 of the FSR will be 

taken as the desired rectangular number in binary. If an-



other number is required, the whole generating procedure may 

be repeated. Fig. 2.7 gives a timing picture of the generat-

ion of a rectangular number. 

Busy (1) 

Done (1) 

Clock C 

+'f"~J~e""ecl by 

__J------------------~l __ o_~~-c_o_mr_l<rt.--~---------------­
i(t b'1 

S pv\s~ 

28-counter - ·--,. _ ~ __ .,,. _____ ....,. ---------0-+----

Dev complete 

Input 

" •o • \~ ~'\c.ly 

-t-o b~ '"r~t 

Fig. 2.7 Timing synchronization in generating 

a rectangular number 

The computer can check whether there is a number 

ready for input by testing the Done flag of the device. 

If Done is set to 1 input procedure may be initiated. The 

input sequence is as follow: 

SKPDN 42 

JMP .-1 

DIAC 0 42 

DIB 1 42 

;test to see if Done=l 

;no, keep testing 

;yes, input and clear counter 

;input 

After input, bit 0 through 15 of ACO(lower order word) will 

contain stage 8 through 23 of the FSR and bit 8 through 15 

16 
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of ACl will contain stage 0 through stage 7 of the FSR. 

2.2 Gaussian distribution 

The gaussian number is created by adding twelve 

consecutive rectangular numbers together. Details of 

generation is depicted in Fig. l.2(b). Instead of adding 

the whole 24 bit number, only the least significant 20 bits 

are added together each time. It is done to suit the float­

ing point notation of the Nova. Hence, the addition result 

will never exceed 24 bits in length. 



CHAPTER 3 

SOFTWARE CONTROL 

The PRNG can be called from a Basic or a Fortran 

environment under the Real-time Disk Operating System(RDOS) 

of the Nova. 

3.1 Fortran callable subroutines(5, 5 ,7) 

Three subroutines have been implemented in the 

Fortran environment. Their function and calling sequence 

are as follow. 

(a) CALL RAND(X,XMEAN,STD) for rectangular distribution. 

where X = returned rectangular distributed number. 

XMEAN = mean of the distribution. 

STD = standard deviation of the distribution. 

X,XMEAN and STD are numeric variables. 

(b) CALL RANG(X,XMEAN,STD) for gaussian distribution. 

Everything will be similar to (a) except that X will 

be the returned gaussian distributed number. 

(c) CALL SEED(S) for laying a seed in the generator. 

where S = the starting value(seed) which would be 

loaded into the FSR of the generator. Arbitrary seed 

will be used if S is zero. 

S is a numeric variable. 

18 



A listing of each subroutine is attached at the 

end of the chapter. 

3.2 Basic callable subroutines(5, 6 ,7) 

19 

Similar to the Fortran calls, there are three options 

available in BasicG. 

(a) CALL 5,X,M,S for rectangular distribution. 

where X = returned rectangular distributed number. 

M = mean of the distribution. 

S = standard deviation of the distribution. 

Xis a numeric variable. Mand Sare numeric expressions. 

(b) CALL 6,X,M,S for gaussian distribution. 

Everything will be similar to (a) except that X will 

be the returned gaussian number. 

(c) CALL 7,S for laying of a seed. 

where S = seed which would be loaded into the FSR of 

the generator. Arbitrary seed will be used 

if S is zero. 

S is a numeric expression. 

A listing of each subroutine is not provided because 

it is very similar to the corresponding Fortran subroutine 

except for the linkage between Basic and the assembly lang­

uage subroutine. 
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_;*********~****************************************************** 

THIS FORTRAN CALLl-'iBLE ROLJTI NE WILL RETlHW A RECTMJGULAR 
_; UI STRI BUTED ~JI JMBEi~ TO THE CALL I NG PROGRAM. 
_; TH~ CALLING S~QUENCE IS 

CALL RANDCX,XMEAN,STD) 

;tvHERE 
X = RETl JRNED RANDOM NO. 

; XMEMJ = fYiEMJ FOR THE DI STf~I BUTI ON 
STD = STMJDARD DEV I ATI ON \,./ANTED 

;WRITTEN BY CL8<JENT LAM 
; DATE : J UL Y 2 8 , 7 7 • 

_;**************************************************************** 

RMJD: 

• TI TL RAND 
.ENT RAND 
.EXTD .CPYL 
.EXHJ FRET 
• NREL 
5 
JSR l0! • CPY L 
NI OS L12 

st 1s 1 1 
DOA 1 76 
LD~\ 2 EXP R 
5KPDN 42 
Jr11P .-1 
DI AC V, IQ 

DIB 1 42 
1-mu 2 1 
ST?\ 1 T l::(YJ p 

STA 0 TEMP+ 1 
LDl-1 (I) • T EJtlP 
DOBP Ci} 7 Lj 

; ENTER ROlJTI NE 
;STA"S'T DE\JICE 

_;NORM 1'\L (YJ ODE 
; EXPR=EXPONENT TO BE ADDE 

_;INPUT AND CL Et4H DEV I CE 

;FLOAT THE NU~BER 

; LOl'\lJ FPH :_..11 TH NUr<JBE:R 

_;CONVERT THE NUMB t:R TO ST MJDMW DEV I ATE t.v I TH ,•1 EM~-= v; I-HJD ~)TD= 1 

LOA 1 RM 
DO?\ S 1 7 /4 

LDA e HSTD 
DOi~P 0 7 4 

;SUB. SINGLE 

;(YJ!JL T. SI ~JGLE 



; I~ U D I t'J LI SE R DEF I N ED fYi E Ar'J A ND ST)) 

RM: 

RSTD: 

L D?~ 2 _, - 16 5 _, 3 
DOAP 2 74 
LDA 1.,-166.,3 
DOA 1 7 Li 

LOA 0 _, - lt 7 _, 3 
DOBS 0 74 
FRET 

• + 1 
0.s 
• + 1 
3 • 46 Lt rn 16 

. T EJYi p : • + 1 
T£(YJP: • BLK 2 
L<PR: 0Lirt0rt~ 

.END 

21 

;MIJLT. SI~JGLE WITH STD 

;ADD IN MEAN 

; STORE NUMBER 

JRM=INTRINSIC MEAN 

J(l/RSTD>=INTRINSIC STD 
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;**************************************************************~ 

_; THIS FORTRAN C{\LLABLE ROUT! NE l,.Jl LL RE:TURN A GAUS SI M.J 
;DISTRIBUTED NlJ('t'18ER TO THE CALLING PROGHAM. 
_; THE CALLING SEWUENCE IS 

_; CALL RANGCX,XMEAN,STD) 

;WHERE 
_; X = RETURNED GAUSSIAN NO. 
; XMEAN M~AN FOR THE DIST. 
; STD : STAr-JDARD DEV I ATI ON WANTED 

;WRITTEN BY CLEMENT LM1 
;DATE: JULY 28,77. 

;*************************************************************** 

RANG: 

• TI TL RMJG 
.ENT RANG 
.EXTD .cPYL 
.EXTN FRET 
.NHEL 
5 
JSR @.CPYL 
r-JI OS 42 
STf.\ 3 POI NT 
SUB 3 3 
ST/.\ 3 T EtYJ P + 1 

DOii 3 76 
LDA 1 CCJNST 
STA 1 CUUNT 
SKPUN 42 
.J(YJP • - 1 

; ST 1-\RT DE:V I CE 
;SAVE: STACK POINTER 

_; W R I T I:: ST iH U S, N 0 RM HL M OLYt= 
;INITIALIZE COUNT=12 

;LOOP IS A ROUTINE TCJ GEf'JERf\TE THE GALISSI /.\N NO. 

LOOP: ur nc 0, 1-12 

IJIB:S 1 42 
LUA 2 M17 
AND 2 1 
LDI~ 2 TH'iP+ 1 

; INPUT AND CLEAR DEV I CE 
_;I ~JPI IT AND \\EST ART l)f\I I CE 
;SAVE BITS 12 TO 15 

;DUlJBLE PRECISION /\DDITIC_HJ. r:E:.SULT rs IN AC2 & 3 

f\DUZ ~ 2 SlC 
I t~C 3 3 
1-\UU 1 3 



DSL: CO!WT 
._MP LOOP 

LDA 1 EXPG 
{\DD 1 3 
STA 3 TEMP 
LDA 0 • TEJYJP 
DOBP 0 ?'-! 

23 

; COUNT:-= 0 ? 
; ~JO_, C 0 NT I NU E T 0 ADD 

;YES., FLOAT THE GAllSSIMJ ~JO. 

; ADD IN EXPONEt'H 

;LOAD SINGLE 

; CONV Ern TO ST Al'JDARD JJE\J I ATE., rt/-= 0 & STD-= 1 
; I NTRI NSI C STD::: 1 

LDA 1 GM 
DOAS 1 74 ;SUB SING 

; ADD I f~ USER DEF I ['JED lYl EAN f.\ ['JD STD 

GM: 

POINT: 
CONST: 
COUNT: 
\"'l 17 : 

EXPCJ: 
• TE!YJP: 
TEMP: 

LDA 2 POINT 
LOA 3,-165.,2 
DOAP 3, 7 LJ 

LI)A 1,-J.t.l_,2 
DOA 1 7 4 

LD?\ 2 _, - lf.,; 7 _, 2 
DOB S 2 7 4 
FRET 

• + l 
6.0 

"' 14 
~ 

17 
0LJ0LJ00 

• + 1 
v, 
~ 

.END 

h•1l IL T SI NG 

; ADD SI r,JG 

; STORE SI !'1GLE 
_;RETURN 

;GM=INTRINSIC MEAN OF DIST 
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_;***************************************************************** 

TO LAY A SE:ED IN THE RANDOM NUMBER GENER ATER 

_; CALL SEED(S) 
HvHERE 
_; S : DESI RED START! NG NlHYlBER. 
_; IF S=0., SEED WILL BE ARB. 
_; S COULD BE MJY REAL t'-JO. 

;WRITTEN BY CLEMENT LAM 
;DATE: JULY zg,77. 

_;****************************************************************~ 

SEED: 

• 7I TL SEED 
• HJT SEED 
.£XTD .CPYL 
.EXTN FRET 
• tJREL 
3 
JSR (al .cPYL 
L D /\ 2 , - 16 7 , 3 
LD?\ 0,v,,2 
\YJ 0 \J L~ l?. S N R 
FRET 
LOA 1 1 2 
!JOH er, A 2 
DOB 1 1-J2 
FRET 

• UJD 

_;TEST FOH 0 SEED 
_;SEED= 0., RETURN. 

;LOAD SEED INTO THE GENEHATER 



CHAPTER 4 

TESTS AND OBSERVATION 

The PRNG was subjected to three statistical tests. 

They were 

(i) 

(ii) 

(iii) 

Frequency test 

Correlation test 

d 2-test 

4.1 Frequency test(l,3) 

In this test, one divides the possible existence 

interval of the numbers in equal non-overlapping intervals 

and tallies the amount of numbers in each interval. The 

probability density function and the distribution function 

of the generated numbers can be obtained by examining the 

tally in each interval. 

4.1.1 Rectangular distribution 

The interval examined was (0,1). It was divided 

into 1000 channels or bins and 10 6 numbers were sampled 

and sorted into the corresponding channel. 

If the numbers are uniformly distributed in (0,1), 

then one would expect each channel to contain lOOO±JlOOO 

numbers. If the numbers of elements inside a channel is 

25 
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plotted against the channel number, a horizontal line should 

be obtained. 

Fig. 4.1 shows the actual frequency curve obtained 

by the above mentioned method. It is quite a close approxi­

mation of the uniform distribution. Further look at Fig. 4.3 

indicates that the distribution obtained is statistically 

acceptable. The normal standard deviation is equal toJlOOO. 

It can be seen that all non-zero channels lie within the 36 

limit. The integral distribution curve shown in Fig. 4.2 

further reinforces the indication that the distribution so 

obtained is uniform. 

4.1.2 Gaussian distribution 

The interval being examined was (0,12). It was again 

divided into 1000 channels and io 6 numbers were sampled. 

From Fig. 4.4, the frequency curve obtained from plot-

ting the tally in each channel against the channel number 

appears like a gaussian distribution. Almost all counts are 

inside the 36 limit. For comparison the analytical description 

of a gaussian distribution is plotted on the same graph. This 

reveals good agreement suggesting the random source is stat-

istically acceptable. The integral distribution curve in 

Fig. 4.5 further supports this inference. 
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4.2 Correlation test(l,3) 

The autocorrelation function of a function f (t) is 

defined as 

00 

R(k) = ~ f(t)f(t-k)dt 
-ca 

To check whether a sequence X is random, one can find 

the autocorrelation between xn and xn+k where k is the lag in 

the generation order and compare them with the expected values. 

4.2.l Rectangular distribution 

The sequence examined had a mean equal to 0 and stand-

ard deviation equal to 1. 

Autocorrelation at lag k is given by 

N 

R(k) = 2 xnxn+k where N is the number of elements 

'1l ='I 

N 

~ Expected value of R(O) = x x n n 
upper 

But x
2 

= J ""':2r (x) dx 

lower 
linfrt 

n:a 

where f (x) is the probability 

density function 

= (x-o) 2f(x)dx j
u.I. 

I.I. 

= Variance of the distribution 

= 1 



N 
therefore, I 2 

N* x 2 
N x = = n 

n:a 

Expected value of R(O) = N 

Expected value of R(k), k ~ 0 

N 

= R(k) = "' x x L n n+k 
= 

If xn and xn+k are independent of each other,in 

another words, they are uncorrelated, then 

N 

R(k) = ~ x x .L n * n+k 
I\ -:1 
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But the expected value of the sequence is equal to 

its mean. Therefore, 

N 

R(k) = L O*O = 0 kl 0 

"::a 

For N = 128, one would expect if the sequence is 

uncorrelated 

R(O) = 128 

R(k) = 0 k f 0 

Table 4.1 shows the autocorrelations of the rect-

angular distribution with expected mean = 0 and expected 

standard deviation = 1. 
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Table 4.1 Autocorrelations of the rectangular distribution 

Number of elements used (N) = 128 

Number of repeated trials = 5000 

lag k R(k) 

0 128.02 

1 -0.08 

2 0.00 

3 0.11 

4 -0.07 

5 0.15 

6 -0.11 

7 -0.03 

8 -0.15 

9 0.04 

10 -0.02 

Mean value of R(l) to R(20) = 0.02 

lag k R(k) 

11 0.02 

12 0.24 

13 -0.04 

14 0.28 

15 0.11 

16 0.30 

17 -0.40 

18 0.16 

19 0.05 

20 -0.11 

The autocorrelations agree quite closely with the 

expected values. Should more trials were performed, corre­

lations at higher lags would have come closer to zero. 



4.2.2 Gaussian distribution 

The sequence being examined has an expected mean 

of 0 and expected standard deviation equals 1. 
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128 numbers were used in each autocorrelation test. 

By calculation similar to that of section 4.2.1, the expected 

autocorrelations are as follow: 

R(O) = 128 

R(k) = 0 k ~ 0 

Table 4.2 below shows the actual autocorrelations of 

the gaussian distribution with mean = 0 and standard deviation 

= 1. 

Table 4.2 Autocorrelation of the gaussian distribution 

Number of elements (N) = 128 

Number of repeated trails = 10,000 

lag k R(k)- lag k R(k) 

0 128.02 10 -0.12 

1 -0.10 11 0.12 

2 -0.03 12 0.19 

3 0.01 13 -0.10 

4 -0.06 14 -0.09 

5 0.06 15 -0.07 

6 0.05 16 0.05 

7 -0.06 17 0.04 



8 

9 

0.09 

-0.17 

Mean value of R(l) to R(20) = -0.01 

18 

19 

20 

0.13 

-0.08 

-0.09 

The actual autocorrelations are very close to the 

expected values. This shows that the gaussian distribution 

so generated is quite a good approximation to the true 

gaussian which has the same mean and standard deviation. 

The frequency test and the autocorrelation test are 

developed for use in connection with random sampling and 

that Monte Carlo applications seem to require other tests. 

The d 2-test is designed for this purpose. 
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Assume that the random numbers(uniform distribution) 

lie within the interval (0,1) and regard four consecutive 

random numbers as the coordinates of two points in the unit 

square. Determine the square of distance between the two 

points (d 2 ). If the numbers are rectangularly distributed 

over (0,1), then the distribution function of d 2 is given by 
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ll'S 
2 

- 8/3s 
2 + s 4;2 when 2 

s ~ 1 

{ 2 2 2)s 2 + 4(s 2 1 

+ 8/3(s 2-1) 312 1/3 + (Tr - )~ p(d ~ s ) = -1 

4 4 2 -1 - s /2 - s *sec s when 2 
l< s ~ 2 

The test consists in comparing the frequencies of 

a set of d 2-values obtained from a sequence generated by a 

random number generator with the theoretical probabilities. 

Table 4.3 shows the calculated theoretical values 

and the actual values for a given s. The sample space is 

10 4 
d

2-values. 

Table 4.3 

2 s 

0.1 

0.3 

0.5 

0.7 

1. 0 

2 d -test 

1. 01 

1.1 

1. 5 

1. 8 

2.0 

0.235 

0.549 

0.753 

0.882 

0.975 

0.976 

0.986 

0.999 

1. 000 

1. 000 

2 2 Actual p(d ~s ) 

0.236 

0.552 

0.752 

0.886 

0.973 

0.974 

0.987 

0.999 

1. 000 

1.000 
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As one can see, the experimental results agree closely 

with the theoretical values. 

4.4 Speed consideration 

One of the reasons to build this PRNG is because of 

time-saving consideration. Older generators are either too 

slow or the size of the sequence is too small. In building 

this PRNG, one of the objectives was to speed up the gener-

ation time, especially for the gaussian distribution. 

Table 4.4 compares the speed of the new generator 

with the previous software generator. 

Table 4.4 Speed of existing generators 

Generator Programming Time to generate 4 10 numbers 

Environment Rectangular Gaussian 

New Fortran - 3.85 sec. 5.70 sec. 

(28 bits) Basic 21. 30 sec. 24.40 sec 

Assembly 0.15 sec. 1. 90 sec. 

Old Basic 26.60 sec. So sec. 

(32 bits) 

Data General's Basic 16.40 sec -----

(16 bits) 
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It can be seen that a big improvement in speed 

is achieved for the gaussian distribution. As a matter of 

fact, the generator is capable of generating one rectangular 

number in about 11.2 microseconds. All the time has been 

wasted in program linkage and system commands when working 

in the high level language environment. 

The generator provided by Data General is faster than 

the existing ones. However, it does not produce samples which 

obey any of the randomness tests. It is not desirable when 

numbers with a greater degree of randomness are required. 
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CHAPTER 5 

CONCLUSION 

The rectangular and gaussian distributions produced 

as a result of the PRNG have been proved to be a very good 

approximation of the corresponding theoretical distributions 

judging from the test results. It is relatively inexpensive 

and easy to construct such a PRNG using shift registers. 

When cost and time are the main concern, this type of PRNG 

is most suitable. 

The following points are worth mentioning. 

1. The clocking frequency could be increased considerably 

to speed up the generation time. The fact that a large 

portion of the time in getting a number is wasted in 

system linkage(Table ~.4) makes it quite meaningless to 

increase the clocking frequency unless the user is will­

ing to work in an assembly language environment. 

2. The gaussian distribution can be generated by hardware. 

The whole circuitry will become a lot more complex. As 

long as useful instructions can be squeezed in between gen­

eration time of a rectangular number, the time saved is not 

significant. In fact, the required hardware to generate the 

gaussian distribution has been implemented and it only im­

proved the speed in a Fortran environment marginally while 

no significant improvement was observed in Basic. However, 



the required circuitry became tw~ce as complex as that for 

the rectangular distribution. In the light of maintenance 

of the hardware, software generation has been implemented 

for the generation of normally distributed variables. 
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APPENDIX A 

MAXIMUM-LENGTH SHIFT-REGISTER-SEQUENCE( 4) 

The table below shows some of the maximum-length 

shift-register-sequence generators requiring a single 

modulo-2 adder. Feedback from shift-register stages n 

and m to modulo-2 adder, which feeds stage 1. 

n m or n-m 2n-l 

3 1 7 

4 1 15 

5 2 31 

6 1 63 

7 1 or 3 127 

9 4 511 

10 3 1023 

11 2 2047 

15 1,4 or 7 32,767 

18 7 262,143 

20 3 1,048,575 

21 2 2,097,151 

22 1 4,194,303 

23 5 or 9 8,388,607 
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25 

28 

31 

33 

3 or 7 

3,9 or 13 

3,6,7 or 13 

13 

33,554.431 

268,435,455 

2,147,483,647 

8,589,934,591 
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1 

:1 I 

6 . 

7476 

21 

74123 

26 

74123 

APPENDIX B 

I. C. LAYOUT 

2 

7408 

7 

7400 

22 

7408 

27 

3 

7403 

8 

7474 

23 

7486 

28 

74194 
(27th) 

4 

74194 
(stage 

0 ) 

9 

74194 

24 

74194 

29 

74194 

5 

7403 
(I/O) 

10 

7403 
(I/O) 

25 

7403 
(I/O) 

30 

7403 
(I/O) 
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