Skip to main content

Criss-Cross Pivoting Rules

  • Reference work entry
  • 321 Accesses

Article Outline

Keywords

Synonyms

Introduction

  Ziont's Criss-Cross Method

The Least-Index Criss-Cross Method

  Other Interpretations

  Recursive Interpretation

  Lexicographically Increasing List

  Other Finite Criss-Cross Methods

  FILO)

  Most Often Selected Variable Rule

  Average Behavior

  Best-Case Analysis of Admissible Pivot Methods

Generalizations

  Fractional Linear Optimization

  Linear Complementarity Problems

  Convex Quadratic Optimization

  Oriented Matroids

See also

References

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   2,500.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   2,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bjorner A, Vergnas M LAS, Sturmfels B, White N, Ziegler G (1993) Oriented matroids. Cambridge Univ Press, Cambridge

    Google Scholar 

  2. Bland RG (1977) A combinatorial abstraction of linear programming. J Combin Th B 23:33–57

    Article  MATH  MathSciNet  Google Scholar 

  3. Bland RG (1977) New finite pivoting rules for the simplex method. Math Oper Res 2:103–107

    MATH  MathSciNet  Google Scholar 

  4. Chang YY (1979) Least index resolution of degeneracy in linear complementarity problems. Techn Report Dept Oper Res Stanford Univ 14

    Google Scholar 

  5. Cottle R, Pang JS, Stone RE (1992) The linear complementarity problem. Acad Press, New York

    MATH  Google Scholar 

  6. Cottle RW, Pang J-S, Venkateswaran V (1987) Sufficient matrices and the linear complementarity problem. Linear Alg Appl 114/115:235–249

    Google Scholar 

  7. Dantzig GB (1963) Linear programming and extensions. Princeton Univ Press, Princeton

    MATH  Google Scholar 

  8. Dantzig GB, Orden A, Wolfe P (1955) Notes on linear programming: Part I – The generalized simplex method for minimizing a linear form under linear inequality restrictions. Pacific J Math 5(2):183–195

    MATH  MathSciNet  Google Scholar 

  9. Fukuda K (1982) Oriented matroid programming. PhD Thesis Waterloo Univ

    Google Scholar 

  10. Fukuda K, Luethi H-J, Namiki M (1997) The existence of a short sequence of admissible pivots to an optimal basis in LP and LCP. ITOR 4:273–284

    Article  MATH  Google Scholar 

  11. Fukuda K, Matsui T (1991) On the finiteness of the criss-cross method. Europ J Oper Res 52:119–124

    Article  MATH  Google Scholar 

  12. Fukuda K, Namiki M (1994) On extremal behaviors of Murty's least index method. Math Program 64:365–370

    Article  MathSciNet  Google Scholar 

  13. Fukuda K, Terlaky T (1992) Linear complementarity and oriented matroids. J Oper Res Soc Japan 35:45–61

    MATH  MathSciNet  Google Scholar 

  14. Fukuda K, Terlaky T (1997) Criss-cross methods: A fresh view on pivot algorithms. Math Program (B) In: Lectures on Math Program, vol 79. ISMP97, Lausanne, pp 369–396

    Google Scholar 

  15. Fukuda K, Terlaky T (1999) On the existence of short admissible pivot sequences for feasibility and linear optimization problems. Techn Report Swiss Federal Inst Technol

    Google Scholar 

  16. Hertog D Den, Roos C, Terlaky T (1993) The linear complementarity problem, sufficient matrices and the criss-cross method. Linear Alg Appl 187:1–14

    Article  MATH  Google Scholar 

  17. Illés T, Szirmai Á, Terlaky T (1999) A finite criss-cross method for hyperbolic programming. Europ J Oper Res 114:198–214

    Article  MATH  Google Scholar 

  18. Jensen D (1985) Coloring and duality: Combinatorial augmentation methods. PhD Thesis School OR and IE, Cornell Univ

    Google Scholar 

  19. Klafszky E, Terlaky T (1989) Some generalizations of the criss-cross method for the linear complementarity problem of oriented matroids. Combinatorica 9:189–198

    Article  MATH  MathSciNet  Google Scholar 

  20. Klafszky E, Terlaky T (1992) Some generalizations of the criss-cross method for quadratic programming. Math Oper Statist Ser Optim 24:127–139

    MATH  MathSciNet  Google Scholar 

  21. Klee V, Minty GJ (1972) How good is the simplex algorithm? In: Shisha O (ed) Inequalities-III. Acad Press, New York, pp 1159–175

    Google Scholar 

  22. Lemke CE (1968) On complementary pivot theory. In: Dantzig GB, Veinott AF (eds) Mathematics of the Decision Sci Part I. Lect Appl Math 11. Amer Math Soc. Providence, RI, pp 95–114

    Google Scholar 

  23. Lustig I (1987) The equivalence of Dantzig's self-dual parametric algorithm for linear programs to Lemke's algorithm for linear complementarity problems applied to linear programming. SOL Techn Report Dept Oper Res Stanford Univ 87(4)

    Google Scholar 

  24. Murty KG (1974) A note on a Bard type scheme for solving the complementarity problem. Opsearch 11(2–3):123–130

    MathSciNet  Google Scholar 

  25. Roos C (1990) An exponential example for Terlaky's pivoting rule for the criss-cross simplex method. Math Program 46:78–94

    Article  MathSciNet  Google Scholar 

  26. Terlaky T (1984) Egy új, véges criss-cross módszer lineáris programozási feladatok megoldására. Alkalmazott Mat Lapok 10:289–296 English title: A new, finite criss-cross method for solving linear programming problems. (In Hungarian)

    MATH  MathSciNet  Google Scholar 

  27. Terlaky T (1985) A convergent criss-cross method. Math Oper Statist Ser Optim 16(5):683–690

    MATH  MathSciNet  Google Scholar 

  28. Terlaky T (1987) A finite criss-cross method for oriented matroids. J Combin Th B 42(3):319–327

    Article  MATH  MathSciNet  Google Scholar 

  29. Terlaky T, Zhang S (1993) Pivot rules for linear programming: A survey on recent theoretical developments. Ann Oper Res 46:203–233

    Article  MathSciNet  Google Scholar 

  30. Todd MJ (1984) Complementarity in oriented matroids. SIAM J Alg Discrete Meth 5:467–485

    Article  MATH  MathSciNet  Google Scholar 

  31. Todd MJ (1985) Linear and quadratic programming in oriented matroids. J Combin Th B 39:105–133

    Article  MATH  MathSciNet  Google Scholar 

  32. Tucker A (1977) A note on convergence of the Ford–Fulkerson flow algorithm. Math Oper Res 2(2):143–144

    MATH  MathSciNet  Google Scholar 

  33. Valiaho H (1992) A new proof of the finiteness of the criss-cross method. Math Oper Statist Ser Optim 25:391–400

    MathSciNet  Google Scholar 

  34. Wang Zh (1985) A conformal elimination free algorithm for oriented matroid programming. Chinese Ann Math 8(B1)

    Google Scholar 

  35. Wang Zh (1991) A modified version of the Edmonds–Fukuda algorithm for LP in the general form. Asia–Pacific J Oper Res 8(1)

    Google Scholar 

  36. Wang Zh (1992) A general deterministic pivot method for oriented matroid programming. Chinese Ann Math B 13(2)

    Google Scholar 

  37. Zhang S (1991) On anti-cycling pivoting rules for the simplex method. Oper Res Lett 10:189–192

    Article  MATH  MathSciNet  Google Scholar 

  38. Zhang S (1999) New variants of finite criss-cross pivot algorithms for linear programming. Europ J Oper Res 116:607–614

    Article  MATH  Google Scholar 

  39. Zionts S (1969) The criss-cross method for solving linear programming problems. Managem Sci 15(7):426–445

    Google Scholar 

  40. Zionts S (1972) Some empirical test of the criss-cross method. Managem Sci 19:406–410

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Terlaky, T. (2008). Criss-Cross Pivoting Rules . In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74759-0_103

Download citation

Publish with us

Policies and ethics