Skip to main content

Maximum Cut Problem, MAX-CUT

  • Reference work entry
Encyclopedia of Optimization

Article Outline

Introduction

  Organization

  Idiosyncrasies

Formulation

Methods

  Review of Solution Approaches

  C-GRASP Heuristic

Conclusions

See also

References

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,500.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Notice that the result holds even if (without the loss of generality) \( { V_{1} = V } \) and \( { V_{2} = \emptyset } \). In this case, a cut induced by \( { (V_{1},V_{2}) } \) will be a maximum cut if \( { w_{ij} \le 0, \quad\forall i,j \in V } \).

  2. 2.

    This is the “typical” definition of a  Uniform distribution. That is, \( { P\,\colon X \mapsto \mathbb{R} } \) is uniform onto [A,B), if, for any subinterval \( { I \subset [A,B) } \), the measure of P −1(I) equals the length of I.

  3. 3.

    uniformly at random

References

  1. Ahuja RK, Magnanti TL, Orlin JB (1993) Network Flows: Theory, Algorithms, and Applications. Prentice-Hall

    Google Scholar 

  2. Alon N, Kahale N (1995) Approximating the independence number via the θ-function. Technical report. Tel Aviv University, Tel Aviv, Israel

    Google Scholar 

  3. Balasundaram B, Butenko S (2005) Constructing test functions for global optimization using continuous formulations of graph problems. J Optim Method Softw 20(4–5):439–452

    Article  MathSciNet  MATH  Google Scholar 

  4. Barahona F (1983) The max-cut problem in graphs is not contractible to k 5. Oper Res Lett 2:107–111

    Article  MathSciNet  MATH  Google Scholar 

  5. Barahona F, Grötschel M, Jünger M, Reinelt G (1998) An application of combinatorial optimization to statisical physics and circuit layout design. Oper Res 36:493–513

    Article  Google Scholar 

  6. Benso S, Ye Y, Zhang X (2000) Solving large-scale sparse semidefinite programs for combinatorial optimization. SIAM J Optim 10:443–461

    Article  MathSciNet  Google Scholar 

  7. Blum A (1994) New approximation algorithms for graph coloring. J ACM 41(3):470–516

    Article  MathSciNet  MATH  Google Scholar 

  8. Burer S, Monteiro RDC, Zhang Y (2001) Rank-two relaxation heuristics for max-cut and other binary quadratic programs. SIAM J Optim 12:503–521

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang KC, Du D-Z (1987) Efficient algorithms for layer assignment problems. IEEE Trans Computer-Aided Des 6:67–78

    Article  Google Scholar 

  10. Chor B, Sudan M (1995) A geometric approach to betweenness. In: Proc. of the 3rd Annual European Symposium Algorithms. pp 227–237

    Google Scholar 

  11. de la Vega WF (1996) max-cut has a randomized approximation scheme in dense graphs. Random Struct Algoritm 8(3):187–198

    Article  MATH  Google Scholar 

  12. Deza M, Laurent M (1997) Geometry of cuts and metrics. Springer-Verlag

    Google Scholar 

  13. Feige U, Goemans MX (1995) Approximating the value of two prover proof systems, with applications to max 2sat and max dicut. In: Proc. of the 3rd Israel Symposium on Theory of Computing and Systems. pp 182–189

    Google Scholar 

  14. Feo TA, Resende MGC (1989) A probabilistic heuristic for a computationaly difficult set covering problem. Oper Res Lett 8:67–71

    Article  MathSciNet  MATH  Google Scholar 

  15. Feo TA, Resende MGC (1995) Greedy randomized adaptive search procedures. J Glob Optim 6:109–133

    Article  MathSciNet  MATH  Google Scholar 

  16. Festa P, Pardalos PM, Resende MGC, Ribeiro CC (2002) Randomized heuristics for the max-cut problem. Optim Method Softw 7:1033–1058

    Article  MathSciNet  Google Scholar 

  17. Festa P, Resende MGC (2002) grasp: an annotated bibliography. In: Ribeiro C, Hansen P (eds) Essays and surveys in metaheuristics. Kluwer, pp 325–367

    Google Scholar 

  18. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W.H. Freeman and Company

    Google Scholar 

  19. Goemans M, Williamson DP (1995) Improved approximation algorithms for max-cut and satisfiability problems using semidefinite programming. J ACM 42:1115–1145

    Article  MathSciNet  MATH  Google Scholar 

  20. Grotschel M, Pulleyblank WR (1981) Weakly bipartite graphs and the max-cut problem. Oper Res Lett 1:23–27

    Article  MathSciNet  Google Scholar 

  21. Hager WW, Krylyuk Y (1999) Graph partitioning and continuous quadratic programming. SIAM J Discret Math 12:500–523

    Article  MathSciNet  MATH  Google Scholar 

  22. Helmberg C, Rendl F (2000) A spectral bundle method for semidefinite programming. SIAM J Optim 10:673–696

    Article  MathSciNet  MATH  Google Scholar 

  23. Hirsch MJ, Pardalos PM, Resende MGC (2006) Global optimization by continuous GRASP. Optim Lett (in press)

    Google Scholar 

  24. Homer S, Peinado M (1997) Two distributed memory parallel approximation algorithms for Max-Cut. J Parallel Distrib Comput 1:48–61

    Article  Google Scholar 

  25. Kahruman-Anderoglu S, Kolotoglu E, Butenko S, Hicks IV (2007) On greedy construction heuristics for the max-cut problem. Int J Comput Sci Eng (in press)

    Google Scholar 

  26. Karger D, Motwani R, Sudan M (1994) Approximate graph coloring by semidefinite programming. In: 35th Annual Symposium on Foundations of Computer Science. pp 2–13

    Google Scholar 

  27. Karp RM (1972) Reducability among combinatorial problems. In: Miller R, Thatcher J (eds) Complexity of computer computations. Plenum Press, pp 85–103

    Google Scholar 

  28. Lovász L (1979) On the shannon capacity of a graph. IEEE Trans Inf Theory IT-25(1):1–7

    Article  Google Scholar 

  29. Lu H-I (1996) Efficient approximation algorithms for some semidefinite programs. Ph.d. dissertation, Brown University

    Google Scholar 

  30. Papadimitriou CH (1994) Computational complexity. Addison Wesley Longman

    Google Scholar 

  31. Papadimitriou CH, Yannakakis M (1991) Optimization, approximation, and complexity classes. J Comput Syst Sci 43(3):425–440

    Article  MathSciNet  MATH  Google Scholar 

  32. Pinter RY (1984) Optimal layer assignment for interconnect. J VLSI Comput Syst 1:123–137

    MATH  Google Scholar 

  33. Poljak S, Tuza Z (1995) The max-cut problem: a survey. In: Cook W, Lovász L, Seymour P (eds) Special year in combinatorial optimization. DIMACS Series in discrete mathematics and computer science. American Mathematical Society

    Google Scholar 

  34. Reinelt G (1991) TSPLIB - a traveling salesman problem library. ORSA J Comput 3:376–384

    MATH  Google Scholar 

  35. Resende MGC, Ribeiro CC (2003) Greedy randomized adaptive search procedures. In: Glover F, Kochenberger G (eds) Handbook of metaheuristics. Kluwer, pp 219–249

    Google Scholar 

  36. Sahni S, Gonzalez T (1976) P-complete approximation problems. J ACM 23(3):555–565

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Commander, C. (2008). Maximum Cut Problem, MAX-CUT . In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74759-0_358

Download citation

Publish with us

Policies and ethics