Skip to main content

Multiple Minima Problem in Protein Folding: αBB Global Optimization Approach

  • Reference work entry
Encyclopedia of Optimization

Article Outline

Keywords

Motivation

Mathematical Description

Potential Energy Modeling

Solvation Energy Modeling

Problem Formulation

Global Minimization Using αBB

Algorithmic Description

See also

References

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,500.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adjiman CS, Androulakis IP, Floudas CA (1998) A global optimization method, αBB, for general twice-differentiable NLPs-II. Implementation and computational results. Comput Chem Eng 22:1159–1179

    Article  Google Scholar 

  2. Adjiman CS, Androulakis IP, Maranas CD, Floudas CA (1996) A global optimization method, αBB, for process design. Comput Chem Eng 20:S419–S424

    Article  Google Scholar 

  3. Adjiman CS, Dallwig S, Floudas CA, Neumaier A (1998) A global optimization method, αBB, for general twice-differentiable NLPs-I. Theoretical advances. Comput Chem Eng 22:1137–1158

    Article  Google Scholar 

  4. Allinger NL, Yuh YH, Lii J-H (1989) Molecular mechanics. The MM3 force field for hydrocarbons. J Amer Chem Soc 111:8551–8566

    Article  Google Scholar 

  5. Androulakis IP, Maranas CD, Floudas CA (1997) Global minimum potential energy conformations of oligopeptides. J Global Optim 11:1–34

    Article  MathSciNet  MATH  Google Scholar 

  6. Augspurger JD, Scheraga HA (1996) An efficient, differentiable hydration potential for peptides and proteins. J Comput Chem 17:1549–1558

    Article  Google Scholar 

  7. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: A program for macromolecular energy minimization and dynamics calculations. J Comput Chem 4:187–217

    Article  Google Scholar 

  8. Connolly ML (1983) Analytical molecular surface calculation. J Appl Crystallogr 16:548–558

    Article  Google Scholar 

  9. Eisenhaber F, Argos P (1993) Improved strategy in analytic surface calculation for molecular systems: Handling of singularities and computational efficiency. J Comput Chem 14:1272–1280

    Article  Google Scholar 

  10. Floudas CA, Klepeis JL, Pardalos PM (1998) Global optimization approaches in protein folding and peptide docking. In: DIMACS, vol 47. Amer Math Soc, Providence, pp 141–171

    MathSciNet  Google Scholar 

  11. van Gunsteren WF, Berendsen HJC (1987) GROMOS. Groningen Mol Sim

    Google Scholar 

  12. Kang YK, Némethy G, Scheraga HA (1987) Free energies of hydration of solute molecules 1. Improvement of hydration shell model by exact computations of overlapping volumes. J Phys Chem 91:4105–4109

    Article  Google Scholar 

  13. Klepeis JL, Androulakis IP, Ierapetritou MG, Floudas CA (1998) Predicting solvated peptide conformations via global minimization of energetic atom-to-atom interactions. Comput Chem Eng 22:765–788

    Article  Google Scholar 

  14. Kollman PA (1993) Free energy calculations: Applications to chemical and biochemical phenomena. Chem Rev 93:2395–2417

    Article  Google Scholar 

  15. Maranas CD, Androulakis IP, Floudas CA (1996) A deterministic global optimization approach for the protein folding problem. In: DIMACS, vol 23. Amer Math Soc, Providence, pp 133–150

    MathSciNet  Google Scholar 

  16. Maranas CD, Floudas CA (1992) A global optimization approach for Lennard–Jones microclusters. J Chem Phys 97:7667–7677

    Article  Google Scholar 

  17. Maranas CD, Floudas CA (1994) A deterministic global optimization approach for molecular structure determination. J Chem Phys 100:1247–1261

    Article  Google Scholar 

  18. Maranas CD, Floudas CA (1994) Global minimum potential energy conformations of small molecules. J Global Optim 4:135–170

    Article  MathSciNet  MATH  Google Scholar 

  19. Némethy G, Gibson KD, Palmer KA, Yoon CN, Paterlini G, Zagari A, Rumsey S, Scheraga HA (1992) Energy parameters in polypeptides 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm with application to proline containing peptides. J Phys Chem 96:6472–6484

    Article  Google Scholar 

  20. Neumaier A (1997) Molecular modeling of proteins and mathematical prediction of protein structure. SIAM Rev 39:407–460

    Article  MathSciNet  MATH  Google Scholar 

  21. Oobatake M, Némethy G, Scheraga HA (1987) Accessible surface areas as a measure of the thermodynamic parameters of hydration of peptides. Proc Nat Acad Sci USA 84:3086–3090

    Article  Google Scholar 

  22. Perrot G, Cheng B, Gibson KD, Vila J, Palmer KA, Nayeem A, Maigret B, Scheraga HA (1992) MSEED: A program for the rapid analytical determination of accessible surface areas and their derivatives. J Comput Chem 13:1–11

    Article  MathSciNet  Google Scholar 

  23. Vila J, Williams RL, Vásquez M, Scheraga HA (1991) Empirical solvation models can be used to differentiate native from near-native conformations of bovine pancreatic trypsin inhibitor. PROTEINS: Struct Funct Genet 10:199–218

    Article  Google Scholar 

  24. Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Amer Chem Soc 106:765–784

    Article  Google Scholar 

  25. Wesson L, Eisenberg D (1992) Atomic solvation parameters applied to molecular dynamics of proteins in solution. Protein Sci 1:227–235

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Klepeis, J.L., Floudas, C.A. (2008). Multiple Minima Problem in Protein Folding: αBB Global Optimization Approach . In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74759-0_429

Download citation

Publish with us

Policies and ethics