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PREFACE 

This book is intended for mathematicians, engineers, economists, and specialists 
working in operations research or in optimization and for anybody interested in 
applied mathematics or in mathematical modelling. 

The Complementarity Theory, is a new domain in applied mathematics and its 
subject is the study of complementarity problems. Complementarity problems 
represent a wide class of mathematical models related to optimization,game theory, 
economics, engineering, mechanics, elasticity, fluid mechanics, stochastic optimal 
control et cetern. 

The complementarity condition is a kind of general equilibrium containing the 
equilibrium in the physical sense and in the economical sense. 

The concept of equilibrium is central to the understanding of many problems in 
physics, engineering, economics, and other fields. Equilibrium is frequently used in 
the study of competitive systems arising in different disciplines. 

Particularly, in economics, examples of equilibrium problems include: markets in 
which finns compete to detennine their profit-maximizing production outputs, 
general economic equilibrium problems in which all the commodity prices are to be 
detennined, congested urban transportation systems in which users seek to determine 
their cost -minimizing routes of travel et cetera. 

An interesting characteristic of Complementarity Theory is the fact that it has 
multiple connections with other domains including: Linear Algebra, Functional 
Analysis, Topology, the Fixed Point Theory, the Theory of Variational Inequalities, 
the Topological Degree and Numerical Analysis. Because the diversity of its 
application, the Complementarity Theory is a good stimulant for research in 
fundamental mathematics. 

This book is especially dedicated to the study of nonlinear complementarity 
problems in infinite dimensional spaces. 

The literature on this subject is very large. Concerning the subjects presented in this 
book, we selected only results related to some topological methods and susceptible to 
new developments. The numerical methods are not considered, as this subject may be 
developed in a future book. 

The structure of this book is as folIows: 

In the first Chapter we present the necessary background on topological vector 
spaces and especially on convex cones in topological vector spaces. Several classes 
of cones used currently in Complementarity Theory are studied. 
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The origins of Complementarity Theory and the definitions of the most important 
complementarity problems are presented in Chapter 2. 

Chapter 3 is devoted to the description of a long list of mathematical models based 
on complementarity problems. 

The study of many complementarity problems is based on the fact that some 
particular complementarity problems are equivalent to some special nonlinear 
functional equations. These equivalencies are presented in Chapter 4. 

Chapter 5 is large, as it is, dedicated to the study of several solvability theorems. In 
this chapter we present several classical and some recent existence results. 
Applications of the topological degree to the study of complementarity problems are 
presented in Chapter 6. 

The concept of zero-epi mapping is a new concept, similar to the concept of 
topological degree, but much simpler and more refined. Zero-epi mappings and their 
application to the Complementarity Theory are presented in Chapter 7. 

A new topological method, recently introduced in Complementarity Theory, is based 
on the concept of Exceptional Family of Elements for a continuous mapping. This 
concept is related to the Leray-Schauder alternative. Chapter 8 is dedicated to this 
subject. 

Condition (8)+ and (S)~ were introduced as a good substitute of compactness when 

this is missing. Several applications of condition (.5)+ and (S)~ to the Complemen­

tarity Theory are presented in Chapter 9. 

It is weIl known that the Complementarity Theory has interesting and deep relations 
with the Fixed Point Theory. Chapter 10 is dedicated to this subject 

Finally, in Chapter 11 we present some recent topological results based on a special 
topological index on cones, or on the Mountain Pass Theorem or on connectedness. 
An application of the concept of Exceptional Family of Elements to the study of the 
Implicit Complementarity Problem is also given in this last chapter. 

Each chapter is followed by Referenees and the book is concluded with a 
Bibliography on complementarity problems. 

This book is an interesting volume for graduate courses and it covers in particular 
our book "Complementarity Problems Leefure Nofes in Mathematies, Nr. 1528, 
Springer-Verlag (1992) ". 

I would like to express my sincere thanks to my friends, Prof. M. M. Kostreva 
(Clemson University), Prof. A. Ebiefung (The University of Tennessee at 
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Chattanooga) and Prof. Byung-Soo Lee (Kyungsung University) fOl their fruitful 
rernarks and improvements of the manuscript of this book. The author is very much 
obliged to each of them. Many thanks also to Prof. P. M. Pardalos (University of 
Florida, Gainesville) for his encouragement in publishing this book. 

My wife Viorica Isac has carefully prepared the manuscript. She supported with 
unlimited enthusiasm and kindness this long and very hard work. Many, many thanks 
for all her support. 

Last, but not least it is a pleasure to acknowledge the excellent assistance that the 
staff of Kluwer Acadernic Publishers has provided in the publication of this book. 

George Isac 
December 2 L 1999 


