Topological Methods in Complementarity Theory

Nonconvex Optimization and Its Applications

Volume 41

Managing Editor: Panos Pardalos University of Florida, U.S.A.

Advisory Board: Ding-Zhu Du University of Minnesota, U.S.A.

C. A. Floudas Princeton University, U.S.A.

J. Mockus Stanford University, U.S.A.

H. D. Sherali Virginia Polytechnic Institute and State University, U.S.A.

The titles published in this series are listed at the end of this volume.

Topological Methods in Complementarity Theory

by

George Isac

Department of Mathematics and Computer Science, Royal Military College of Canada, Kingston, Ontario, Canada

Springer-Science+Business Media, B.V.

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN 978-1-4419-4828-1 ISBN 978-1-4757-3141-5 (eBook) DOI 10.1007/978-1-4757-3141-5

Printed on acid-free paper

All Rights Reserved

© 2000 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2000. Softcover reprint of the hardcover 1st edition 2000 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and

retrieval system, without written permission from the copyright owner.

To my parents Dumitru and Elena Isac

"Ne vous occupez pas des fautes d'autrui, ni de leurs actes, ni de leurs négligences. Soyez plutôt conscients de vos propres actes et de vos propres négligences."

(Bouddha)

CONTENTS

PREFACE	IX
CHAPTER 1	1
CONVEX CONES	1
1.1 Preliminaries	1
1.2 Normal cones	13
1.3 Regular and completely regular cones	19
1.4 Well based cones	22
1.5 Polyhedral cones	27
1.6 Convex cones in Hilbert spaces	32
1.7 Galerkin cones	49
1.8 Tangent and normal cones	55
REFERENCES	57
CHAPTER 2	61
COMPLEMENTARITY PROBLEMS. ORIGIN AND	
DEFINITIONS	61
2.1 Complementarity theory. Origin and necessity	62
2.2 Types of complementarity problems	66
2.3 Questions about complementarity problems	86
REFERENCES	89
CHAPTER 3	101
COMPLEMENTARITY PROBLEMS AS	
MATHEMATICAL MODELS	101
3.1 Mathematical programming and complementarity	101
3.2 Game theory and complementarity	113
3.3 Variational inequalities and complementarity	118
3.4 Complementarity problems in economics	120
3.5 Complementarity and equilibrium of traffic flows	140
3.6 Complementarity and maximizing oil production	143
3.7 Complementarity problems in mechanics and engineering	144
3.8 Other possible applications of complementarity problems	159
3.9 The order complementarity problem as mathematical model	163
REFERENCES	169

CONTENTS	5
----------	---

CHAPTER 4	181
EOUIVALENCES	181
REFERENCES	208
CHAPTER 5	213
TOPICS ON SOLVABILITY	213
5.1 Solvability and properties of solution set	213
5.2 Uniqueness	217
5.3 Global solvability	221
5.4 The basic theorem of complementarity	234
5.5 Feasibility and solvability	249
5.6 Some general existence theorems	272
5.7 Some existence theorems for the linear order complementarity	
problems	287
5.8 The least element solution	293
5.9 Boundedness of solution set	297
5.10 Variational inequalities and existence theorems for complementarity	
problems	309
5.11 Some special problems and results about complementarity problems	325
REFERENCES	357
CHAPTER 6	365
TOPOLOGICAL DEGREE AND COMPLEMENTARITY	365
6.1 A minimal background on topological degree	365
6.2 Topological degree and linear complementarity	369
6.3 Topological degree and the generalized linear order complementarity	
problem	383
6.4 Topological degree and the horizontal linear complementarity	
problem	391
6.5 Topological degree and nonlinear complementarity problems	395
REFERENCES	401
CHAPTER 7	405
ZERO-EPI MAPPINGS AND COMPLEMENTARITY	405
7.1 Zero-epi mappings on bounded sets	405
7.2 (0.k)-epi mappings	409
7.3 Applications to complementarity theory	414
7.4 (0,k)-epi mappings on cones	421
7.5 Applications to complementarity problems	424

REFERENCES	427
CHAPTER 8	431
EXCEPTIONAL FAMILY OF ELEMETNS AND	
COMPLEMENTARITY	431
8.1 Some topological preliminaries	432
8.2 Exceptional family of elements for single-valued mappings and com-	
lementarity	434
8.3 Exceptional families of elements for set-valued mappings	450
8.4 Exceptional family of elements and feasibility	453
8.5 Exceptional family of elements and continuous path of ε-solutions8.6 Exceptional family of elements and the relational complementarity	464
problem	469
8.7 Exceptional family of elements and variational inequalities	474
8.8 Function without exceptional family of elements and existence theo-	
rems	479
REFERENCES	493
CHAPTER 9	497
CONDITIONS (S)+ AND (S) ¹ +: APPLICATIONS TO COM-	
PLEMENTARITY THEORY	497
9.1 Conditions $(S)_{+}$ and $(S)_{+}^{1}$	497
9.2 Applications to complementarity problems	507
9.3 Applications to complementarity problems for set-valued mappings	522
9.4 Condition $(S)_+$, <i>PM</i> -mappings and complementarity	525
REFERENCES	529
CHAPTER 10	531
FIXED POINTS. COINCIDENCE EQUATIONS ON	
CONES AND COMPLEMENTARITY	531
10.1 Fixed points coincidence equations and complementarity	531
10.2 Fixed points, isotone projection cones and complementarity	556
10.3 Fixed points, coincidence equations and implicit complementarity	567
10.4 Fixed points, heterotonic operators and iterative methods for the	
generalized order complementarity problem	578
10.5 Applications of complementarity to fixed point theory	584
10.6 An application to economics	594
	574

CONTENTS

603

CHAPTER :	11
-----------	----

OTHER TOPOLOGICAL RESULTS IN COMPLEMENTA-	
RITY THEORY	603
11.1 A topological index on cones and the fold complementarity problem	603
11.2 Leray-Schauder alternative and the implicit complementarity problem	612
11.3 Complementarity problems. Connectedness of solution set	616
11.4 The Mountain Pass Theorem and complementarity	628
REFERENCES	631
BIBLIOGRAPHY (Complementarity problems)	635
GLOSSARY OF NOTATION	677
INDEX	679

PREFACE

This book is intended for mathematicians, engineers, economists, and specialists working in operations research or in optimization and for anybody interested in applied mathematics or in mathematical modelling.

The Complementarity Theory, is a new domain in applied mathematics and its subject is the study of complementarity problems. Complementarity problems represent a wide class of mathematical models related to optimization, game theory, economics, engineering, mechanics, elasticity, fluid mechanics, stochastic optimal control et cetera.

The complementarity condition is a kind of general equilibrium containing the equilibrium in the physical sense and in the economical sense.

The concept of equilibrium is central to the understanding of many problems in physics, engineering, economics, and other fields. Equilibrium is frequently used in the study of competitive systems arising in different disciplines.

Particularly, in economics, examples of equilibrium problems include: markets in which firms compete to determine their profit-maximizing production outputs, general economic equilibrium problems in which all the commodity prices are to be determined, congested urban transportation systems in which users seek to determine their cost-minimizing routes of travel et cetera.

An interesting characteristic of Complementarity Theory is the fact that it has multiple connections with other domains including: Linear Algebra, Functional Analysis, Topology, the Fixed Point Theory, the Theory of Variational Inequalities, the Topological Degree and Numerical Analysis. Because the diversity of its application, the Complementarity Theory is a good stimulant for research in fundamental mathematics.

This book is especially dedicated to the study of nonlinear complementarity problems in infinite dimensional spaces.

The literature on this subject is very large. Concerning the subjects presented in this book, we selected only results related to some topological methods and susceptible to new developments. The numerical methods are not considered, as this subject may be developed in a future book.

The structure of this book is as follows:

In the first *Chapter* we present the necessary background on topological vector spaces and especially on convex cones in topological vector spaces. Several classes of cones used currently in Complementarity Theory are studied.

The origins of Complementarity Theory and the definitions of the most important complementarity problems are presented in *Chapter 2*.

Chapter 3 is devoted to the description of a long list of mathematical models based on complementarity problems.

The study of many complementarity problems is based on the fact that some particular complementarity problems are equivalent to some special nonlinear functional equations. These equivalencies are presented in *Chapter 4*.

Chapter 5 is large, as it is, dedicated to the study of several solvability theorems. In this chapter we present several classical and some recent existence results. Applications of the topological degree to the study of complementarity problems are presented in Chapter 6.

The concept of zero-epi mapping is a new concept, similar to the concept of topological degree, but much simpler and more refined. Zero-epi mappings and their application to the Complementarity Theory are presented in *Chapter 7*.

A new topological method, recently introduced in Complementarity Theory, is based on the concept of Exceptional Family of Elements for a continuous mapping. This concept is related to the Leray-Schauder alternative. *Chapter 8* is dedicated to this subject.

Condition $(S)_+$ and $(S)_+^1$ were introduced as a good substitute of compactness when this is missing. Several applications of condition $(S)_+$ and $(S)_+^1$ to the Complementarity Theory are presented in *Chapter 9*.

It is well known that the Complementarity Theory has interesting and deep relations with the Fixed Point Theory. *Chapter 10* is dedicated to this subject.

Finally, in *Chapter 11* we present some recent topological results based on a special topological index on cones, or on the Mountain Pass Theorem or on connectedness. An application of the concept of Exceptional Family of Elements to the study of the Implicit Complementarity Problem is also given in this last chapter.

Each chapter is followed by *References* and the book is concluded with a *Bibliography* on complementarity problems.

This book is an interesting volume for graduate courses and it covers in particular our book "Complementarity Problems Lecture Notes in Mathematics, Nr. 1528, Springer-Verlag (1992)".

I would like to express my sincere thanks to my friends, Prof. M. M. Kostreva (Clemson University), Prof. A. Ebiefung (The University of Tennessee at

Chattanooga) and Prof. Byung-Soo Lee (Kyungsung University) for their fruitful remarks and improvements of the manuscript of this book. The author is very much obliged to each of them. Many thanks also to Prof. P. M. Pardalos (University of Florida, Gainesville) for his encouragement in publishing this book.

My wife Viorica Isac has carefully prepared the manuscript. She supported with unlimited enthusiasm and kindness this long and very hard work. Many, many thanks for all her support.

Last, but not least it is a pleasure to acknowledge the excellent assistance that the staff of Kluwer Academic Publishers has provided in the publication of this book.

George Isac December 21, 1999