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Preface 

The problem of distinguishing prime numbers from composite, and of re
solving composite numbers into their prime factors, is one of the most 
important and useful in all arithmetic. . . . The dignity of science seems 

to demand that every aid to the solution of such an elegant and celebrated 

problem be zealously cultivated. 

C. F. GAUSS (1777-1855) 

Primality testing and integer factorization, as identified by Gauss in his Dis
quisitiones Arithmeticae, Article 329, in 1801, are the two most fundamental 
problems, as well as two most important research fields in number theory, par
ticularly in computational number theory1 . With the advent of digital com
puters, they have also been found unexpected and surprising applications in 
computing and particularly in cryptography and information security. In this 
book, we shall introduce various methods/algorithms for primality testing 
and integer factorization, and their applications in public-key cryptography 
and information security. More specifically, we shall first review some ba
sic concepts and results in number theory in Chapter 1. Then in Chapter 
2 we shall discuss various algorithms for primality testing and prime num
ber generation, with an emphasis on the Miller-Rabin probabilistic test, the 
Goldwasser-Kilian and Atkin-Morain elliptic curve tests, and the Agrawal
Kayal-Saxena deterministic test. There is also an introduction to large prime 
number generation in Chapter 2. In Chapter 3 we shall introduce various 
algorithms, particularly the Elliptic Curve Method (ECM), the Quadratic 
Sieve (QS) and the Number Field Sieve (NFS) for integer factorization. Also 
in Chapter 3 we shall discuss some other computational problems that are 
related to factoring, such as the square root problem, the discrete logarithm 
problem and the quadratic residuosity problem. In Chapter 4, we shall discuss 

1 Of course, the primality testing problem (PTP) has now been solved, thanks to 
Agrawal, Kayal and Saxena [5]. That is, the PTP can now be solved in P (deter
ministic polynomial-time). However, the integer factorization problem (IFP) is 
still open. That is, we still do not have an efficient (i.e., deterministic polynomial
time) algorithm for IFP; in the author's opinion, the IFP may indeed be an 
NP-hard problem, although no proof can be given yet at present. 
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some of the most widely used cryptographic systems based on the compu
tationally intractable problems such as integer factorization, square roots, 
quadratic residuosity, discrete logarithms, and elliptic curve discrete loga
rithms. 

We have tried to make this book as self-contained as possible, so that it can 
be used either as a textbook suitable for a course for final-year undergraduate 
or first-year postgraduate students, or as a basic reference in the field. 
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Notation 

All notation should be as simple as the nature of the operations to which 
it is applied. 

Notation 

ZfnZ 

(ZjnZ)* 

#((ZjnZ)*) 

CHARLES BABBAGE (1791-1871) 

Explanation 

set of natural numbers: N = {1, 2, 3, · · ·} 

set of integers (whole numbers): Z = {0, ±n: n EN} 

set of positive integers: z+ = N 

set of positive integers greater than 1: 
Z>1 = {n: n E Z and n > 1} 

set of rational numbers: Q = { ~ : a, b E Z and b =I 0} 
set of real numbers: 

IR = {n + O.d1d2da · · ·: n E Z, di E {0, 1, · · · , 9} 
and no infinite sequence of 9's appears} 

set of complex numbers: 
C = {a + bi : a, b E IR and i = v=f} 

also denoted by Zn, residue classes modulo n; 
ring of integers modulo n; field if n is prime 

multiplicative group; the elements of this group are the 
elements in ZjnZ that are relatively prime ton: 
(ZjnZ)* = {[a]n E Z/nZ: gcd(a,n) = 1} 

also denoted by I(Z/nZ)*I, order of the group (Z/nZ)*, 
i.e., the number of elements in the group 

finite field with p elements, where p is a prime number 

finite field with q = pk a prime power 



xii 

Z[x] 

Zn[x] 

Z[x]jh(x) 

G 

IGI 
R 

K 

E 

E/Q 

E/Zn 

EjlFp 

Oe 

E(Q) 

IE(Q)I 
Ll(E) 

p 

NP 

RP 

ZPP 

IFP 

DLP 

ECDLP 

SQRTP 

QRP 

CFRAC 

ECM 

set of polynomials with integer coefficients 

set of polynomials with coefficients from Zn 

set of polynomials modulo polynomial h(x), 
with integer coefficients 

also denoted by lFp[x]/h(x); 

Notation 

set of polynomials modulo polynomial h(x), 
with coefficients from Zp 

group 

also denoted by #(G), order of group G 

ring 

(arbitrary) field 

elliptic curve y2 = x3 + ax + b 

elliptic curve over Q 

elliptic curve over Zn 

elliptic curve over lFp 

point at infinity on E 

elliptic curve group formed by points on E /Q 
number of points in E(Q) 

discriminant of E, Ll(E) = -16(4a3 + 27b2 ) =fi 0 

Fermat numbers: Fn = 22n + 1, n 2: 0 

class of problems solvable in deterministic 
polynomial time 

class of problems solvable in non-deterministic 
polynomial time 

class of problems solvable in random polynomial 
time with one-sided errors 

class of problems solvable in random polynomial 
time with zero errors 

Integer Factorization Problem 

Discrete Logarithm Problem 

Elliptic Curve Discrete Logarithm Problem 

SQuare RooT Problem 

Quadratic Residuosity Problem 

Continued FRACtion method (for factoring) 

Elliptic Curve Method 



Notation 

NFS 

QS/MPQS 

ECPP 

DHM 
RSA 

DSA/DSS 

alb 

afb 

Por.ll n 

gcd(a, b) 

lcm(a, b) 

lxJ 

fxl 

Number Field Sieve 

Quadratic Sieve/Multiple Polynomial 
Quadratic Sieve 

Elliptic Curve Primality Proving 

Diffie-Hellman-Merkle 

Rivest-Shamir-Adleman 

Digital Signature Algorithm/Digital Signature 
Standard 

a divides b 

a does not divide b 

por. I n but por.+l f n 

greatest common divisor of (a, b) 

least common multiple of (a, b) 

floor: also denoted by [x]; 
the greatest integer less than or equal to x 

ceiling: the least integer greater than or equal to x 

x mod n remainder: x- n l~J 
x = y mod n x is equal to y reduced to modulo n 

x = y (mod n) xis congruent toy modulo n 

x "¥. y (mod n) xis not congruent toy modulo n 

f(x) = g(x) (mod h(x),n) 

[a]n 

+n 
n 

·n 

y'x (mod n) 

{/X (mod n) 

xk mod n 

logx y mod n 
xk 

kP 

f(x) is congruent to g(x) modulo h(x), 
with coefficients modulo n 

residue class of a modulo n 

addition modulo n 

subtraction modulo n 

multiplication modulo n 

square root of x modulo n 

kth root of x modullo n 

x to the power k modulo n 

discrete logarithm of y to the base x modulo n 

x to the power k 

kP = P EB P EB · · · EB P, where Pis a point (x, y) 
k summands 

on elliptic curve E : y2 = x3 + ax + b 

xiii 



xiv 

kP mod n 

logpQ mod n 

ordn(a) 

00 

==::::} 

¢:::::} 

0 

u 

Prob 

lSI 
E 

c 
c 

EB 

8 

f(x) "'g(x) 

..l 

f(x) 

J-l 

(7) 
f 
Li(x) 

kP modulo n, where Pis a point onE 

elliptic curve discrete logarithm of Q to the 
base P modulo n, where P and Q are points 
on elliptic curve E 

order of an integer a modulo n; 
also denoted by ord(a, n) 

index of a to the base g modulo n; 
also denoted by indga whenever n is fixed 

asymptotic equality 

approximate equality 

infinity 

implication 

equivalence 

blank symbol; end of proof 

space 

probability measure 

cardinality of set S 

member of 

proper subset 

subset 

binary operations 

binary operation (addition) 

binary operation (multiplication) 

f(x) and g(x) are asymptotically equal 

undefined 

function of x 

inverse off 

(~.) binomial coefficient: • 
n! 

i!(n- i)! 

integration 

logarithmic integral: Li(x) = r ldt 
} 2 nt 

sum: x1 + x2 + · · · + Xn 

Notation 



Notation 

n 

f1 Xi 
i=l 

n! 

1ogb x 

logx 

lnx 

exp(x) 

7r(x) 

r(n) 

a(n) 

<P(n) 

.X(n) 

p,(n) 

((s) 

(~) 
(~) 

On 
K(k)n 
K(k)n 
[qo, Ql, Q2, 0 0 0 , Qn] 

Ck=~ 

product: x1x2 ° 0 o Xn 

factorial: n(n- 1)(n- 2) o o o 3 o 2 o 1 

logarithm of x to the base b (b =f. 1): x = b10gb x 

binary logarithm: log2 x 

natural logarithm: loge x, e = 2: ;h ~ 207182818 
n2':0 no 

xn 
exponential of x: ex = 2: 1 

n;:::o no 

number of primes less than or equal to x: 
1r(x) = 2: 1 

p<• 
pprime 

number of positive divisors of n: r(n) = 2: 1 
din 

sum of positive divisors of n: a(n) = 2: d 
din 

Euler's totient function: <P(n) = 2: 1 

Carmichael's function: 

O<k<n 
gcd(k,n)=l 

k 
.X(n) = lcm (.X(pfl ).X(p~2) 0 0 0 .X(p~k)) if n = I1 pf; 

Mobius function 

Riemann zeta-function: ((s) = IT ~' 
n=l n 

where s is a complex variable 

Legendre symbol, where p is prime 

Jacobi symbol, where n is composite 

set of all quadratic residues of n 

set of all quadratic non-residues of n 

Jn = {a E (Z/nZ)*: (~) = 1} 

i=l 

set of all pseudo-squares of n: On= Jn- Qn 

set of all kth power residues of n, where k 2 2 

set of all kth power non-residues of n, where k 2 2 

finite simple continued fraction 

kth convergent of a continued fraction 

XV 



xvi Notation 

infinite simple continued fraction 

[qo,Ql,··· ,qk,Qk+l,Qk+2,··· ,Qk+m] 

0(·) 

periodic simple continued fraction 

encryption key 

decryption key 

encryption process C = Eek (M), 
where M is the plain-text 

decryption process M = D dk (C), 

where C is the cipher-text 

upper bound: f(n) = O(g(n)) if there exists some 
constant c > 0 such that f(n) ~ c · g(n) 

polynomial-time complexity measured in terms of 
arithmetic operations, where k > 0 is a constant 

polynomial-time complexity measured in terms of 
bit operations, where k > 0 is a constant 

0 ((log N)clog N) superpolynomial complexity, where c > 0 is a constant 

0 ( exp ( cv'log N log log N ) ) 

0 (exp(x)) 

O(N') 

subexponential complexity, 

0 (exp (cv'log N loglogN ) ) = 0 (Ncy'IoglogN/log N) 
exponential complexity, sometimes denoted by 0 (ex) 

exponential complexity measured in terms of 
bit operations; 0 (N') = 0 (2Elog N), 
where f > 0 is a constant 


