
An Efficient Protocol for Reserving
Multiple Grid Resources in Advance

Jörg Schneider1, Julius Gehr1, Barry Linnert1, and Thomas Röblitz2,3

1 Technische Universitaet Berlin, Germany
{komm,jules,linnert}@cs.tu-berlin.de

2 Zuse Institute Berlin, Germany
roeblitz@zib.de

3 CoreGRID Institute on Resource Management and Scheduling

Abstract. We propose a mechanism for the co-allocation of multiple
resources in Grid environments. By reserving multiple resources in ad-
vance, scientific simulations and large-scale data analyses can efficiently
be executed with their desired quality-of-service level. Co-allocating mul-
tiple Grid resources in advance poses demanding challenges due to the
characteristics of Grid environments, which are (1) incomplete status
information, (2) dynamic behavior of resources and users, and (3) au-
tonomous resources’ management systems. Our co-reservation mecha-
nism addresses these challenges by probing the state of the resources
and by enhancing a two-phase commit protocol with timeouts. We per-
formed extensive simulations to evaluate communication overhead of the
new protocol and the impact of the timeouts’ length on the scheduling
of jobs as well as on the utilization of the Grid resources.

1 Introduction

Over the last decade, Grid computing has evolved from providing basic meth-
ods to access distributed heterogeneous compute resources to a research dis-
cipline that addresses the demanding needs of both scientific and commercial
applications. Scientific simulations and large-scale data analyses often involve
complex workflows which require the co-allocation of multiple resources. For
example, Fig. 1 illustrates a tele-immersion application, which requires differ-
ent resources such as compute clusters, network links and visualization units.
Co-allocating multiple resources can be implemented by different means. First,
the resources’ management systems coordinate the allocation of resources to a
distributed application, i.e., without the need of a higher-level Grid scheduler.
Second, a higher-level Grid scheduler coordinates the allocation of the resources.
In this model, delivering end-to-end quality-of-service (QoS) guarantees to dis-
tributed applications necessitates the use of advance reservations, because Grid
resources are autonomously managed. Autonomous management means, that a
Grid scheduler has only limited control over the start time of a job. While this
is sufficient for many single-resource applications, delivery of QoS guarantees to
distributed multi-resource applications may be very difficult if not impossible.

4. streaming

Internet

5. post-processing, visualization

1. satellite
transmission
1. satellite
transmission

3. data processing,
(filtering, database access, etc.)

3. data processing

2. bulk transfer
(non real-time) (real-time)

Fig. 1: Example: Grid application with time-dependent tasks.

In this paper, we follow the second approach, that is reserving multiple re-
sources in advance. In particular, we propose a protocol which (1) reduces the
number of trials until a co-reservation is admitted, (2) provides means to re-
duce the impact of the reservation process to concurrent job submissions and
(3) implements an all-or-nothing semantics for acquiring co-reservations.

We assume that the capacity of resources is space-shared among simultane-
ously active requests. Furthermore, the resources’ local management is planning-
based, i.e., it accepts requests starting in the future and guarantees that these
requests are allocated the needed capacity. Co-reservation requests consist of
multiple parts each specifying an earliest start time, a duration, a latest end time
and a needed capacity. Different parts of a co-reservation request may require
resources of different type and different capacities. The relationship between the
parts are specified with temporal and spatial constraints.

The first step in reserving is to filter the existing resources with the static
requirements of a request, e.g., the operating system of a machine or the available
interfaces to a storage server. The resulting set of resource candidates is the input
to the mechanism we propose here. Our protocol is composed of three main steps:

1. Determine co-reservation candidates by probing the future status of re-
sources.

2. Gather preliminary reservations for each part of a co-reservation candidate.
3. Commit the preliminary reservations.

A co-reservation candidate is a set of tuples each describing a time slot at
a certain resource. A time slot is defined by a begin time, an end time and
a capacity. Also, a tuple associates performance metrics with each time slot
such as cost. These performance metrics may be used to select a co-reservation
candidate for further processing. While selecting a candidate is an interesting
research topic by itself it is beyond the scope of this paper. In the evaluation, we
simply used the candidate with the earliest time slots. Note, since the preliminary
reservations expire after some timeout, they do not need to be canceled if the
whole transaction fails.

The remainder of this paper is structured as follows. In Section 2 we discuss
related work. The multi-resource reservation protocol we propose is presented
in Section 3. The benefits of the probe messages and the timeouts are evaluated
through extensive simulation in Section 4. We conclude in Section 5.

2 Related Work

As described, elaborated resource allocation mechanisms are a key requirement
to enable complex applications in the Grid. Grid brokers relying on batch man-
agement systems at the local resources will only implement co-allocations at a
high cost [9]. If the local resource manager already supports advance reserva-
tions, the Grid broker has to submit such reservations in a coordinated manner
in order to allocate the requested resources. Several protocols have been pro-
posed for this task, all using the basic concept of a two-phase commit. In the
first phase, each required resource is preliminarily reserved. If this was success-
ful for each resource these reservations will be committed. In the literature [1,
3, 5–7, 14], this protocol is usually applied on exactly named resources. In our
approach, the co-allocation request specifies the type of the resource only. Thus,
our Grid broker may automatically try multiple combinations of resources until
the requested preliminary reservations are obtained.

Kuo and Mckeown [6] present a two-phase commit protocol and show that
in all cases only valid final states will be reached. They discuss possible eco-
nomic models to deal with preliminary reservations. The protocol also supports
timeouts for the preliminary reservations. But the impact of timeouts on the
resource utilization and the processing of the workload was only stated and not
empirically analyzed.

Czajkowski et al. [3] propose a reservation protocol where the application
itself or a co-allocation agent on behalf of the application manages the co-
allocation. The authors extended the two-phase commit protocol such that the
application can dynamically modify the reservation. For example, the application
was enabled to give up a reservation only if it could get another reservation.

Brandic et al. [1] developed a two-phase commit protocol to ensure a re-
quested quality-of-service. The protocol is employed between a Grid user and
the Grid broker. The Grid broker will produce a QoS offer consisting of a pre-
dicted execution time, an allocation for all needed resources, and a prize based
on an economic model. The user confirmation of such an offer equals the commit
in the two-phase commit protocol. The offer is valid for a limited time only, but
the actual impact of this timeout is not evaluated.

Haji et al. address the issues of the two-phase commit protocol with restricted
knowledge [5]. They propose a mechanism to monitor all suitable resources un-
til the preliminary reservation will be carried out. The local resource manage-
ment systems of the selected resources will inform the Grid broker on each state
change. The monitored resources must provide detailed information on their sta-
tus which contradicts the information hiding aspect of the Grid. Additionally,
the protocol operates with immediate reservations only.

The HARC co-scheduler [7] uses Gray and Lamport’s Paxos Commit Pro-
tocol, a generalization of the two-phase commit protocol. Using this protocol,

the commit process may succeed if multiple participants fail or are temporar-
ily unavailable. The HARC co-scheduler requires detailed information about the
timetables of the requested resources.

The MetaScheduling Service [14] uses a negotiation protocol for co-allocations.
In a first step each resource is asked for the earliest possible start time. This step
is repeated using the latest start time as a new lower bound until all resources
return the same time. The subsequent steps implement the two-phase commit
protocol. The resources are selected by the user before the negotiation begins.
Our proposed probe requests works similarly to the first step, but the probe re-
sponses contain multiple possible start times in the whole requested time frame.

In the context of transactions the two-phase commit is a fundamental tech-
nique for processing distributed transactions. Various approaches extended the
basic two-phase commit such that it could also be applied in distributed systems
without a central coordinator, i.e., by introducing an additional phase to elect a
coordinator [13].

3 The Reservation Protocol

The reservation protocol must cope with the specific characteristics of Grid en-
vironments, which are (1) incomplete status information, (2) dynamic behavior
of the resources and users, and (3) autonomy of the resources’ local management
systems. In the theoretic case, that a client would have global information and
could control any state change in the resources, it could simply request the reser-
vation of multiple available resources. In a realistic scenario, however, a client
neither has global information nor does he or a broker fully control the resources.
Hence, a client does not know a-priori, which resources are available. The reserva-
tion protocol, we propose, approaches this problem by specifying three methods
tailored at the level of information a client possesses and by defining the relation-
ships between these methods. Here a client is any participant who is requesting
some service. For example, a user sending a request to a broker, or a broker
sending a request to a resource. The participants can compose a multi-level hi-
erarchy, which is common in economic environments. For the sake of simplicity,
we will limit the discussion to three levels: clients, broker and resources.

3.1 Building Blocks of the Protocol Phases

The protocol involves the three phases: (1) probing, (2) gathering preliminary
reservations and (3) committing. The corresponding methods and the level of
information to which they are applicable are summarized in Table 1.

Probing phase. The purpose of the probing phase is to gather detailed infor-
mation about the state of a resource. If a component receives a probe request
it determines reservation candidates. Each reservation candidate is defined by a
start time, an end time and a quality-of-service level which satisfy the bounds
of the flexible request. Each reservation candidate is associated with a number
of evaluation metrics. The used evaluation metrics only depend on what a client
is requesting and what a service provides. Typical, evaluation metrics are cost,
utilization, makespan, etc. [12].

Table 1: Protocol methods operating on different levels of status information.

Method Description Level of information (X)

probe Resources are asked to provide information
about their current and future state.

low (0)

reserve A preliminary reservation is requested. The re-
quest can be given with fixed or ranged values.

high for fixed request
parameters, medium for
flexible request parame-
ters (1)

commit A previously admitted preliminary reservation
is committed.

highest (2)

Gathering preliminary reservations. Preliminary reservations are like normal
reservations except that they need to be confirmed until a given time. Before
that time, a resource may not allocate the reserved capacity to any other request.
Canceling a preliminary reservation (or simply not confirming it) does not impose
any cost to the client. Similar to a probe request a reservation request may
be given with flexible parameters. Flexibility enables a broker to negotiate the
exact parameters. Note, this is not only beneficial for the client side, but also
for the resources, which can express their preferences. In a scenario with fixed
parameters, a resource can only grant or deny a request.

Committing phase. In the committing phase, a client confirms the preliminary
reservations it will use. This phase is essential to implement an efficient all-or-
nothing semantics in a Grid environment. A client will only start committing
reservations if it has received preliminary reservations for all request parts. Be-
cause a resource must not allocate the capacity of granted preliminary reserva-
tions to any other request, it is interested in receiving a confirmation or cancel-
lation as soon as possible.

Figure 2a shows symbols for each phase. While the upper row illustrates the
interaction for sending a request, the lower shows symbols for transmitting the
response messages. In the following sections, these symbols are used to compose
protocol instances.

3.2 Rules for Composing Protocol Instances

A client may possess different levels of information. Consequently, a reservation
process can be initiated with each of the three methods. The rules for composing
protocol instances only limit the actions of a service receiving a request of a client.
Figure 2b illustrates these rules using the symbols introduced in Sect. 3.1.

The service receiving a request corresponding to the information level X
may only issue requests of the same or a lower level of information Y ≤ X (cf.
Table 1). For example, if a broker receives a reserve request, it can only issue
probe or reserve requests to resources. Only the sender of a request may switch
to a method corresponding to a higher level of information.

(a) Symbols representing message ex-
changes for the three protocol phases:
probing, gathering preliminary reserva-
tions and committing.

(b) Rules for composing protocol meth-
ods to protocol instances. Symbol la-
bels: sr - send request, rr - receive re-
quest, sp - send response (cf. Sect. 3.1
for a detailed description of the meth-
ods).

Fig. 2: Method symbols and rules for composing protocol instances.

3.3 A Common Protocol Instance for Grid Environments

In many Grid environments, the three main parties involved in job management
are the clients, a broker and the resources. Here we present a protocol instance
that is adopted to such situations. Figure 3 provides an overview of the interac-
tions of a client with the broker and of the broker with the resources.

The interactions of the components are as follows:

1. Client Request. The client sends a reserve request to a broker.
2. Probe Request. The Grid broker sends a probe request to all suitable resources

specifying the constraints given by the user.
3. Probe Response. The requested local resource management systems (RMS)

estimate whether the request could be fulfilled. Each RMS constructs a num-
ber of reservation candidates matching the requirements, i.e., containing spe-
cific values for the number of CPUs, the start time, or the guaranteed band-
width. Each reservation candidate is further rated with respect to how well
it fits into the known workload of the resource.

4. Reservation. Using the information from the probe responses, the Grid bro-
ker can now calculate a co-reservation candidate. The allocation takes into
account the user given requirements and the scheduling strategy of the Grid
broker, but also the preferences given by the local resource management sys-
tems (the rating associated with each reservation candidate). All selected
resources of this co-reservation candidate are now asked for a preliminary
reservation.

5. Reservation Granted or Reservation Failed. The local resource manager tries
to incorporate the reservation into their schedule and informs the Grid broker
about the result of the operation. Additionally, a timeout period will be
negotiated until which the preliminary reservation will be held up.

6a. Reservation Commit. After the required resources are preliminarily reserved,
the Grid broker commits all reservations. Figure 3 shows an optional step,

in which the broker presents the preliminary reservation to the client and
lets the client make a final decision.

6b. Reservation Rollback. If a single reservation fails, all former successful reser-
vations will be canceled and a new co-reservation candidate without the
failed resource will be calculated. The processing continues with step 4.

6c. Timeout. If the Grid broker does not respond within a given time, the local
resource management system cancels the preliminary reservation.

set
timeout

grant/deny
preliminary
reservation

ack
commit/
cancel

determine
feasible
candidates

set
timeout

grant/deny
preliminary
reservation

ack
commit/
cancel

determine
feasible
candidates

find best
candidate

decide:
commit/
cancel

set
timeout

grant/deny
preliminary
reservation

ack
commit/
cancel

determine
feasible
candidates

return prel.
reservation

client broker resources

Fig. 3: Example instance of the protocol with three parties – a client, a broker
and multiple resources. Solid arrows indicate one control flow. Dotted arrows
show the message flow between the broker and the resource.

Using a probe request, the Grid broker is now able to create a set of resources
to request, which will – with a high probability – accept the reservation. Note,
whether a resource accepts a reservation, depends on the current status of the
resource, which may have changed between the probe request was processed and
the subsequent reservation request. In general, probing will reduce the number of
reservation requests send out until one succeeds. By answering a probe request, a
resource provides more detailed information about its current status than what
can be derived from standard resource monitoring services [4, 8]. However, each
resource can decide on its own how much information it will make available. For
example, it could only send back a few reservation candidates despite that more
would be free. This can be used for enforcing local scheduling policies and may
prevent Grid brokers from reconstructing the precise local utilization.

3.4 Trade-offs for Choosing Timeout Values for the Commit Phase

The moment a resource grants a preliminary reservation it also sets off a timeout
until which it will keep the reservation and waits for a commit message. In this
section, we discuss the trade-offs for choosing timeout values. Analytically, a
timeout is composed of two distinct parts: the technical part and the negotiation
part. The technical part is calculated as the round-trip time of the messages
between the broker and the resources as well as between the user and the broker.
Let N be the number of parts of a co-reservation request and r the message
round-trip time. Depending on the communication scheme between the broker
and the resources – sequential or parallel – the technical part of the timeout Tt

must not be less than (N +1)r or 2r, respectively. If a resource sets off a timeout
smaller than Tt, it can not receive a commit message before the timeout expires.
Note, for the sake of simplicity, we ignored message handling times in the above
formulas.

The negotiation part is composed of two parts. The first part is caused by the
broker performing re-negotiation and gathering alternative reservations if some
of the original candidates were denied. The second part is due to a client, which
may want to evaluate the gathered preliminary reservations. For example, a
client could query competing Grid brokers, check the available budget or receive a
clearance from the accounting. Choosing a value for those parts depends on many
parameters, in particular the current workload of the resources, their reservation
policies and the co-reservation requests. While the first part can be evaluated
through extensive parameter studies, the second part is very difficult to model.
Therefore, the experimental evaluation (cf. Sect. 4) focuses on the first part.

Enabling the user to manually influence the booking process, also requires a
fault-tolerant booking protocol. Users may simply forget to cancel reservations
or not able to do so (e.g., due to system crashes, network failures, etc.). In the
travel business, advance reservations are often combined with a refund policy
such that the client has to pay only a small fee if the reservation is canceled.
In economics research, this is known as the “no show”-problem [11]. In online
shopping, recent studies [10] show that only a small percentage of customers
finally submit an order after filling up the virtual shopping cart. Usually they
leave the web site without clearing the shopping cart. Clearly, there is a trade-
off between the time of a customer to commit his decision and the costs of a
provider whose resources are blocked until the timeout expires.

Figure 4 illustrates the trade-offs for choosing timeout values. At each level
in the resource management hierarchy, the service in the role of the provider –
the actual resource (solid curve in Fig. 4a) or the Grid broker (dashed curve in
Fig. 4b) – favors a short timeout. When the reservation is not committed or can-
celed before the timeout expires, the system’s performance may be unnecessarily
degraded. In other words, the longer a resource provider must held up a even-
tually canceled preliminary reservation, the smaller will be the objective of the
provider. Performance degradation can be measured by the number of rejected
requests due to blocked resources and by the resource utilization. In contrast,
the service in the role of the client – the Grid broker (dashed curve in Fig. 4a)
or the Grid user (dash-dotted curve in Fig. 4b) – prefers a long timeout. Note,
the different shapes of the clients’ curves. A program serving as Grid broker may

timeout

o
b
je

c
ti
v
e

resource

Grid broker

(a) Lower level (without human in-
teraction): A Grid broker in the
role of a client. A resource in the
role of a provider.

timeout

o
b
je

c
ti
v
e

Grid broker

Grid user

(b) Higher level (with human in-
teraction): A user in the role of a
client. A Grid broker in the role of
a provider.

Fig. 4: The trade-off between the objective and timeout value for negotiation
partners at different levels in the Grid resource management hierarchy.

require smaller timeouts to reach a certain objective than a human being. Thus,
the whole processing of co-reservation requests should be carried out with as less
as possible human interaction.

4 Experimental Evaluation

We evaluated the common protocol instance for Grid environments described in
Sect. 3.3 by means of parameter sweep simulations. In particular, we analyzed
the impact of the probing phase and the length of the timeouts. In the following,
we describe the simulated infrastructure, the workload, the user behavior, the
metrics used for evaluation and present the results in detail.

4.1 Simulated Infrastructure and Workload

The simulated hardware infrastructure consists of eight parallel machines with
homogeneous processors (512, 256, 256, 128, 128, 96, 32 and 32). For the sake of
simplicity, the simulations were made using a simple synthetic job and user inter-
action model. Each job was assumed to be reserved in advance with the advance
booking period being exponentially distributed. Job durations and requested
processors were uniformly distributed over the interval [1250, 3750] and [1, 10],
respectively. The inter-arrival time was used to model various load situations.

To compare the performance of the proposed protocol, we used two imple-
mentations of the Grid broker – one without (version A) and one with probing
(version B). In the implementation without probing, the broker tries to reserve
without sending probe messages. It just uses the information about those jobs
which were submitted through the broker itself, thereby simulating the prob-
lem of missing information about the status of resources. That is, the broker
has no information about the jobs which were submitted by other brokers. Fig-
ure 5 shows the simulation setup. The left path is used for the measurement

of different performance metrics. The right path is used to inject the workload
which is not under the control of the evaluated broker. The components Admin-
istrative Domain Controller (ADC) and Adaptive Interface (AI) are part of the
Virtual Resource Manager (VRM) [2] which we used for the simulations. The
ADC serves as a Grid broker, while the AI may interface with different local
resource management systems (LRMS). For the evaluation, we used a simple
planning-based scheduler for compute resources as LRMS.

ADC

(Grid broker)

AI

Simulated

resource

AI

Simulated

resource

AI

Simulated

resource

...

Simulated

user

R
e
s
e
rv

a
tio

n
s

R
local

ADC

(Grid broker)

Simulated

user

R br
ok

er

s
id

e
c
h

a
n
n

e
l

o
b
s
e
rv

e
d

b
ro

k
e
r

Fig. 5: The simulation setup in the experimental evaluation.

The generated workload R was divided into two sets: the set of jobs submitted
to the improved broker Rbroker and the set of jobs submitted via the side channel
broker Rlocal. The jobs where randomly assigned to one of these sets preserving
a given ratio |Rbroker|

|R| and a uniform distribution over the simulation time. Each
parameter set – number of jobs, timeouts, acceptance ratios – was tested with
several workloads until a sufficiently small confidence interval was reached.

4.2 Modeling the User Behavior for the Committing Phase

Modeling the behavior of actual users would require to describe how many reser-
vations are canceled, committed or just forgotten and how the response times
(cancel or commit) are distributed. In addition, users may adapt their behavior
to specific settings of timeouts and may behave differently depending on the
properties of the requested reservation. Because, only few information is avail-
able for defining a model addressing all these issues, we used a very simple model
of the user behavior.

A user can either be an accepter or a rejecter. An accepter would send a
commit within the timeout. For a local resource management system, however, it

does not matter when this message is received. Hence, we assume that it is send
immediately after the reservation was preliminarily booked. A rejecter might
send a cancel within the timeout or will not send any message at all. The later is
the worst case from the point of view of the local resource management system.
Hence, we assume that a preliminary reservation of a rejecter is automatically
canceled when its timeout expires.

Thus the only variables in our user model are the number of accepters and
the number of rejecters. In the evaluation, we used a set of accepters Raccepter

with a fixed number of 10, 000 co-reservations and a fixed inter-arrival time dis-
tribution. For each evaluated accepter-rejecter-ratio ratioi, a corresponding set
Rrejecter,ratioi containing 10, 000/ratioi co-reservations requests was generated.
These requests were automatically canceled when the timeout expired.

4.3 Metrics

We used different metrics for evaluating the impact of the probing and the
committing phases.

Metrics for the probing phase. The purpose of the probe messages is to mini-
mize the communication needed to negotiate the terms of a reservation. Hence,
we measured for each request the total number of messages nprobe exchanged
between the broker and the resources. Because, the negotiation for a complex
workflow application with a large number of sub-jobs will involve more resources
than a simple job with only a few sub-jobs, the communication cost for probing
Cprobe is defined as

Cprobe :=
nprobe

njobs
(1)

where njobs is the numbers of sub-jobs. We also measured the impact of the
probing on the number of actual reservation attempts r. The more the probe
messages improve the knowledge of the status of the resources, the less reserva-
tion attempts should be necessary.

Metrics for the committing phase. We evaluated the timeout settings by mea-
suring the impact of the workloads on the acceptance rate α defined as

α :=
|Raccepted|
|Raccepter|

(2)

with Raccepted being the set of reservations that are accepted and committed and
Raccepter the set of reservation requests for which a user will accept the obtained
preliminary reservations.

4.4 Results for the Probing Phase

Figure 6 shows the number of reservation attempts (vertical axis) over differ-
ent numbers of |Rbroker|

|R| -ratios (horizontal axis). The higher the ratio, the more
reservations are submitted at the evaluated broker or in other words the less

0

2

4

6

8

10

12

14

16

18

20

10 20 30 40 50 60 70 80 90 100

Ratio of request send to broker (%)

N
u

m
b

e
r

o
f

re
s
e

rv
a

ti
o

n
 a

tt
e

m
p

t
A: with probes

B: without probes

successful requests

unsuccessful requests

successful requests
unsuccessful requests

Fig. 6: Reservation attempts for different |Rbroker|
|R| ratios.

0

2

4

6

8

10

12

14

16

18

20

10 20 40 60 80 100

Interarrival time (timeslots)

N
u

m
b

e
r

o
f

re
s
e

rv
a

ti
o

n
 a

tt
e

m
p

ts

A: with probes

B: without probes

successful requests

unsuccessful requests

successful requests
unsuccessful requests

Fig. 7: Reservation attempts for different load situations.

status information was missing. All experiments were performed with an inter-
arrival time of 20 time slots. The worst case in terms of reservation attempts is
if all co-reservation candidates fail to be reserved. Therefore, the diagram shows
individual graphs for successful and unsuccessful co-reservations. The graphs
demonstrate that the probing phase significantly reduces the number reserva-
tion attempts for both successful and unsuccessful requests. Only in the case
of |Rbroker|

|R| = 100%, i.e., all requests are submitted via the evaluated broker,
the broker (version B) using the knowledge on previous reservations needs less
co-reservation candidates than the probing broker (version A).

Figure 7, shows the number of reservation attempts (vertical axis) over the
inter-arrival time of jobs (horizontal axis). Smaller inter-arrival times correspond
to higher load. For these experiments, the workload was evenly split, such that
50% of the requests were send to the evaluated broker and 50% were sent to the
side channel. The graphs show that, the higher is the load (small inter-arrival

0

2

4

6

8

10

12

14

16

18

20

10 20 30 40 50 60 70 80 90 100

Ratio of request send to broker (%)

N
u

m
b

e
r

o
f

m
e

s
s
a

g
e

s
A: with probes

B: without probes

successful requests

unsuccessful requests

successful requests
unsuccessful requests

Fig. 8: The total number of messages.

times), the more does probing reduce the number of reservation attempts. For
larger inter-arrival times, probing does not yield an improvement.

Figure 8 shows the total normalized number of exchanged messages ex-
changed messages between a broker and the resources Cprobe (vertical axis) over
different numbers of |Rbroker|

|R| -ratios (horizontal axis). The graphs show that, for
most ratios, the total normalized number of messages is higher for the broker
employing the proposed protocol both for successful and unsuccessful requests.
This is due to the additional probe messages. In our evaluation, each resource
receives a probe message. Thus, eight probe messages were sent out for each
sub-job of a co-reservation request (our simulation environment consists of eight
resources, cf. Sect. 4.1). In contrast, the broker not using the probing mecha-
nism (version B), only sends the reservation request. However, the results for
the probing protocol may be improved by sending probing messages in parallel,
resulting in a smaller overhead.

4.5 Results for the Committing Phase

The simulated hardware infrastructure as well as the synthetic job and user
interaction model was same as in the experiments evaluating the probing mech-
anism (cf. Sect. 4.1 and Sect. 4.2). In contrast to the evaluation of the probing
mechanism, we did not distinguish between local and Grid jobs as both suffer
from unnecessary blocked resources in the same way. Hence, the number of jobs
submitted via the side channel (cf. Fig. 5) were set to zero.

Figure 9 shows the acceptance rate (vertical axis) over the timeout (hori-
zontal axis). Different curves represent rejecter-accepter-ratios (depicted by the
number of rejecters per 1,000 accepters). The timeout is measured in number
of time slots. The graphs show that, the smaller is the number of rejecters, the
smaller is the impact of the timeout on the acceptance rate. This graph can be
used to calculate timeouts dynamically based on the estimated rejecter-accepter-
ratio and the target acceptance rate. For example, if we expect one rejecter per

0 200 400 600 800 1000

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

timeout

ac
ce

pt
at

io
n

0

500

1000

2000

3000

4000
5000

Fig. 9: The average acceptance rate α for all jobs. Each curve corresponds to a
specific ratio of rejecters to accepters.

accepter and the target acceptance rate is approx. 0.8 the timeout needs to be
set at about 300 time slots (cf. to curve 1,000).

5 Conclusion

In this paper, we presented a novel protocol for reserving multiple Grid resources
in advance. Most existing reservation protocols implement a two-phase commit.
Applied to scenarios including complex workflows or multi-site applications these
protocols may lead to a high number of requests by a Grid broker trying to al-
locate resources. The lack of knowledge about the availability of the resources
causes this high number of requests. In contrast to these approaches, our reser-
vation protocol implements a probe phase to gather the availability information
and try only co-reservation candidates with a high success probability.

We also investigated the impact of timeouts implemented in our reservation
protocol as an efficient mechanism to reduce resource wastage due to canceled
or not committed reservations. The results of our experiments show a significant
impact of the choice of the timeout length on the overall performance of the
Grid resource management system. Based on our research the Grid providers
and manager is now able to adjust the timeout length to their objectives. By
observing the acceptor-rejecter-ratio the timeout may be adapted dynamically.

Acknowledgments

The work of the forth author was partially funded by the German Ministry
for Education and Research under grant 01AK804C and by the Institute on Re-
source Management and Scheduling of the EU Network of Excellence CoreGRID
(Contract IST-2002-004265).

References

1. I. Brandic, S. Benkner, G. Engelbrecht, and R. Schmidt. QoS Support for Time-
Critical Grid Workflow Applications. Proceedings of the 1st International Confer-
ence on e-Science and Grid Computing (e-Science 2005), pages 108–115, 2005.

2. L.-O. Burchard, M. Hovestadt, O. Kao, A. Keller, and B. Linnert. The Virtual
Resource Manager: An Architecture for SLA-aware Resource Management. In 4th
Intl. IEEE/ACM Intl. Symposium on Cluster Computing and the Grid (CCGrid),
Chicago, USA, pages 126–133, 2004.

3. K. Czajkowski, I. Foster, and C. Kesselman. Resource Co-Allocation in Compu-
tational Grids. Proceedings of the Eighth IEEE International Symposium on High
Performance Distributed Computing (HPDC-8), pages 219–228, 1999.

4. K. Czajkowski, C. Kesselman, S. Fitzgerald, and I. Foster. Grid Information Ser-
vices for Distributed Resource Sharing. Proceedings of the 10th IEEE International
Symposium on High Performance Distributed Computing (HPDC-10), pages 181–
194, 2001.

5. M. H. Haji, P. M. Dew, K.Djemame, and I. Gourlay. A SNAP-based community
resource broker using a three-phase commit protocol. In 18th International Parallel
and Distributed Processing Symposium, pages 56–65, 2004.

6. D. Kuo and M. Mckeown. Advance Reservation and Co-Allocation Protocol for
Grid Computing. Proceedings of the 1st International Conference on e-Science and
Grid Computing (e-Science 2005), pages 164–171, 2005.

7. J. MacLaren, B. Rouge, and M. Mc Keown. HARC: A Highly-Available Robust
Co-scheduler. Technical report, Center for Computation and Technology, Louisiana
State University, 2006.

8. M. L. Massie, B. N. Chun, and D. E. Culler. The Ganglia Distributed Monitoring
System: Design, Implementation, and Experience. Parallel Computing, 30(7):817–
840, July 2004.

9. H. H. Mohamed and D. H. J. Epema. Experiences with the KOALA co-allocating
scheduler in multiclusters. IEEE International Symposium on Cluster Computing
and the Grid (CCGrid 2005), 2005.

10. H. K. Omwando, J. Favier, I. Cremers, and T. van Tongeren. The Best Of Europe’s
Online Retail. Technical report, Forrester Research, October 2003.

11. S. Ringbom and O. Shy. Reservations, refunds, and price competition. Techni-
cal Report 5/2003, Svenska handelshgskolan, Swedish School of Economics and
Business Administration, November 2003.

12. T. Röblitz, F. Schintke, and A. Reinefeld. Resource Reservations with Fuzzy Re-
quests. Concurrency and Computation: Practice and Experience, 18(13):1681–1703,
November 2006.

13. D. Skeen. Nonblocking commit protocols. Proceedings of the 1981 ACM SIGMOD
international conference on Management of data, pages 133–142, 1981.

14. O. Wäldrich, P. Wieder, and W. Ziegler. A Meta-scheduling Service for Co-
allocating Arbitrary Types of Resources. In Proc. of the Second Grid Resource
Management Workshop (GRMWS05) in conjunction with the Sixth International
Conference on Parallel Processing and Applied Mathematics (PPAM 2005), volume
3911 of LNCS, pages 782–791. Springer, 2005.

