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Abstract A key software engineering challenge in autonomic computing is the
complexity of administrating operational policies of applications. In order to address
this challenge, this chapter proposes and evaluates a new development environment,
called iNetLab, which is designed to improve the productivity of designing, main-
taining and tuning operational policies in autonomic network applications. iNetLab
consists of (1) a set of visual modeling languages specialized to define operational
policies in network applications, (2) a set of supporting facilities for those modeling
languages, and (3) tools estimates the performance of a network application with
its operational policy under development. The proposed visual modeling languages
and their supporting facilities can simplify and semi-automate the process to de-
sign and maintain operational policies by allowing application administrators (i.e.,
non programmers) to graphically deal with operational policies in an intuitive man-
ner. The proposed performance estimation tools leverage the performance history
of each network application (i.e., pairs of an operational policy and a performance
result obtained in the past) and approximate the application’s performance without
deploying and running it actually. This simplifies the process to tune operational
policies against desirable performance requirements and contributes to shorten the
time to develop autonomic applications.

1 Research Issues in Autonomic Computing

A key software engineering challenge in autonomic computing is the complexity
of managing operational policies, each of which defines an administrative decision
(i.e., a pair of an operational condition and an administrative action) to operate appli-
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cations. This complexity derives from two major issues: (1) information overloading
in designing and maintaining operational policies, and (2) a lack of guidance meth-
ods to tune operational policies against desirable performance requirements such as
response time, throughput and load balancing.

The first issue is information overloading in designing and maintaining opera-
tional policies. It is often tedious, expensive and error-prone for application admin-
istrators to design proper operational policies for their applications because pol-
icy design involves a large volume and variety of information [14]. Administrators
need to consider a variety of operational conditions (e.g., each application compo-
nent’s internal conditions such as resource utilization and external conditions such
as workload) and administrative actions (e.g., migration of an application compo-
nent from one host to another). Due to this information overloading, administra-
tors can be easily overwhelmed to pair operational conditions and administrative
actions as operational policies. This problem becomes even more serious when
an application’s functional and/or non-functional aspects often change. Functional
changes include introducing new application functionalities and updating existing
ones. Non-functional changes include adding new hardware resources and revising
service level agreements. Upon these changes, administrators need to consider ad-
ditional operational conditions and administrative actions and re-design operational
policies by re-pairing them again.

The second issue is a lack of guidance methods to tune operational policies
against desirable performance requirements [15,18]. Although each operational pol-
icy defines a set of administration actions for application components to take under
certain operational conditions, it is nothing to do with the performance that they can
collectively yield with its operational policy. It is always hard to estimate whether
a given operational policy allows an application to satisfy particular performance
requirements. As a result, a number of operational policies need to be evaluated ex-
tensively with a simulator or testbed in order to determine which one to be used in
an application. This trial-and-error evaluation process can take a significant amount
of time and costs. Also, it is often too ad-hoc and unreliable to guide application
administrators to obtain a reasonable operational policy that can satisfy desirable
performance requirements.

2 Key Components and Contributions of iNetLab

In order to address the two issues described in the previous section, this chapter
proposes and evaluates a new development environment, called iNetLab, which is
intended to improve the productivity of designing, maintaining and tuning oper-
ational policies in autonomic network applications. iNetLab consists of three key
components described below.

The first component in iNetLab is a set of visual modeling languages that are
specialized to design and maintain operational policies (i.e., operational conditions
and administrative actions) in network applications. They are intended to be visual
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domain-specific languages (DSLs) that directly capture, represent and implement
domain-specific concepts; the concepts specific to operational policies in autonomic
network applications, rather than general-purpose languages that aim at general soft-
ware problems. The proposed DSLs define those domain-specific concepts in their
metamodels and represent them as visual or textual language primitives. This sim-
plifies the process to build visual models that allow application administrators (non-
programmers) to intuitively understand, design and maintain operational policies.
Moreover, the proposed DSLs intentionally limit their expressiveness to specify op-
erational policies only; therefore, they can reduce the chances for application ad-
ministrators to make errors by building models in invalid or unexpected ways. By
simplifying the design of operational policies and automating their validation, the
proposed DSLs reduce the cost to design and maintain operational policies, thereby
alleviating the issue of information overloading.

The second component in iNetLab is a set of supporting facilities for the pro-
posed DSLs, such as visual GUI editors and a code generator. Visual editors sup-
port the proposed DSLs and allow application administrators to design operational
policies. The code generator of iNetLab transforms operational policies defined in
the proposed DSLs into to program code. Currently, it generates Java code that runs
on a simulator to test autonomic network applications. This code generation en-
ables rapid configuration and implementation of operational policies of autonomic
network applications, thereby alleviating the issue of information overloading. In
addition, by customizing the default model-to-code transformation rule, operational
policies can be transformed to other platforms (other simulators, testbeds and real
networks) without making any changes on those policies.

The third component in iNetLab is a set of performance estimators. The pro-
posed performance estimators leverage the performance history of each network
application (i.e., pairs of an operational policy and a performance result obtained in
the past) and approximate the application’s performance without actually deploying
and running it on simulators, testbeds or real networks. The proposed performance
estimators address the issue of a lack of guidance methods to tune operational poli-
cies; they are designed to simplify the trial-and-error process for evaluating and
tuning operational policies and aid application administrators to obtain reasonable
operational policies that allow applications to satisfy desirable performance require-
ments.

This chapter is structured as follows. Section 3 presents an application architec-
ture for autonomic networking, called BEYOND, which iNetLab is currently de-
signed for. Section 4 overviews the architecture of iNetLab. Section 5 describes
DSLs and their supporting facilities. Section 6 describes and evaluates the iNetLab
performance estimators. Sections 7 and 8 conclude with some discussion on related
work.
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3 BEYOND: An Application Architecture for
Biologically-inspired Autonomic Networking

iNetLab is currently intended to support an architecture for autonomic network ap-
plications, called BEYOND1 [17]. This section briefly overviews BEYOND to bet-
ter explain iNetLab in Section 5. See [17] for full discussion on BEYOND.

BEYOND is designed to address two challenges in autonomic network applica-
tions: autonomy and adaptability. Inspired by an observation that various biological
systems have developed the mechanisms to overcome these challenges, BEYOND
applies key biological principles and mechanisms to design network applications.

3.1 Agents

In BEYOND, each network application is designed as a decentralized group of soft-
ware agents. This is analogous to a bee colony (application) consisting of multiple
bees (agents). Each agent provides a certain functional service in an application,
and implements biologically-inspired behaviors. Each agent also possesses its own
behavior policy, which determines which behavior to be invoked under a given set
of environment conditions. A behavior policy in BEYOND is equivalent to an op-
erational policy in an autonomic application. Using its behavior policy, each agent
invokes its behaviors autonomously; without any intervention from/to other agents
and human users. Example agent behaviors are listed below.

• Energy exchange and storage: Biological entities strive to seek and consume
food for living. Similarly, in BEYOND, agents store and expend energy for living.
Each agent gains energy in exchange for performing its functional service to other
agents or human users, and expends energy to use the resources available at the
local host (e.g., memory space and CPU cycles).

• Replication: Agents may make their copies in response to high energy level, which
indicates high demand for the agents. A replicated agent is placed on the host that
its parent agent resides on, and it inherits the parent’s behavior policy. Mutation
may occur on the inherited behavior policy.

• Reproduction: Agents may reproduce child agents with other agents (mating part-
ners). A child agent is placed on the host that its parents reside on, and it inherits
behavior policies from both parents through crossover. Mutation may occur on the
behavior policy of a child agent.

• Migration: Agents may move from one network host to another.
• Death: Agents die due to energy starvation. If an agent cannot balance its energy

expenditure with its energy gain, the agent cannot pay for the resources it needs;
thus, it dies from lack of energy.

1 Biologically-Enhanced sYstem architecture beyond Ordinary Network Designs.



Model-Driven Development and Performance Engineering for Autonomic Networking 5

3.2 iNet: Agent Adaptation Mechanism in BEYOND

iNet is a key component in BEYOND, which allows each agent to adaptively per-
form its behaviors against dynamic environment conditions in the network, such
as network traffic and resource availability. iNet is designed after the mechanisms
behind how the immune system detects antigens (e.g., viruses), how it specifically
produces antibodies to eliminate them, and how it evolves antibodies to react to
a massive number of antigens. iNet models a set of environment conditions as an
antigen and an agent behavior as an antibody. Each agent contains its own immune
system, and a configuration of the agent’s antibodies defines its behavior policy.
iNet allows each agent to autonomously sense its surrounding environment condi-
tions (i.e., antigen) for evaluating whether it adapts well to the sensed conditions,
and if it does not, adaptively invoke a behavior (i.e., antibody) suitable for the condi-
tions. For example, agents may invoke the replication behavior at the network hosts
that accept a large number of user requests for their services. This leads to the adap-
tation of agent availability; agents can improve their throughput. Also, agents may
invoke the migration behavior to move toward the network hosts that receive a large
number of user requests for their services. This results in the adaptation of agent
locations; agents can improve their response time to user requests.

3.2.1 Natural Immune System

The natural immune system adaptively regulates the body against dynamic environ-
mental changes such as antigen invasions. Through a number of interactions among
various white blood cells (e.g., macrophages and lymphocytes such as T-cells and
B-cells) and molecules (e.g., antibodies), the immune system evokes two responses
to antigens: T-cell activation and B-cell activation responses.

In the T-cell activation response, the immune system performs self/non-self dis-
crimination. This response is initiated by macrophages. Macrophages move around
the body to ingest antigens and present them to T-cells. T-cells are produced in thy-
mus though the negative selection. In this selection process, thymus removes T-cells
that strongly react to the body’s own (self) cells. The remaining T-cells are used as
detectors to identify foreign (non-self) cells. When a T-cell detects a non-self cell
presented by a macrophage, the T-cell secretes chemical signals to induce the B-cell
activation response.

In the B-cell activation response, B-cells are activated by T-cells. Some of the
activated B-cells strongly react to an antigen, and they produce antibodies that
specifically kill the antigen. Antibodies form a network and communicate with
each other [12]. This antibody network is formed with stimulation and suppression
relationships among antibodies. With these relationships, antibodies dynamically
change their populations and network structure. For example, the population of a
specific type of antibodies rapidly increases when they detect an antigen, and after
eliminating the antigen, the population decreases again.
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The immune system maintains approximately 109 antibodies. B-cells can in-
crease this repertoire further by mutating and recombining immune gene segments
so that antibodies can detect and bind a massive number of antigens [3].

3.2.2 iNet Artificial Immune System

The iNet artificial immune system consists of the environment evaluation (EE) fa-
cility and behavior selection (BS) facility, which implement the T-cell and B-cell
activation responses, respectively (Figure 1). The EE facility allows an agent to con-
tinuously sense a set of current environment conditions as an antigen and classify
the antigen to self or non-self. A self antigen indicates that the agent adapts to the
current environment conditions well, and a non-self antigen indicates it does not.
When the EE facility detects a non-self antigen, it activates the BS facility. The BS
facility allows an agent to choose a behavior as an antibody that specifically matches
the detected non-self antigen.

attributes
Agent
body

behaviors
Self detectorNon-self detector Behavior(antibody)

Environment Evaluation Behavior Selection
activation

A set of environment conditions (antigen) Antibody network

Fig. 1 The Architecture of iNet

Detectors(Vectors)

Distance (R, S) T: threshold
Self Detector (Ds) Non-self Detector (Dn)

> T=< T

Features

Detector Table
D3 0 (Self)
D1 0 (Self)D2 1 (Non-self)
….

F1 F2 F3 ….      Class

User-definedSelf Detector (S)Randomly-generatedDetector (R)

Fig. 2 Initialization of the EE Facility

The EE facility performs two steps: initialization and self/non-self classification.
The initialization step produces detectors, as T-cells, which identify self and non-
self antigens. Each antigen is represented as a feature vector (X), which consists of
a set of environment conditions, or features, (Fi) and a class value (C):

X = (F1,F2, .....,Fn,C) (1)

C indicates whether a given antigen (i.e., a set of environment conditions) is self
(0) or non-self (1). If an agent senses resource utilization and workload (the number
of user requests) on the local host, an antigen is represented like

Xcurrent = ((Low : ResourceUtilization,Light : Workload),0) (2)

The initialization of the EE facility is designed after the negative selection in the
immune system (Figure 2). As the immune system randomly generates T-cells, the
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workload on theLocal host is heavy reproduce
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Fig. 4 An Example Antibody Network

EE facility generates detectors (feature vectors) randomly. Then, the EE facility sep-
arates the generated detectors into self detectors, which closely match self antigens,
and non-self detectors, which do not. This separation is performed by measuring
vector similarity between randomly generated feature vectors (R) and self antigens
(S) that human administrators supply. After the vector matching, both self and non-
self detectors are stored in the detector table (Figure 2)2.

In self/non-self classification, the EE facility classifies a given antigen to self or
non-self. This is performed with a decision tree built from the detectors in the detec-
tor table. Figure 3 shows an example decision tree. Each node in the tree specifies
which feature (environment condition) is considered. Based on the feature values
in a given antigen, the EE facility travels through tree branches. If the EE facility
classifies the antigen to non-self, it activates the BS facility.

The BS facility selects an antibody (i.e., agent’s behavior) suitable for a detected
non-self antigen (i.e., a set of environment conditions). Each antibody consists of
three parts: a precondition under which it is selected, behavior ID and relationships
to other antibodies. Antibodies are linked with each other using stimulation and
suppression relationships. Each antibody has its own concentration value, which
represents its population. The BS facility identifies a set of antibodies suitable for a
given non-self antigen, prioritizes them based on their concentration values, and se-
lects the most suitable one. When prioritizing antibodies, stimulation relationships
among them contribute to increase their concentration values, and suppression rela-
tionships contribute to decrease them. Each relationship has an affinity value, which
indicates the degree of stimulation or suppression.

Figure 4 shows an example network of antibodies. It contains four antibodies,
which represent the migration, replication and death behaviors. Antibody 1 repre-
sents the migration behavior invoked when the distance to users is far from an agent.
Antibody 1 suppresses Antibody 3 and stimulates Antibody 4. Now, suppose that a
(non-self) antigen indicates (1) the distance to users is far, (2) workload is heavy on
the local host and (3) resource utilization is low on a neighboring platform. This anti-
gen stimulates Antibodies 1, 2 and 4 simultaneously. Their populations increase, and

2 The immune system removes non-self detectors through negative selection. However, in iNet,
both self and non-self detectors are used to perform self/non-self classification.
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Antibody 2’s concentration value becomes highest because Antibody 2 suppresses
Antibody 4, which in turn suppresses Antibody 1. As a result, it is likely that the BS
facility selects Antibody 2.

4 The Architecture of iNetLab

This section overviews the architecture of iNetLab. It provides a development, con-
figuration and performance engineering environment for autonomic network appli-
cations built with iNet. Figure 5 shows an architectural overview of iNetLab. It
consists of six components: four application configuration facilities (Sections 5),
application code generator (Sections 5), and performance estimators (Section 6).
The iNetLab configuration facilities aid defining and configuring iNet-based appli-
cations with visual/textual DSLs. They include the environment configuration fa-
cility (Section 5.1), the agent behavior configuration facility (Section 5.2), the EE
configuration facility (Section 5.3), and the BS configuration facility (Section 5.4).

The environment configuration facility allows agent designers (i.e. application
designers) to visually configure the environment conditions used in their agents.
The behavior configuration facility allows them to visually configure agent behav-
iors. The EE configuration facility allows for configuring a set of self detectors (S in
Figure 2) used in the EE facility. The BS configuration facility allows agent design-
ers to visually or textually configure the behavior policies of their agents.

Code Generator (Model-to-Code Transformer)
VisualConfig.Environment TextualConfig.Environment BSConfig.FacilityBehaviorPoliciesInter-changeableEEConfig.FacilityDetectors

Env.Config.FacilityEnv.Config.FacilityEvn.Cond.
iNetLabiNetLab

Simulatorcode Platform Developers

AgentDesigners BehaviorConfig.FacilityBehaviorConfig.Facility
History ofPolicies andPerformance

ActualPerformance Data stored
stored

PerformanceEstimatorsPerformanceEstimatorsuse
EstimatedPerformance

Simulatorruns on generates
Fig. 5 The Architecture of iNetLab

Once environment conditions, agent behaviors, detectors and behavior policies
are configured with the iNetLab configuration facilities, the iNetLab code genera-
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tor transforms them to compilable source code with a DSL-to-code transformation
rule. Transformation rules are implemented by platform developers, who know the
details of platform technologies to run applications (e.g., programming languages,
operating systems, middleware and simulators). Through changing one transforma-
tion rule to another, the iNetLab code generator can generate different source code
that are compatible with different deployment environments such as simulators and
real networks. This way, an agent designer can define a single set of application
configurations and reuse it for different platform technologies. Currently, iNetLab
supports Java code generation for a simulator of BEYOND.

After generating an application code and running it on a simulator, iNetLab col-
lects the application’s performance result. Then, it stores a pair of the application’s
behavior policy and performance result in a repository as history data. The iNetLab
performance estimators use the history data to approximate application performance
with new behavior policies in the future.

5 DSLs, Configuration Facilities and Code Generator in iNetLab

This section describes four configuration facilities and code generator in iNetLab.

5.1 iNetLab Environment Configuration Facility

The iNetLab environment configuration facility allows agent designers to visually
model environment conditions with its DSL. Figure 6 shows an example environ-
ment condition model. As this figure illustrates, each rectangle represents an envi-
ronment condition and contains multiple rounded rectangles that represent its value
categories. For example, in Figure 6, the LocalWorkload environment condition
defines two value categories: HEAVY (higher than 200) and LIGHT (lower than or
equal to 200).

It is hidden from agent designers how and when to obtain values of environ-
ment conditions. Platform developers are expected to implement this concern in a
skeleton source code generated by the iNetLab code generator (Figure 5). For ex-
ample, Listing 1 shows a fragment of Java code generated from the LocalWorkload
environment condition in Figure 6. The class EnvironmentCondition is the base
class to define environment conditions used in a BEYOND simulator; it provides a
means to obtain values of environment conditions by accessing the states of the sim-
ulator. Platform developers implement the getRepValue() method with the APIs
in EnvironmentCondition. For example, the APIs are used to return the current
CPU utilization and request rate from users.

Figure 7 shows the metamodel of environment condition models. Any envi-
ronment condition model (e.g., Figure 6) is defined as an instance of this meta-
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Fig. 6 An Example Model Defined with the iNetLab Environment Configuration Facility

model. Other configuration facilities and code generator access environment condi-
tion models via this metamodel.

The metamodel has three metaclasses, EnvironmentConditionDefs,
EnvironmentConditionDef and CategoryDef. EnvironmentConditionDefs rep-
resents a set of environment condition definitions. This metaclass does not have
its graphical notation because its instance corresponds to an environmental con-
figuration model itself. An instance of the EnvironmentConditionDef metaclass
represents the definition of an environment condition (e.g., LocalWorkload in Fig-
ure 6), and its name attribute indicates the name of an environment condition (e.g.,
"LocalWorkload" in Figure 6). An instance of EnvironmentConditionDef meta-
class can contains an arbitrary number of instances of the CategoryDef metaclass,
which defines a value category of an environment condition. The name attribute in-
dicates a category’s name, and the expression attribute indicates a value range of
an environment condition. For example, in Figure 6, LocalWorkload has a value
category, called Heavy, whose range is "> 200".

Listing 1 An Example Generated Code for the LocalWorkload environment condition
1 public class LocalWorkload
2 extends edu.umb.inet.sim.EnvironmentCondition
3 implements EnvironmentCondition {
4
5 enum Category{ HEAVY, LIGHT };
6
7 public Category evaluate(){
8 double repValue = getRepValue();
9 if( repValue > 200 ){ return Category.HEAVY; }

10 return Category.LIGHT;
11 }
12
13 private double getRepValue(){
14 // TODO: platform developers add code here
15 }
16 }
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EnvironmentConditionDef

-name : EString

EnvironmentConditionDefs

CategoryDef

-name : EString
-condition : EString

-categories

1..*

-environmentConditions1..*

Fig. 7 Metamodel for Environment Condition Models

The metamodel for environment condition models is defined in Eclipse Modeling
Framework (EMF) [9], and the environment configuration facility is implemented
on Eclipse Graphical Modeling Framework (GMF) [8].

The iNetLab code generator transforms an environment condition model to Java
source code with a DSL-to-code transformation rule (Figure 5). The transforma-
tion rule is defined as a template that maps the metamodel elements of environ-
ment condition models and the program elements of Java source code. Each rule is
executed with openArchitectureware (oAW) [19], a model-to-code transformation
engine. Listing 2 shows a fragment of the default transformation rule used for envi-
ronment condition models. This rule generates Java source code used in a BEYOND
simulator. Platform developers can define their own transformation rules that gener-
ate source code for other deployment environments (Figure 5).

Listing 2 A Fragment of the Default Transformation Rule for Environment Condition Models
1 <<DEFINE ExpandEnvCondition FOR EnvironmentConditionDef>>
2 <<FILE name + ".java">>
3 public class <<name>>
4 extends edu.umb.inet.sim.EnvironmentCondition
5 implements EnvironmentCondition {
6
7 enum Category{
8 // Apply RetrieveCategoryName to each element
9 // in EnvironmentConditionDef.categories

10 <<EXPAND RetrieveCategoryName FOREACH categories>> };
11
12 public Category evaluate(){
13 double repValue = getRepValue();
14 <<EXPAND ExpandCondition FOREACH categories>>
15 }
16 ...
17 }
18 <<ENDFILE>>
19 <<ENDDEFINE>>
20
21 // Retrieve the ’name’ attribute of CategoryDef
22 <<DEFINE RetrieveCategoryName FOR CategoryDef>>
23 <<name>>,
24 <<ENDDEFINE>>
25
26 // Transform a category to an if statement according to its condition
27 <<DEFINE ExpandCondition FOR CategoryDef>>
28 <<IF condition == "else">>
29 return <<name>>;
30 <<ELSE>>
31 if(<<condition>>) return <<name>>;
32 <<ENDIF>>
33 <<ENDDEFINE>>
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The keyword DEFINE defines a transformation rule for a certain metaclass. In
Line 1 of Listing 2, a transformation rule, named ExpandEnvCondition, is de-
fined for the metaclass EnvironmentConditionDef. Each instance of the meta-
class is transformed to a Java class whose name is same as the instance’s attribute
name (<<name>> is replaced with the instance’s attribute name.) In Line 7, a Java
enumeration type (Category) is defined. Its elements are defined by calling the
RetrieveCategoryName rule (Line 22 to 24), which retrieves name of each instance
of CategoryDef. In Line 12, the evaluate() method is defined, and completed by
calling the ExpandCondition rule on each instance of CategoryDef.

This transformation rule generates Java source code shown in Listing 1 when it
is applied to an environment condition model shown in Figure 6.

5.2 iNetLab Behavior Configuration Facility

The iNetLab behavior configuration facility allows agent designers to visually
model agent behaviors with its DSL. Figure 8 shows an example behavior configu-
ration model. As this figure illustrates, each rectangle represents an agent behavior
and contains multiple rounded rectangles that represent its parameters. The name of
a parameter is shown at the top of a rounded rectangle, and the parameter’s type is
shown below. For example, in Figure 8, the Reproduction behavior has three pa-
rameters: mutationRate, partnerSelectionPolicy and crossoverPolicy. A
parameter can be typed with an enumeration. In Figure 8, two enumeration types
are defined: PartnerSelectionPolicy and CrossoverPolicy.

Fig. 8 An Example Model Defined with the iNetLab Behavior Configuration Facility

Figure 9 shows the metamodel for behavior configuration models. Any behav-
ior configuration model (e.g., Figure 8) is defined as an instance of this meta-
model. Other configuration facilities and code generator access behavior configu-
ration models via this metamodel.

The metamodel consists of four metaclasses: BehaviorDefs, BehaviorDef,
ParameterDef and EnumerationDef. BehaviorDefs represents a set of agent
behavior definitions. This metaclass does not have its graphical notation because
its instance corresponds to a behavior configuration model itself. An instance of
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the BehaviorDef metaclass represents the definition of an agent behavior (e.g.,
Reproduction in Figure 8), and its name attribute indicates the name of an agent
behavior (e.g., ”Reproduction” in Figure 8). An instance of the BehaviorDef can
contain an arbitrary number of instances of the ParameterDef metaclasses, which
defines the parameters of an agent behavior. The name and type of ParameterDef
represent a parameter’s name and type.

EnumerationDef

-name : EString
-elements : EString [1..*]

ParameterDef

-name : EString
-type : EString

BehaviorDefs

-name : EString

BehaviorDef

-enumerations

0..*

-parameters

0..*

-behaviors1..*

Fig. 9 Metamodel for Behavior Configuration Models

Similar to the environment configuration facility, the behavior configuration fa-
cility is implemented on Eclipse GMF. The metamodel for behavior configuration
models is defined in EMF.

5.3 iNetLab EE Configuration Facility

The iNetLab EE configuration facility allows agent designers to define a set of self
detectors (S in Figure 2) used in the EE facility. Figure 10 shows a screenshot of
this facility, and depicts six detectors in a table. Each row in the table represents
a detector, and each column represents an environment condition defined in the
environment configuration facility (Section 5.1).

Fig. 10 Example Detectors Defined with the iNetLab EE Configuration Facility

In the EE configuration facility, agent designers configure detectors by selecting
one of the categories for each environment condition. For example, in Figure 10,
the NumOfAgents environment condition has three categories, MANY, MID and FEW,
which are defined in the environment configuration facility (Figure 5.1). An agent
designer chooses one of the three categories to generate detectors. As described in
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Section 3.2.2, the generated detectors are used to perform the negative selection
process in iNet.

5.4 iNetLab BS Configuration Facility

The BS configuration facility allows agent designers to visually or textually config-
ure the behavior policies of their agents. Figure 11 shows a visual behavior policy
(antibody network) model. As this figure illustrates, each rectangle represents an an-
tibody and consists of three compartments: (1) the name and the initial concentration
of an antibody, (2) an environment condition under that an antibody reacts to, and
(3) an agent behavior and its parameters. For example, in Figure 11, AntibodyA
represents the reproduction behavior, and its initial concentration value is 5. The
behavior is invoked when LocalWorkload is light. A stimulation/suppression rela-
tionship between antibodies is visualized as a solid arrow between rectangles. Each
arrow shows a value that represents the affinity value of a corresponding stimula-
tion/suppression relationship. In Figure 11, AntibodyA stimulates AntibodyB with
the affinity value of 1.5.

Fig. 11 A Visual Behavior Policy Model Defined with the iNetLab BS Configuration Facility

Figure 12 shows a textual behavior policy configuration. Each antibody is de-
fined with the built-in keyword antibody. Figures 11 and 12 show the semantically
same behavior policy. As in Figure 12, the BS configuration facility shows built-in
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Fig. 12 A Textual Behavior Policy Model Defined with the iNetLab BS Configuration Facility

keywords in a boldface, automatically examine the syntax of a behavior policy con-
figuration, and reports syntax errors while agent designers configure antibodies. In
Figure 12, a syntax error is reported with a cross mark. (The keyword energyLevel

is wrong; EnergyLevel should be used because of the environment condition model
defined in Figure 6.)

Listing 3 is a fragment of Java source code to which the iNet code generator trans-
forms from the behavior policy configuration in Figure 11 or 12. Different forms
(visual and textual) of a behavior policy configuration are transformed to the same
source code.

Listing 3 An Example Generated Code for Configuring an Antibody Network
1 void setupAntibodiesOfINet(){
2 Antibody antibodyA =
3 new Antibody( "AntibodyA", 5, LocalWorkload.LIGHT,
4 new Reproduction(
5 2.3, CROSSOVER.FITNESSBASED, PARTNER.FITNESSBASED ) );
6
7 Antibody antibodyD =
8 new Antibody( "AntibodyD", 1, EnergyLevel.HIGH,
9 new Migration( DirectionPolicy.USER ) );

10
11 AntibodyNetwork inet = getAntibodyNetwork();
12 inet.add( antibodyA );
13 inet.add( antibobyD );
14 antibodyA.addAffinity( antibodyD, 5.3 );
15 }

The BS configuration facility allows agent designers to configure behavior poli-
cies (antibody networks) in a declarative and intuitive manner. They do not need
to know the programming details on how to implement agents in Java (e.g., how
to define agents, where to implement a behavior policy in agent code, and which
iNet APIs to use for implementing antibodies.) These details are hidden from agent
designers by the BS configuration facility and code generator; they can focus on the
design of behavior policies.
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Figure 13 shows the metamodel for behavior policy models. It consists of
five generic metaclasses, AntibodyNetwork, Antibody, Affinity, Behavior and
EnvironmentCondition, and four metaclasses for agent behaviors, Reproduction,
Replication, Migration and Death.

AntibodyNetwork represents an antibody network. For example, a behavior pol-
icy model in Figure 11 is an instance of AntibodyNetwork. Antibody represents
an antibody, and its name and initialConcentration attributes indicate an anti-
body’s name and initial concentration value, respectively. Affinity represents an
affinity between Antibodys; the direction and degree of a stimulation/supression
relationship. Behavior is the base metaclass for all agent behaviors. By referencing
Environment and Category, EnvironmentCondition represents an environment
condition under which an antibody is invoked.

Antibody

-name : EString
-initialConcentration : EDouble

<<enumeration>>
PartnerSelectionPolicy

EnergyBased
FitnessBased

Neighbor
Local

EnvironmentCondition

Category
<<enumeration>>

HEAVY
LIGHT
MANY

HIGH
LOW

FEW
MID

Replication

-mutationRate : EDouble

Reproduction

-mutationRate : EDouble

Affinity

-affinityValue : EDouble

AntibodyNetwork

<<enumeration>>
CrossoverPolicy

EnergyBased
FitnessBased
HalfAndHalf

<<enumeration>>
Environment

NeighborWorkload
LocalWorkload

NumOfAgents
EnergyLevel

DirectionPolicy
<<enumeration>>

Resource
Random

User

Migration

Behavior

Death

1
-incoming

0..*

-outgoing

0..*

11

-antibodies0..*

1

-behavior1

11

Fig. 13 The Metamodel for Behavior Policy Models

The visual and textual BS configuration environments are implemented with
Eclipse GMF and oAW, respectively. The metamodel for behavior policy config-
urations is defined in EMF.

5.5 Metamodel Customization

As described in earlier sections, the environment configuration metamodel (Fig-
ure 7), agent behavior configuration metamodel (Figure 9) and behavior policy con-
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figuration metamodel (Figure 13) are built upon EMF, which serves as the meta-
metamodel (Figure 14). Similarly, environment configuration models (e.g., Fig-
ure 6), agent behavior configuration models (e.g., Figure 8) and behavior policy
models (e.g., Figures 11 and 12) are built upon their corresponding metamodels
(Figure 14).

In iNetLab, the behavior policy configuration metamodel (Figure 13) is intended
to be extensible for various types of applications that consider different environment
conditions and use different agent behaviors. In other words, the metamodel varies
depending on what are defined in environmental configuration models and agent be-
havior configuration models. In order to address this issue and make the metamodel
extensible, iNetLab customizes the metamodel based on given environmental con-
figuration models and agent behavior configuration models (Figure 14).

The first step of metamodel customization is to import an environment configura-
tion model from the environment configuration facility, extract environment condi-
tions defined in the model, and introduce the environment conditions to the behavior
policy configuration metamodel. For example, when an environment configuration
model in Figure 6 is imported, four environment conditions (e.g., LocalWorkload)
and seven category values (HEAVY and LIGHT) are extracted. Then, the behavior pol-
icy configuration metamodel is customized by generating two enumeration types
(Environment and Category) and defining four environment conditions and seven
category values in the enumeration types. See Figure 13 for the generated enumera-
tion types.

customize

Metamodel
Model

EnvironmentConfigurationMetamodels Behavior PolicyConfigurationMetamodels
EnvironmentConfigurationModels Behavior PolicyConfigurationModels

Meta-metamodel EMFconform to
Agent BehaviorConfigurationMetamodels
Agent BehaviorConfigurationModels customizeconform to

Fig. 14 Metamodel Customization in iNetLab

The second step of metamodel customization is to import an agent behavior
model from the behavior configuration facility, extract behaviors defined in the
model, and introduce the behaviors to the behavior policy configuration meta-
model. For example, when an agent behavior model in Figure 8 is imported,
the Reproduction behavior and its associated parameters (i.e., mutationRate,
partnerSelectionPolicy and crossoverPolicy) are extracted. Then, the be-
havior policy configuration metamodel is customized by generating a sub metaclass
of the Behavior metaclass and defining three parameters in the generated metaclass.
In Figure 13, four behaviors are generated and defined, including Reproduction.
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Agent designers can anytime change the environment conditions and behaviors
that their agents (applications) use by re-defining environment configuration models
and behavior configuration models and re-performs metamodel customization. This
way, they can customize the behavior policy metamodel without knowing meta-
modeling details and maintain the metamodel extensible yet consistent with other
models.

6 Performance Estimators in iNetLab

The iNetLab performance estimators implement two different estimation methods
using graph similarity (Section 6.1) and eigenvector centrality (Section 6.2). As il-
lustrated in Figure 5, iNetLab records, as history data, pairs of behavior policies
used in an application (i.e., agents) and the application’s performance results. Once
an agent designer configures a new behavior policy for an application (agents), an
iNetLab performance estimator retrieves the behavior policies, from the history data,
which are similar to the one under development. Then, it approximates the applica-
tion’s performance under an assumption that similar behavior policies yield similar
performance results. With the iNetLab performance estimators, agent designers can
re-define and tune their behavior policies without running applications (agents) re-
peatedly for a long time. This can alleviate trial-and-error burdens from agent de-
signers and improve their productivity in tuning behavior policies.

6.1 Performance Estimation with Graph Similarity

The first performance estimation method in iNetLab is inspired by a bioinformatics
technique to understand and infer the function of a network of interacting proteins.
In biology, protein interaction networks have been extensively investigated to ex-
plore how interacting proteins reveal an emergent function such as creating a mem-
brane and signaling impulses between cells. It is now known that similar protein
interaction networks have similar functions even if several proteins and interaction
patterns are altered. Therefore, by measuring structural similarity with other net-
works, it is possible to infer the function of a given protein interaction network. In
bioinformatics, several functional approximation methods have been proposed.

Since antibodies are proteins and an antibody network has an emergent function
(i.e., immune response) through stimulation/suppression interactions, a performance
estimator in iNetLab is designed based on an approximation method for protein in-
teraction networks [22]. In this performance estimator, called the iNet graph-based
performance estimator, the function of an antibody network corresponds to the per-
formance of an application that uses the antibody network as its behavior policy.

The proposed graph-based estimator approximates an application’s performance
by measuring the structural similarity (or graph similarity) between the applica-
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tion’s behavior policy and other behavior policies. It measures the similarity, S, and
dissimilarity, D, between two different behavior policies, and obtains (S−D) as
the overall similarity Soverall . S is measured by finding the common subnetworks
contained (or shared) in given two behavior policies. D is measured by finding the
subnetworks that are not shared in two behavior policies. A common subnetwork is
a network that consists of the same types of antibodies (i.e., antibodies that repre-
sent the same behavior, have the same environment conditions and have the same
directed structure/graph of stimulation/supression relationships). For example, in
Figure 15, two behavior policies have two common subnetworks: a subnetwork
consisting of B, C, E and F, and another subnetwork consisting of G and H. In the
Antibody Network A, a subnetwork consisting of A, D and I is not shared with the
Antibody Network B. In the Antibody Network B, a subnetwork consisting of A, X,
Y and Z is not shared with the Antibody Network B.
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Fig. 15 Common Subnetworks in Two Behavior Policies (Antibody Networks)

The similarity, S, between two behavior policies is calculated with Equation 3
where anetA and anetB represent behavior policies. When two behavior policies
are identical, the similarity between them is equal to the number of antibodies and
stimulation/suppression relationships.

S(anetA,anetB) = ∑
ab∈AB

max(0,1−|IanetA(ab)− IanetB(ab)|)+

∑
r∈R

max(0,1−|AanetA(r)−AanetB(r)|) (3)

where

AB = A set of antibodies in anetA∩anetB

R = A set of stimulation/supression relationships in anetA∩anetB

Ianet(ab) = The initial concentration of an antibody ab in anet.

Aanet(r) = Affinity value associated with a relationship r in anet.

The dissimilarity, D, between two behavior policies is calculated with Equation 4.
When two behavior policies are identical, the dissimilarity between them becomes
0. When the antibodies and relationships that are not shared in two behavior policies
have larger initial concentration values and affinity values, the dissimilarity between
them becomes larger.
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D(anetA,anetB) = ∑
ab′∈AB′

I(ab′)+ ∑
r′∈R′

A(r′) (4)

where

AB′ = A set of antibodies in anetA∆anetB

R′ = A set of stimulation/supression relationships in anetA∆anetB

6.2 Performance Estimation with Eigenvector Centrality

The second performance estimation method in iNetLab is designed to predict the
concentrations of antibodies in each antibody network and obtain the similarity
of behavior policies (i.e., antibody networks) by comparing the predicted antibody
concentrations in given two antibody networks. This estimation method leverages
eigenvector centrality [4, 5] to predict the concentrations of antibodies.

The proposed eigenvector-based method forms an N×N adjacent matrix that rep-
resents individual stimulation/suppression relationships between antibodies, when
N antibodies exist in an antibody network. Each value in the matrix represents an
affinity value associated with a stimulation/suppression relationship. For example,
in Figure 16, the antibody C stimulates the antibody D with the affinity value of 1.2.
The antibody A’s initial concentration is 0.0, and the antibody B’s is 1.0.ABCDEF

A B C D  E  F …
…

1.20.0 0.0 0.0 0.00.00.0 1.0 0.0 0.20.4 Antibody D stimulates antibody C with the affinity value of 1.2An adjacent matrix representing an antibody network

ABCDEF… 2.30.01.10.00.3
0.0

The eigenvector that produces the maximum eigenvalue. Each value represents an emergent concentration of an antibody

findeigenvectors

Fig. 16 Adjacent Matrix and Eigenvector of a Behavior Policy (Antibody Network)

The proposed method obtains multiple N dimensional eigenvectors from a given
adjacent matrix and choose the eigenvector, called centrality vector, which gener-
ates the maximum eigenvalue. In general, a centrality vector provides N centrality
scores, each of which represents a certain importance level [5]. In the context of
iNetLab, these centrality scores indicate the emergent concentrations of antibodies
through stimulation and suppression interactions among antibodies. For example, in
Figure 16, the antibody B’s concentration is predicted as 1.1.
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Since an antibody’s concentration impacts the probability that it is selected (Sec-
tion 3.2.2), a centrality vector indicates how an application (agents) invokes behav-
iors with a given behavior policy and, in turn, estimates the application’s perfor-
mance.

The proposed eigenvector-based performance estimation method examines the
similarity of behavior policies by comparing their centrality vectors based on the
cosine similarity.

6.3 Evaluation of Performance Estimators

This section presents a series of simulation results to evaluate the accuracy of iNet-
Lab performance estimators.

6.3.1 Simulation Configurations

The simulations were carried out on a BEYOND simulator. Figure 17 shows a sim-
ulated server farm consisting of network hosts connected in a 3x3 grid topology.
Each agent is simulated to provide a web service that receives a service request
message and returns an HTML file. Service requests travel from users to agents via
user access point. This simulation study assumes that a single (virtual) user runs on
the access point and sends request messages to agents.
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Fig. 17 Simulated Server Farm
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Fig. 18 Simulated Workload

Figure 18 shows how the user changes service request rate over time. This is de-
signed based on a workload trace of the www.ibm.com site in February 2001 [6].
The workload falls down to 3,000 requests per minute in early morning, and peaks
7,500 requests per minute in the afternoon. At the beginning of simulations, one
agent is deployed on a randomly-selected host. This simulation generates a work-
load trace that is designed based on a daily request rate for the www.ibm.com site
in February, 2001 [6].

When a simulation is completed, iNetLab records performance results with the
following five metrics:
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• Throughput:
T he total number o f messages that agents process

T he total number o f messages that the user transmitted

• Resource efficiency:
T he number o f messages that agents process
T he amount o f resources that agents consume

• Distance: T he average hop count f rom agents to the user
• Latency: T he average o f latency
• Latency Jitter: Variance o f latency

This simulation study considers 15 environment conditions and 5 agent behav-
iors. Since a behavior policy contains an arbitrary combination of 75 antibodies, the

total number of possible combinations is
75

∑
m=1

75Cm = 275 ∼= 3.7×1022. The number

of combination becomes far larger than 3.7×1022 when different affinity values are
considered for relationships between antibodies.

As this example illustrates, the number of possible behavior policies is astronom-
ical numbers even if a few environment conditions and agent behaviors are consid-
ered. It is unpractical and nearly impossible to tune application performance by test-
ing all of them one by one in simulations. Therefore, the next section evaluates how
accurately iNetLab performance estimators approximate application performance
with a relatively small amount of history data (i.e., a relatively small number of
actual simulation runs).

6.3.2 Simulation Results

In this simulation study, iNetLab randomly generates 1,000 behavior policies, run
an application with them on a BEYOND simulator and records performance results
as history data. Given a behavior policy BPg, each iNetLab performance estimator
finds the most similar behavior policy BPs from history data. The accuracy of each
performance estimator is measured with the performance resulting from BPg, called
PFg, is very close to the performance resulting from BPs, called PFs. The closeness
of PFs and PFg is calculated with Equation 5.

C(PFs,PFg) = N−
N

∑
i=1

∣∣(metrici in PFs)− (metrici in PFg)
∣∣

the max value in metrici

where

N = The total number of metrics (5)

In order to measure the estimation accuracy of two different performance esti-
mators, each performance estimator (1) takes a randomly generated behavior policy
BPg, (2) runs an application with BPg in a simulator and obtains a set of performance
results PFg, (3) sorts the 1,000 behavior policies in history data in order of the close-
ness of their performance results to PFg, (4) finds BPs, which is most similar to BPg,
with a certain estimation method and obtains FPs as estimated performance, and
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(5) determines the rank of PFs in the list obtained at (3). When the rank of PFs
(estimated performance) is 1, the accuracy of a performance estimator is highest.

Figures 19 and 20 show the accuracy of graph-based and eigenvector-based esti-
mators, respectively. For each figure, each estimator runs performance approxima-
tion 1,000 times and counts the rank of PFs as frequency. Each figure shows this
frequency in its Y-axis3. As these two figures show, both performance estimators
can accurately identify the BPs that yields the closest performance to the actual per-
formance (i.e., the 1st rank PFs).
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Fig. 19 Estimation Accuracy of Graph-based Performance Estimation
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Fig. 20 Estimation Accuracy of Eigenvector-based Performance Estimation

Figure 21 shows the estimation accuracy of graph-based estimation. It shows the
probabilities that the five most similar behavior policies in history data yield the
closest performance of a given behavior policy. For example, the probability that
the most similar behavior policy gives the closest performance result is 10.1%. The
probability that the second similar behavior policy gives the closest performance
result is 9.8%. By examining the five most similar behavior policies, application de-

3 Although each of Figures 19 and 20 has 1,000 different ranks in the X-axis, it shows the 1st to
the 100th ranks only because frequency (Y-axis) is always less than 3 between the 101th to the
1,000th ranks.
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velopers (agent designers) can predict the application’s performance with a behavior
policy under development at the probability of 54.3%.
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Fig. 21 Estimation Accuracy of of Graph-based and Eigenvector-based Performance Estimation

Figure 21 also shows the estimation accuracy of eigenvector-based estimation. It
shows the probabilities that the five most similar behavior policies in history data
yield the closest performance of a given behavior policy. For example, the proba-
bility that the most similar behavior policy gives the closest performance result is
9.1%. By examining the five most similar behavior policies, application developers
(agent designers) can predict the application’s performance with a behavior policy
under development at the probability of 52.2%.

Figure 22 shows the number of simulation runs required to find a behavior policy
that can yield 99% throughput. Without the iNetLab performance estimators, each
application developer (agent designer) runs an application (agents) with a given be-
havior policy on a BEYOND simulator and obtains its throughput performance. If
the performance does not reach 99%, the developer slightly change the behavior pol-
icy to obtain throughput performance. He/she continue this trial-and-error process
until throughput performance reaches 99%. As Figure 22 illustrates, 22 simulation
runs are necessary to determine a behavior policy that can yield 99% throughput.

02040
6080100

1 6 11 16 21The Number of Simulations
Throughput (%) without performance estimatorwith graph-based with eigenvector centrality-based with graph and engenvector centrality-based 

Fig. 22 The Number of Simulations
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In contrast, the iNetLab performance estimators can approximate whether an
application (agents) can likely yield desirable performance (i.e., 99% throughput)
without running simulations. In this simulation study, an application developer do
not run a simulation when an iNetLab performance estimator predicts that an ap-
plication yields 10% or less throughput with a given behavior policy. As Figure 22
shows, graph-based estimation dramatically reduces the number of necessary simu-
lation runs from 22 to 5 in order to achieve 99% throughput. Similarly, eigenvector-
based estimation reduces the number of simulations from 22 to 6. Moreover, if a
developer runs a simulation only when both graph-based and eigenvector-based es-
timation methods predict that an application yields higher than 10% throughput,
the number of necessary simulations is reduced to 3. Since these two estimation
methods conduct performance estimation in different ways, estimation accuracy im-
proves by using both at a time.

7 Related Work

This chapter describes a set of extensions to prior work [17,24]. One extension is to
investigate the iNet performance estimators, which [17,24] do not consider. Another
extension is to study metamodel customization, which [24] does not consider.

Several research efforts have investigated model-driven development techniques
for autonomic computing based on general-purpose modeling languages such as
UML [10,20,21,23]. Their model tends to be complicated and not easy for applica-
tion administrators to use. [1] proposes an XML-based language, called Autonomic
Computing Policy Language (ACPL), to describe policies for autonomic computing.
ACPL is designed as a general-purpose policy language. For example, it provides
Condition and Action elements to describe a condition and an action to take. It
can describe any types of policies, but not specialized to certain mechanisms. As
well, [7] allows describing pairs of an environment condition and an action through
the use of general-purpose textual policy language. The proposed visual DSLs make
it easy to understand, define and maintain policies (i.e., agent behavior policies) in
autonomic applications rather than general-purpose policy languages.

There are several DSLs to model biological systems such as biochemical net-
works for simulating and understanding biological systems (e.g., [11, 16]). How-
ever, the objective of the DSLs in iNetLab is different from theirs; DSLs in iNetLab
aim to model biological (immunological) mechanisms for building autonomous and
adaptive network applications. This work is the first attempt to investigate a DSL
for biologically-inspired autonomic networking.

J2EEML is a DSL to visually configure QoS requirements and properties in En-
terprise Java Beans (EJB) applications such as response time and message schedul-
ing algorithms [25]. It assumes a stable domain-specific metamodel, and do not
address the issue of customization of DSLs, i.e., do not provide means to customize
metamodels. In iNetLab, application administrators not only use DSLs to model
policies, but also customize DSLs through using DSLs. This mechanism allows even
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application administrators to customize DSLs to reflect the changes in the semantics
of domain concepts.

A model transformation from a lower-level (e.g., model) to a higher-level (e.g.,
metamodel) is called promotion in the area of model-driven development. Similar
to this work, [13] leverages this technique to create a new domain-specific meta-
model from a model. However, [13] uses a general-purpose modeling language to
describe a model to be promoted to a metamodel. In contrast, iNetLab uses DSLs
to customize other DSLs. It simplifies the customization of DSLs and allows even
application administrators to customize DSLs.

Several research efforts have investigated automatic generation of operational
policies to satisfy desirable performance requirements [2, 15]. These techniques as-
sume that each application’s performance model is known. For example, several
queuing models have been studied as the performance models for web servers. In
those performance models, it is well-known how parameters (e.g., queue length)
impact a web server’s performance such as the average processing time for each
incoming message. It is straightforward to estimate an application’s performance
when its performance model is known. In contrast, iNetLab does not assume any
performance models, and its performance estimators are designed to approximate
an application’s performance without any prior knowledge on the applications. The
estimation methods in iNetLab can be applied to autonomic applications whose per-
formance models are not known.

8 Conclusion

iNetLab is a model-driven development and performance engineering environment
to aid designing, maintaining and tuning operational policies in autonomic network
applications. It provides (1) a set of DSLs to define operational policies in autonomic
network applications, (2) a set of supporting facilities for the DSLs, and (3) perfor-
mance estimators to approximate the performance of an application using a certain
behavior policy. With their supporting facilities, the proposed DSLs allow applica-
tion administrators (i.e., non programmers) to visually design and maintain oper-
ational policies in an intuitive manner. The proposed performance estimators can
predict whether an application satisfies desirable performance requirements with-
out running the application. This contributes to alleviate trial-and-error burdens in
tuning behavior policies and shorten the time to develop autonomic applications.
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