
This item may be protected under Title 17 of the U.S. Copyright Law. It is made available by
UMBC for non-commercial research and education. For permission to publish or reproduce,
please contact the author.

Access to this work was provided by the University of Maryland, Baltimore County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks-
group@umbc.edu and telling us what having access to this work means to you and why it’s
important to you. Thank you.

mailto:scholarworks-group@umbc.edu
mailto:scholarworks-group@umbc.edu

Facilitating E-Science Discovery Using Scientific
Workflows on the Grid

Jianwu Wanga, Prakashan Korambathb, Seonah Kimc, Scott Johnsonc, Kejian
Jinb, Daniel Crawla, Ilkay Altintasa, Shava Smallena, Bill Labateb, Kendall N.
Houkc

a San Diego Supercomputer Center, UCSD, 9500 Gilman Drive, MC 0505, La Jolla, CA
92093, U.S.A.
b Institute for Digital Research and Education, UCLA, 5308 Math Sciences, Los Angeles, CA
90095, U.S.A.
c Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, U.S.A.

Abstract: E-Science has been greatly enhanced from the developing capability
and usability of cyberinfrastructure. This chapter explains how scientific workflow
systems can facilitate e-Science discovery in Grid environments by providing fea-
tures including resource consolidation, parallelism, provenance tracking, fault to-
lerance and workflow reuse. We first overview the core services to support e-
Science discovery. To demonstrate how these services can be seamlessly assem-
bled, a scientific workflow system, called Kepler, is integrated into the University
of California Grid. This architecture is being applied to a computational enzyme
design process, which is a formidable and collaborative problem in computational
chemistry that challenges our knowledge of protein chemistry. Our implementa-
tion and experiments validate how the Kepler workflow system can make the
scientific computation process automated, pipelined, efficient, extensible, stable,
and easy-to-use.

1. Introduction

“E-Science is about global collaboration in key areas of science and the next gen-
eration of infrastructure that will enable it.”1. Grid computing “coordinates re-
sources that are not subject to centralized control by using standard, open, general-
purpose protocols and interfaces, and deliver nontrivial qualities of service” [1].
For over a decade, Grid techniques have been successfully used to enable or facili-
tate domain scientists on their scientific computational problems by providing fe-
derated resources and services. Yet the software that creates and manages Grid

1 John Taylor, Director General of Research Councils, Office of Science and

Technology, UK

2

environments, such as the Globus toolkit2, gLite3 and Unicore4, alone is not suffi-
cient to manage the complex job control and data dependencies for many domain-
specific problems. Such problems require combining more than one complex
computational code into flexible and reusable computational scientific processes
[2, 3]. Scientific workflow systems [4, 5] enable researchers to design computa-
tional experiments that span multiple distributed computational and analytical
models, and in the process, store, access, transfer, and query information. This re-
quires the integration of a variety of computational tools, including the domain-
specific software, database programs as well as preparation, visualization, and
analysis toolkits [2, 3].

In this chapter, we explain how scientific workflow systems can facilitate the e-
Science discovery in Grid environments by providing features such as resource
consolidation, parallelism, provenance tracking, fault tolerance and workflow
reuse. The chapter is organized as follows. In Section 2, we summarize the core
services needed for e-Science discovery. Section 3 demonstrates an assembly of
these services by integrating the Kepler workflow system5 into the University of
California Grid (UC Grid)6. In Section 4, an application for a theoretical enzyme
design computation process is explained using the integrated architecture. We
concluded the chapter in Section 5.

2. The Core Services to Support E-Science Discovery

Fig 1. A core service classification to support e-Science discovery.

2 http://www.globus.org/toolkit/
3 http://glite.web.cern.ch/glite/
4 http://www.unicore.eu/
5 http://kepler-project.org
6 http://www.ucgrid.org/

3

E-Science discoveries currently deal with increasingly growing scientific data and
sophisticated computation. Usually these data and computation resources are dis-
tributed in geographically sparse locations and have a variety of usage modes. A
typical computational experiment involves various tasks. By providing pipeline
tools to connect the tasks and automate their execution, scientific process automa-
tion is increasingly important to help scientists easily and efficiently utilize the da-
ta and computation resources for their domain-specific scientific problems. This
infrastructure should also enable scientists to interact with during the whole expe-
riment lifecycle, such as triggering and adjusting the processes, monitoring their
execution and viewing the resulting data. Further, non-functional services, such as
security and failure recovery, are also important to ensure the whole process to be
secure and fault tolerant. As shown in Fig. 1, computation management, data man-
agement, scientific process automation, user interaction and non-functional servic-
es are the core service categories to support e-Science discovery. Also these ser-
vices are complementary to each other, and are often integrated in many e-Science
projects.

In this section, we describe the main services in each category, discussing their
purposes, challenges and the approaches and tools to enable them.

2.1. Computation Management

Over the past decade, Grid computation techniques have been successfully used to
facilitate domain scientists with their scientific computational problems. Widely-
used Grid software includes the Globus toolkit, gLite, Unicore, Nimrod/G7, and
Condor-G8. More details on Grid computation management can be found in [6, 7].

2.1.1. Service-Oriented Computation

A Web service is “a software system designed to support interoperable machine-
to-machine interaction over a network”9. Heterogeneous applications can be virtu-
alized and easily interoperate with each other at Web service level by using the
same interface definition approach. Original Web services, also called big Web
services, are based on standards including XML, WSDL and SOAP. Another set
of Web services, called RESTful Web services, are simple Web services imple-
mented based on HTTP protocol and the principles of Representational State
Transfer (REST) [8]. The Open Grid Services Architecture [9] defines uniform
exposed service semantics for Grid components, called Grid services, such that
Grid functionalities can be incorporated into a Web service framework.

7 http://messagelab.monash.edu.au/NimrodG
8 http://www.cs.wisc.edu/condor/condorg/
9 http://www.w3.org/TR/ws-gloss/#webservice

4

Through the introduction of Web and Grid services, a large number of compu-
tational resources in different scientific domains, e.g. bioinformatics, are becom-
ing available. This presents several new challenges including service semantics,
discovery, composition and orchestration [10].

2.1.2. Local Resource Management

A compute cluster resource is a collection of compute nodes connected through a
private fast interconnect fabric, e.g., Infiniband, Myrinet, or even local area net-
work (LAN), and operated by an organization such as a university. A local re-
source manager is an application that is aware of the resources in a cluster and
provides an interface for users to access them. The job submission and execution
on a cluster is usually managed through resource manager software, such as the
Torque10, Sun Grid Engine (SGE, name changed to Oracle Grid Engine recently) 11
or Load Sharing Facility (LSF)12. A resource scheduler, on the other hand, can
simply allocate jobs in a first in first out (FIFO) basis, or follow some complex
scheduling algorithms (e.g., preemption, backfilling, etc.) like the Maui 13 ,
MOAB14 or SGE scheduler. A resource manager can use multiple schedulers. For
example, Torque can be integrated with either the Maui or MOAB.

The cluster owner sets policies on resource consumption such as which groups
have access to it, how many resources can be allocated, whether they can run pa-
rallel jobs or only serial jobs, etc. This information is fed into the resource manag-
er and is used when the scheduler executes jobs. A scheduler constantly monitors
the cluster status and recalculates job priorities according to changes in the cluster
environment.

Detailed techniques on local resource management can be found in [11, 12].

2.1.3. Resource Allocation

Resource allocation is the process of assigning resources associated with a Grid
for a user application. It is a key service since there are usually many available lo-
cal resources and also many user applications to be executed within one Virtual
Organization (VO), where many different groups share resources through a colla-
borative effort.

One challenge here, called resource scheduling, is how to get a resource alloca-
tion result that satisfies user requirements, since resources in the Grid are not ex-
clusive and may meet competing user requirements. It is already proved that the

10 http://www.clusterresources.com/products/torque-resource-manager.php
11 http://www.sun.com/software/sge/
12 http://www.platform.com/workload-management
13 http://www.clusterresources.com/products/maui-cluster-scheduler.php
14 http://www.clusterresources.com/products/moab-cluster-suite.php

5

complexity of a general scheduling problem is NP-Complete [13]. So many ap-
proximation and heuristic algorithms are proposed to achieve suboptimal schedul-
ing in the Grid. Scheduling objectives are usually classified into application cen-
tric and resource centric [14]. The former one targets the performance of each
individual application, such as makespan, economic cost, and quality of service
(QoS). The latter one targets the performance of the resource, such as resource uti-
lization and economic profit. Although it is active research area, the proposed so-
lutions are not ready to be widely deployed in production environments and it is
still common that users or communities provide their own simple resource alloca-
tion strategies using Grid interfaces to contact each local resource.

2.2. Data Management

Data management in the Grid, sometimes called Data Grid, can be seen as a spe-
cialization and extension of the Grid as an integrating infrastructure for distributed
data management. This includes data acquisition, storage, sharing, transfer, archiv-
ing, etc. Representative Data Grid software includes the Globus toolkit, OGSA-
DAI15, Storage Resource Broker (SRB)16 and its more recent version called inte-
grated Rule Oriented Data System (iRODS)17. More comprehensive scientific data
management and Data Grid surveys can be found in [15, 16, 17, 18, 19].

2.2.1. Data Acquisition

In general, scientific data may be created either from computation like scientific
calculations and image processing, or through data collection instruments such as
an astronomy telescope, earthquake-monitoring devices, and meteorology sensors,
etc.

Once the experimental data is collected, it needs to be stored and transferred to
the location where computing models can be run using that data to interpret the re-
lationship or predict future events. The data often need to be shared among many
researchers.

Data acquisition in large-scale observing systems, such as the National Ecolog-
ical Observatory Network (NEON)18, is an emerging application area. These sys-
tems accommodate a broad spectrum of distributed sensors and continuously gen-
erate very large amount of data in real-time. Heterogeneous sensor integration [20]
and data stream processing [21, 22] are two main challenges [23]. The details of
these two problems are not in the scope of this chapter.

15 http://www.ogsadai.org.uk/
16 http://www.sdsc.edu/srb/index.php
17 https://www.irods.org/
18 http://www.neoninc.org/

6

2.2.2. Data Storage

Reliability, failover and Input/Output (I/O) throughput are critical factors for large
datasets storage. Typical solutions include storing the data through RAID19 to
achieve storage reliability by providing redundancy or distributed parallel file sys-
tems using metadata tables, such as Lustre 20 and PVFS 21 to get higher I/O
throughput.

One challenge in the Grid is how to provide a logical and simple view for re-
searchers to access various types of geographically distributed data storage across
a Grid environment. This is commonly handled by data storage abstraction tech-
niques. For example, a logical data identifier, rather than its physical location, is
provided to users to realize uniformed and easy data access. One tool that provides
data abstractions is the SRB, which is a client-server middleware that provides a
uniform interface for connecting to heterogeneous data resources over a network.
The Replica Location Service (RLS)22 in the Globus toolkit also support data ab-
straction. Additionally, both SRB and RLS support data replica functionality to
manage the multiple copies of the same data, which will get better response times
for user applications by accessing data from locally “cached” data stores.

2.2.3. Data Transfer

A data transfer moves data between two physical locations. It is necessary to share
data among the VO or realize better computation balance and performance. Chal-
lenges here include performance, security and fault-tolerance. There are many data
transfer tools, e.g., FTP, scp, SRB, GridFTP, and others. FTP (File Transfer Pro-
tocol) is one of the universally available file transfer application, which functions
over a network using TCP/IP based communication protocol such as the current
Internet. scp (secure copy with OpenSSL encryption) is a simple shell command
that allows users to copy files between systems quickly and securely. Using the
above two tools do not need the expertise in Grid systems. GridFTP is built on top
of FTP for use in Grid computing with the data encryption through the Globus
Grid Security Infrastructure (GSI)23. Additionally, GridFTP can provide third par-
ty transfer, parallel streams and fault tolerance. The SRB also provides strong se-
curity mechanisms supported by fine-grained access controls on data, and parallel
data transfer operations.

2.2.4. Metadata

19 http://en.wikipedia.org/wiki/RAID
20 http://www.lustre.org/
21 http://www.pvfs.org/
22 http://www.globus.org/toolkit/data/rls/
23 http://www.globus.org/security/overview.html

7

Metadata is usually defined as “data about data”, which is regarded as “struc-
tured data about an object that supports functions associated with the designated
object” [24]. Metadata is useful to understand, access and query the designated ob-
ject. The metadata structures vary for different targets and usages [25]. Commonly
used metadata categories in e-Science projects consist of dataset metadata (size,
creator, format, access method, etc), application metadata (applicable operation
system information, license, etc), resource metadata (node number, CPU speed,
memory size, disk capacity, etc) and workflow metadata (creator, language, etc).

Semantics and ontology are more sophisticate techniques to describe and
process metadata [26]. A domain ontology represents the particular meanings of
terms as they apply to that domain. For example, the myGrid ontology helps the
service discovery and composition in bioinformatics domain [27].

2.3. Scientific Process Automation

Scientific process automation provides pipeline tools to automate task execution.
Scientific workflows are already regarded as the main solution to realize scientific
process automation [28, 29]. Workflow is a higher-level “language” comparable to
classic programming languages, such as scripting and object-oriented languages.
The advantages of using workflow languages for scientific process include: 1)
many workflow systems support intuitive process construction by “dragging and
dropping” via a graphical user interface (GUI); 2) the components or sub-
workflows in workflow are easy to share and reuse; 3) many workflow languages
support parallelism intuitively; 4) workflow systems usually have built-in prove-
nance support (see Section 2.3.4 for details); 5) some workflow systems are able
to dynamically optimize process execution in Grid or other distributed execution
environments.

Widely-used scientific workflow systems include Kepler, Pegasus24, Taverna25,
Triana26, ASKALON27 and Swift28. More detailed scientific workflow surveys can
be found in [4, 5, 28, 29].

2.3.1. Workflow Model

There are different languages for representing scientific workflows [30, 31, 32],
but they generally includes three types of components: tasks, control dependencies
and data dependencies [33]. For example, in Fig. 2 the tasks T2 and T3 will be ex-

24 http://pegasus.isi.edu/
25 http://www.taverna.org.uk
26 http://www.trianacode.org
27 http://www.dps.uibk.ac.at/projects/askalon/
28 http://www.ci.uchicago.edu/swift/

8

ecuted under different conditions. Additionally, T4 needs to get data from either
T2 or T3 before its execution.

Fig.2. An example workflow composed of tasks and dependencies.

The tasks in the scientific computation process need to follow certain depen-
dency logic to be executed. Usually the dependency logic can be described using
control flow, data flow, or a hybrid of both. In control flows, or control-driven
workflows, explicit control structures, including sequence, loop, condition and pa-
rallel, describe the dependency. In data flows, or data-driven workflows, data de-
pendencies describe the relationships among tasks. Two tasks are only linked if
the downstream task needs to consume data from the output of the upstream task.
The hybrid method uses both control and data dependencies to enable powerful
and easy logic description. Many scientific workflow systems, e.g., Kepler, Triana
and Taverna, use hybrid methods.

2.3.2. Task Parallelism

Task parallelism occurs when the tasks in one workflow can execute in parallel,
providing a good execution performance. The task parallelism patterns can be
classified into three basic categories: simple parallelism, data parallelism and
pipeline parallelism [34]. Simple parallelism happens when the tasks do not have
data dependency in a data-driven workflow, or are in the same parallel control
structure in a control-driven workflow. Data parallelism describes parallel execu-
tion of multiple tasks while different task processing independently on different
parts of the same dataset. This employs the same principle as single instruction
multiple data (SIMD) parallelism [35] in computer architecture. Pipeline paral-
lelism describes a set of data are processed simultaneously among some sequential
tasks, each task processing one or more data elements of the set. For example, the
tasks in the Fig. 3 are executing simultaneously, each processing its own data.

9

Fig .3. An example of pipeline parallelism in workflow.

2.3.3. Workflow Scheduling

Workflow scheduling maps the tasks of a process and its data to proper computa-
tional resources, in order to meet expected performance, such as minimal execu-
tion time. After scheduling, tasks in one workflow might be executed on many lo-
cal resources in parallel on the Grid.

Workflow scheduling belongs to the application centric scheduling category of
resource allocation (see Section 2.1.3), and focuses on the scheduling of process-
based applications. Scheduling can be done either statically or automatically.
Many heuristic scheduling approaches, such as genetic algorithm, are used to
achieve suboptimal solutions [36, 37]. The local computation resource capacity,
its advanced reservation capability and real-time status are usually needed to make
decisions during the scheduling.

2.3.4. Provenance Management

Provenance plays a critical role in scientific workflows, since it allows or helps
scientists to understand the origin of their results, to repeat their experiments, and
to validate the processes that were used to derive data products. A major challenge
of provenance management in Grid environments is how to efficiently store prov-
enance information and easily query it in the future. There are three typical ap-
proaches to collect the execution information for data provenance: centralized, de-
centralized and hybrid. Centralized approach stores all data generated during a
workflow’s distributed execution in one centralized center. However, storing the
data content of all distributed nodes in a single, centralized center is inefficient,
especially when the dataset size is large. In a decentralized approach, provenance
data is stored on the local node when it is generated (i.e., no data needs to move to
a centralized center). While it is efficient to separate data storage to each distri-
buted node locally, it becomes difficult to query and integrate this data in the fu-
ture. In the hybrid approach, provenance data are stored locally in distributed
nodes, and a centralized provenance catalog is employed to maintain the metadata
and location information. After finding the needed data endpoint at the provenance
catalog, users can get the data content from the corresponding nodes. In the hybrid
approach, the burden for data transfer is reduced compared to the centralized

10

provenance system, and it is easier than the decentralized approach to do future
provenance tracking. Note that one risk in both decentralized and hybrid ap-
proaches is that users may not be able to access the distributed nodes after the
workflow execution, which is true when a resource is only open to some users for
a limited time.

2.4. User Interaction

2.4.1. User Authentication

Grid credentials are commonly used to identify users to Grid resources. All certif-
icate signing authorities (called CAs) need to have a policy to authenticate users
before they issue credentials. The user requests a Grid certificate only once and
then must be authorized to use Grid resources. In some organizations like UC
Grid, all users can be positively identified as members of an organization using a
Security Assertion Markup Language (SAML)29 assertion from a Shibboleth Iden-
tity Provider (IdP)30. Typically, IdPs will provide sufficient information to issue a
Grid credential such as first name, last name, unique identifier, e-mail address, etc.

Some CAs let users keep credentials in their custody whereas other organiza-
tions maintain them in a credential management server such as MyProxy31. In the
latter case, the credentials never leave the signing machine and only the short-
lived credentials (called delegated proxy credentials) are provided to users. Users
can always checkout credentials from those servers. The delegated proxy creden-
tials usually have a short lifetime of less than eight hours and will be destroyed
when they expire. Many CAs additionally have an annual renewal policy for their
certificate, so when users are no longer associated with the original project, their
certificates can be revoked. Their identities are published in a certificate revoca-
tion list, which is then distributed to all organizations where their certificates are
trusted.

2.4.2. Portal

A Grid portal is a web server that provides web interfaces to Grid services such as
job submission, file transfer, job status check, and resource information monitor-
ing like cluster status, cluster workload, job queue information, etc. Some Grid
portals provided generic capabilities that can be used by many types of users

29 http://saml.xml.org/
30 http://shibboleth.internet2.edu/about.html
31 http://grid.ncsa.illinois.edu/myproxy/

11

where as others, such as Science Gateways32, typically target a specific communi-
ty of users. A Grid portal stores user information such as login identifier, the Grid
resources the user is entitled to, the status of their submitted jobs, etc. When users
login to a portal they are redirected to a credential management server, which al-
lows the portal to authenticate Grid services on behalf of the user through a dele-
gated proxy credential. Because a Grid portal holds some information about the
role of the user, it can also authorize some Grid services such as application pool
job submission.

One challenge here is to allow users to access multiple distributed resources
and applications without separate authentications, which are usually supported by
single sign-on techniques. GridShib33 allows a portal to sign proxy certificates for
the uniquely identifying subject assertion from a federated single sign-on service
like Shibboleth34. Shibboleth implements a federated identity standard based on
SAML to provide identification and attributes of members in a federation. The
primary purpose of Shibboleth is to avoid multiple passwords for multiple applica-
tions, interoperability within and across organizational boundaries, and enabling
service providers to control access to their resources.

2.4.3. Job Monitoring

Users often like to know the overall load status and availability of resources. They
also want to know the current execution status, e.g., which tasks are executing on
which computers with which data. Therefore job monitoring services are also im-
portant for user interaction.

Some general job status information can be retrieved when the job is submitted
to a Grid resource. For example, the Scheduler Event Generator (SEG) service in
the Globus toolkit gets the status of jobs like pending, active, or done. The SEG
service queries local cluster resource managers like SGE or PBS, and the job sta-
tus information can be retrieved through the command-line or optionally pulled in-
to a Grid portal or other GUI interfaces to display to users using a subscription
API.

To view overall job statistics, typically cluster monitoring systems such as
Ganglia35 or Nagios36 are deployed and display queue information, node informa-
tion and the load on the cluster. A Grid monitoring service is also deployed to col-
lect information from each resource’s cluster monitoring tool, summarize it, and
display it. This provides overall Grid job statistics that can be used by managers to
ensure users’ needs are being met. Such services are typically modeled after the
Grid Monitoring Architecture [38], which was defined by Global Grid Forum. It

32 https://www.teragrid.org/web/science-gateways/
33 http://gridshib.globus.org/
34 http://shibboleth.internet2.edu/
35 http://ganglia.sourceforge.net/
36 http://www.nagios.org/

12

includes three main parts: 1) a producer, a process that produces events and im-
plements at least one producer API; 2) a consumer, a process that receives events
and implements at least one consumer API; and 3) a registry, a lookup service that
allows producers to publish the event types and consumers to search them. Exam-
ples of Grid monitoring tools include the Globus Monitoring and Discovery Ser-
vice (MDS).

2.4.4. Data Visualization

Data visualization is the creation of a visual representation of data, meaning "in-
formation which has been abstracted in some schematic form, including attributes
or variables for the units of information" [39]. Through the presentation of visua-
lized data, it is easy for scientists to study, analyze and communicate with one
another. The primary reference model is called the filter-map-render pipeline [40].
The filter stage includes data selection, extraction and enrichment; the map stage
applies a visualization algorithm to generate a viewable scene; and finally the
render stage generates a series of images from the logical scene. To optimize the
performance of data visualization, especially for large data set, many parallel vi-
sualization algorithms have been developed [41, 42, 43].

2.5. Non-Functional Services

We categorize a service to be non-functional if it is not usually explicitly used by
users, but useful to ensure a certain property of the e-Science discovery, such as
security. These services are often transparently provided in the whole lifecycle of
user usage. There services are also orthogonal to the above services in that they
can be integrated with each of them.

2.5.1. Security

Several security concerns in specific services have been discussed in Section 2.2.3
and 2.4.1. A key challenge of security management in Grid environments is that
there is no centrally managed security system [44]. The GSI provides secure
communication through authenticated services among resources and is widely
used in many Grid systems and projects. It operates on the single sign-on concept
meaning a single user credential will be valid among multiple organizations that
trust the certificate signing authority of that credential. In GSI, every user needs to
have a pair of X509 certificates. One is the private key that is used to encrypt the
data, and the other is public key that is used to decrypt the data once it reaches the
target resource. This kind of process is called asymmetric encryption because the
keys that encrypts and decrypts are not the same. In practice, all Grid communica-

13

tions including GridFTP uses short-lived proxy certificates that allow the process
to act on behalf of the user. The bearer of this proxy certificate has exactly the
same capabilities as the original X-509 certificate holder until the proxy certificate
expires. In a Grid infrastructure these proxy certificates are often leased from a
certificate management server, such as MyProxy. The advantage is that a Grid us-
er can securely store the long-lived private key in a secure machine and release
only short-lived proxy credentials on a publically accessible certificate manage-
ment server during Grid computing.

2.5.2. Failure Recovery

Due to the large number of resources in a Grid, there is a high probability of a sin-
gle resource component failure during an application execution. Further, providing
fault tolerance in a Grid environment can be difficult since resources are often dis-
tributed and under different administrative domains. Failures may occur in every
level in the Grid architecture [45], which includes: 1) computational platforms,
e.g., selected nodes for a job may run out of memory or disk space while the job is
still running; 2) network, e.g., a local resource is temporarily unreachable during
job execution; 3) middleware, e.g., a Grid service fails to start the job; 4) applica-
tion services, e.g., domain-specific application gets an execution exception due to
unexpected input; 5) workflow system, e.g., infinite loops during workflow execu-
tion; or 6) user, e.g., a user credential expires during workflow execution.

Many of these issues fall into the domain of system and network administra-
tors, who must design infrastructure to provide redundant components. Here, we
address only parts at the workflow level, where redundancy, retry and migration
are the main fault tolerance policies. Using simultaneous execution on redundant
resources, workflow execution will have a lower chance to fail. The workflow sys-
tem can also retry a failed resource or service after a certain amount of time. In
migration, a workflow system will restart on a different resource. For the latter
two cases, checkpoint and intermediate data usually need to be recorded so that
only a sub-workflow rather than the whole workflow will be re-executed.

3. Integrating the Kepler Workflow System in the University
of California Grid

To demonstrate how the services in Section 2 can be seamlessly assembled, a
scientific workflow system, called Kepler, is integrated into the UC Grid. The in-
teroperation of these services and the characteristics of our integration will be dis-
cussed. Almost all the applications we use or discuss in this architecture are open
source or open standard and can be easily implemented by other organizations.

14

3.1. University of California Grid

The UC Grid is a federation of all participating compute resources among UC
campuses. Any organization that is willing to accept or follow the established pol-
icies and trust relations of UC Grid policy management authority can also be an
autonomous member of UC Grid. Typically, the UC Grid resources are open to all
faculty, staff and students who are members of any UC campus. The owners of the
resources determine when and how much of those resources are allocated to the
UC Grid resource pool.

Fig.4. The architecture of University of California Grid.

As shown in Fig. 4, the UC Grid architecture mainly consists of four parts.
The UC Grid Campus Portal. This is the web interface, front-end to the UC

Grid in a single campus. It provides the user interface and serves as a single point
of access for users to all campus computing resources. It communicates with the
Grid Appliances in a single campus. Because the users are known only at the
campus level, all applications for a Grid account starts at the campus portal. The
campus portal takes the request from the users and authenticates them through a
Shibboleth based campus service, and if the authentication process is successful it
sends a request to UC Grid Portal to sign an X-509 certificate for the user.

The UC Grid Portal. This is the web interface where users can login to access
all the clusters in all ten campuses of the University of California. This is the super
portal of all campus Grid portals and is the certificate signing authority for the en-
tire UC Grid. Once the certificate is signed it is pushed to a MyProxy server that
leases the short-lived credential every time a user login to the Grid portal. Any re-
source updates on campus portal will be updated on the UC Grid Portal imme-
diately through a web service.

The UC MyProxy Server. The primary purpose of this server is to store user
credentials and release them to UC Grid Portal when users login to the Portal.

Grid Appliance Nodes. These nodes are functionally equivalent to head nodes
of a compute cluster where the UC Grid Portal software is deployed. These nodes
need to be open only to the Grid portals and compute nodes inside the cluster. Ad-
ditionally, these nodes need to be a job submission host to the local scheduler such
as Torque, LSF or SGE.

15

The UC Grid is based on Globus toolkit 4.0.7, using its GridFTP, GRAM, My-
Proxy and MDS services. We have also implemented several services to meet our
own requirements. Two important ones are the UC Sync Service and the UC Reg-
ister Service. The UC Sync Service makes sure all database on both the campus
portal and UC wide portal are synchronized so that they have updated user, cluster
and application information. The UC Register Service is an automated process to
authenticate, authorize and issue credentials for new users on the UC Grid Portal.
For authentication purpose, it relies either on a Shibboleth based service or, in the
absence of such services, make use of an ssh-based authentication mechanism.
During the authorization process a cluster administrator has to verify the Unix user
identifier of new user on a cluster.

The UC Grid Portal consists of application software that runs a portlet that is
pluggable user-interface components in a portal to provide services such as Grid
services. We employ Gridsphere37 as our portlets container, which guarantees inte-
roperability among portlets and portals through standard APIs.

The usage modes are quite different for users who already have access to some
compute clusters and users who don’t have access to any clusters. So users are
classified into different user categories in the UC Grid: cluster user and pool user.
Cluster users are those users with a Unix user identifier on one of the clusters who
can access their resources directly without the Grid portal web interface. Pool us-
ers on the other hand are those users who do not have an account on any of the
clusters or on the cluster where they want to run an application. The jobs submit-
ted by pool users are run through guest accounts on all participating clusters when
unused cycles are available on that cluster. Pool users can access the resources on-
ly by authorizing through their Grid credentials. Currently, pool users can only
submit precompiled application jobs that are deployed in advance by the cluster
administrator, as the Grid Portal does not have a mechanism to allow the pool us-
ers to upload their own binary files and guarantee the right run time architecture
for that job. Some of the applications that pool users regularly use are Mathemati-
ca, Matlab, Q-Chem, NWChem, Amber, CPMD, etc. Typically, pool users need
not worry about the target cluster as it is determined by the Grid Portal depending
on the dynamic resource availability, and also the application availability on any
of the clusters.

3.2. Kepler Scientific Workflow System

The Kepler project aims to produce an open source scientific workflow system
that allows scientists to easily design and efficiently execute scientific workflows.
Inherited from Ptolemy II38, Kepler adopts the actor-oriented modeling [46] para-
digm for scientific workflow design and execution. Each actor is designed to per-

37 http://www.gridsphere.org
38 http://ptolemy.eecs.berkeley.edu/ptolemyII

16

form a specific independent task that can be implemented as atomic or composite.
Composite actors, or sub-workflows, are composed of atomic actors bundled to-
gether to perform complex operations. Actors in a workflow can contain ports to
consume or produce data, called tokens, and communicate with other actors in the
workflow through communication channels via links.

Another unique property inherited from Ptolemy II is that the order of execu-
tion of actors in the workflow is specified by an independent entity called director.
The director defines how actors are executed and how they communicate with
each other. Since the director is decoupled from the workflow structure, a user can
easily change the computational model by replacing the director using the Kepler
graphical user interface. As a consequence, a workflow can execute sequentially,
e.g., using the Synchronous Data Flow (SDF) director, or in parallel, e.g., using
the Process Network (PN) director [47].

Kepler provides an intuitive graphical user interface and an execution engine to
help scientists to edit and manage scientific workflows and their execution. In the
Kepler GUI, actors are dragged and dropped onto the canvas, where they can be
customized, linked, and executed. Further, the execution engine can be separated
from the user interface thereby enable the batch mode execution.

Currently, there are over 200 actors available in Kepler, which largely simplify
the workflow composition. We will briefly describe the main distinctive actors
that are used in this chapter.

Local Execution Actor. The ExternalExecution actor in Kepler is the wrapper
for executing commands that run legacy codes in a workflow. Its purpose is to call
the diverse employed external programs or shell-script wrappers.

Job Submission Actors. Kepler provides two sets of actors that can submit
jobs to two typical distributed resources: Cluster and Grid. Each set has actors to
be used for different job operations, e.g. create, submit, and status check.

Data Transfer Actors. There are multiple sets of data transfer actors in Kepler
to support moving data from one location to another by different ways, e.g., FTP,
GridFTP, SRB, scp, and others.

Fault Tolerance Actor. The fault tolerance actor [48], which is a composite
actor that contains multiple sub-workflows, supports automatic exception catching
and handling by re-trying the default sub-workflow or executing the alternative
sub-workflows.

Besides the above actors, Kepler also provides the following characteristic ca-
pabilities.

Inherent and Implicit Parallelism. Kepler supports inherent and implicit par-
allelism since it adopts a dataflow modeling approach [49]. Actors in Kepler are
independent from each other, and will be triggered once their input data are avail-
able. Since explicit parallel primitives, such as parallel-for, are not needed,
workflow composition is greatly simplified. The workflow execution engine will
parallelize actor execution automatically at runtime according to their input data
availability.

Pipeline Parallelism. The execution of the tokens in the token set can be inde-
pendent and parallel. Kepler supports pipeline parallelism by token streaming,

17

blocking and buffering techniques [34].
Provenance Tracking. Kepler provenance framework [50] supports collection

and query on workflow structure and execution information in both local and dis-
tributed environments [51].

3.3. Integrated Architecture

By integrating Kepler into UC Grid, an overall architecture is presented in Fig. 5.
Most of the services described in Section 2 are supported here.

Fig. 5. A layered architecture to facilitate e-Science discovery.

3.3.1 Portal Layer

The portal layer mainly provides the User Interaction services described in Section
2.4 to enable users to interact with cyberinfrastructure and accomplish their e-
Science discoveries.

User Authentication. In order for the Grid portal to execute Grid services on be-
half of users, it must be provided with a delegated credential from a credential
management server (MyProxy server is used here). When users login to the portal,
they enter their username and corresponding MyProxy password. The portal will
retrieve and store the short-lived delegation credential so that users can interact
with Grid services. When the users log out, the delegated credentials are de-
stroyed.

Workflow Submission. Users select a workflow by browsing the workflow repo-
sitory in the Grid portal. The Grid portal then presents a web interface for users to
configure the workflow parameters and upload the required input files that need to
be staged on the target computing resources. Users are also allowed to upload their
own workflows to the portal, but require authorization to avoid intentional or un-
intentional security problems. For example, malicious code might be inserted into
a workflow by executing file delete commands in the Kepler local execution actor.

18

Once approved, the workflow is uploaded to the workflow repository and made
available to other users through the Grid portal.

Workflow Monitoring. After a workflow is submitted through the Globus
GRAM service for execution, the portal will monitor the progress and completion
of the workflow execution by querying the Globus SEG service running on the
target resource. Users can log in anytime to check the status, or the portal will
send a notification email when the execution is done.

Data Visualization. Users can either download the output data to their local com-
puter to visualize the data locally or chose one of the deployed application visuali-
zation services, e.g. Jmol39, to visualize the data through the portal itself.

Provenance Query. During and after workflow execution, users can check prove-
nance information via the query user interface in the portal. The query can utilize
the provenance information from all previous workflow runs. For example, a user
may want to understand how a parameter change influenced the results of one
workflow, or how workflows are connected by a certain dataset.

3.3.2 Workflow Layer

The workflow layer provides the Scientific Process Automation services described
in Section 2.3.

Workflow Scheduler. Currently, static workflow scheduling is supported by ex-
plicitly describing the scheduling policy in a separate workflow. Globus GRAM
jobs are submitted through the workflow to initiate workflow task execution on re-
sources. For workflow task execution on remote resources, data needs to be staged
in before execution and staged out after execution. The capabilities of the re-
sources must be known to achieve better overall load balancing. Sophisticated dy-
namic workflow scheduling capability is being studied as future work, such as au-
tomatic data staging and optimally splitting input data on multiple resources based
on the resources’ capability and real-time load status.

Workflow Execution Engine. Once an invocation request is received from the
workflow scheduler along with the corresponding workflow specifications, the
workflow execution engine will parse the specification, and execute the actors
based on their dependencies and director configuration.

Provenance Recorder. During workflow execution, the provenance recorder lis-
tens to the execution messages and saves corresponding information generated by
the workflow execution engine, such as an actor execution time and its in-
put/output contents. It also saves a copy of the workflow for future verification
and re-submission. The provenance will be stored locally and optionally merged
into a centralized provenance database upon the workflow execution completion.

39 http://jmol.sourceforge.net/

19

Fault Tolerance Manager. The fault tolerance manager will be triggered by ex-
ception messages generated from workflow execution engine, and will check
whether the source of the exception is contained within the fault tolerance actor. If
so, the alternative sub-workflows defined in the fault tolerance actor will be in-
voked with the corresponding configuration policy. Otherwise, the exception will
be passed to the next higher fault tolerance actor, until the top level is reached,
where the workflow execution failure message will be reported and workflow ex-
ecution stopped.

3.3.3 Grid Layer

The Grid layer consolidates multiple resources and manages their computation and
data resources, providing unified services for the portal and workflow layer. This
layer is where the Globus toolkit software, such as GRAM, GridFTP and My-
Proxy Server, is located.

User Certificate Management. There should be at least one certificate signing
authority, which stores the long-lived credentials for the user. The short-lived cre-
dentials are then pushed into a MyProxy server. The portal gets the delegated cre-
dential when users login to the portal. A workflow can also get the delegated cre-
dential through a MyProxy actor.

Grid Job Submission. A GRAM service will enable job submission on any ac-
cessible resources. A workflow execution can invoke multiple GRAM services on
different resources to realize parallel computation.

Inter-Cluster Data Transfer. GridFTP permits direct transfer of files between
the portal and the cluster resources or vice versa. Third party transfers can also be
made between two clusters. A GridFTP actor is used to transfer data during
workflow execution.

3.3.4 Local Resource Layer

The services provided by each compute cluster resource are located in the local re-
source layer. The compute nodes are not accessible directly from a portal. UC
Grid communicates with the cluster through its Grid Appliance Node (see its de-
tails at Section 3.1) with both public and private interfaces.

Batch Scripts. The batch job script syntax and terminologies vary according to
the type of scheduler. The Globus GRAM service executes a job manager service
at the target to create the job submission script using information such as executa-
ble name, number of processors, memory requirement, etc. It is also useful to
create ‘shims’ in the workflow [52], such as creating job scripts in accordance
with the scheduler configuration of the host cluster.

20

Data Storage. Each cluster provides data storage service for their users up to a
certain size limitation. Cluster users can store their data permanently on the clus-
ters they can access, whereas pool users must save their data in portal provided
storage servers. The data generated on the cluster by pool users must be down-
loaded; otherwise the data gets cleaned up periodically to make room for other
pool users.

Local Resource Manager. A local resource manager is used to manage the job
submission in a cluster. Several local resource managers are supported by the
GRAM, such as SGE and PBS, which schedule jobs to the nodes in the cluster.

Domain-Specific Programs. Domain-specific programs are deployed to clusters
to accomplish certain domain-specific computation problems. The applications
widely used in UC Grid include Mathematica, Matlab, Q-Chem, NWChem, Amb-
er, CPMD, etc.

4. Application in Computational Chemistry

In this section, we demonstrate how the services and integrated architecture de-
scribed in Section 2 and 3 can facilitate e-Science discovery by applying them to a
challenging application in computational Chemistry. The detailed information
about the application can be found at [53].

4.1. Theoretical Enzyme Design Process

Enzymes are nature’s protein catalysts that accelerate and regulate all metabolic
reactions. To design new catalysts computationally and then to make them with
molecular biological techniques will be a breakthrough in technology. An inside-
out design approach has been developed [54]. In the process, quantum mechanical
calculations give a theozyme [55], or theoretical enzyme, which is theoretical op-
timum catalyst. Numerous protein scaffolds are then screened to determine which
can be used to display the side chains to mimic the geometry of the theozyme; this
procedure generates a large library of potential catalysts that are evaluated for fi-
delity to the theozyme. The best of these are subjected to mutations to obtain a de-
sign that will both fold and catalyze the reaction. Typically, a theozyme with ac-
tive sites is matched at least once per scaffold (226 protein scaffolds so far) to
potentially accommodate the orientation of the model functional groups. The
computation process needs to be repeated for many times with different theo-
zymes and calculation options. The goal of this application is to accelerate and fa-
cilitate this important computation- and data-intensive process for chemists.

21

4.2. Conceptual Enzyme Design Workflow

Fig. 6. Conceptual workflow of enzyme design process.

As shown in Fig. 6, the conceptual enzyme design workflow takes quantum me-
chanical theozymes as inputs, and goes through three discrete steps before valida-
tion by experiments. The goal of this conceptual workflow is to standardize the
enzyme design process through automation, and eliminate the need for unneces-
sary human interaction. Sequences of tasks in the enzyme design process are re-
peated using the same series of programs, which must be executed to design and
evaluate an enzyme for a new chemical reaction. For example, a theozyme with
active sites is matched at least once per scaffold to potentially accommodate the
orientation of the model functional groups.

The entire enzyme design process can be performed independently for different
scaffolds, and the total computation time for each scaffold can vary. The number
of matches per theozyme is about 100-4,000 and computation time for a single
scaffold on one CPU core is usually 1-3 hours. The number of enzyme designs
generated by RosettaDesign per match is about 100-15,000 and computational
time on one CPU core is usually 0.5-2 hours. One whole computation time re-
quired for all 226 scaffolds could take months on one single computer core and the
total number of generated enzyme designs is about 7 million.

4.3. Executable Enzyme Design Workflow in Kepler

4.3.1. Workflow for Execution on the Local Cluster Resource

As shown in Fig. 7, a workflow is implemented to utilize the tens to hundreds of
computing CPU cores in one cluster. The top-level workflow structure is the same
as the conceptual workflow in the previous sub-section. Inside a composite actor,
such as RosettaMatch, the sub-workflow dynamically creates job scripts according
to a user’s inputs and submits them to a job scheduler like SGE on the cluster us-
ing Kepler job actors. By distributing the jobs for all scaffolds through the job
scheduler on the cluster, the jobs can be concurrently executed on many nodes on
the cluster and the concurrency capability is limited only by the node capacity of
the cluster.

22

Fig.7. Kepler workflow for enzyme design processes on one cluster.

Many jobs will be executed through one composite actor, for example one job
will be submitted in the RosettaMatch actor and 1-30 independent jobs in the Ro-
settaDesign actor for each scaffold. Once a job is finished, it will trigger down-
stream actors, such as RemoveBChain actor, which post-process the output data
from RosettaMatch. Kepler can naturally express the dependencies using connec-
tion links among actors and no explicit primitive or structure is needed to express
the parallel. Using the PN director, all actors will be executed independently based
on their input data availability, which can realize automatic parallel computation
of these actors.

With pipeline parallel support in Kepler, the workflow input can be a vector of
data, which greatly simplifies workflow construction. Each workflow execution
will process many scaffolds, so we list the scaffold directory to create a vector of
scaffolds and read it as input to the workflow rather than having many explicit pa-
rallel branches or loops on the whole workflow. Each scaffold does not need to
wait for the completion of the RosettaMatch step for other scaffolds. It also fits
that different scaffolds complete their execution within very different times. Addi-
tionally the sequence capacity can dynamically change during the workflow ex-
ecution. For example, RosettaMatch can generate anywhere between 100-4,000
matches, for different scaffolds, and these matches generated as output files will
dynamically be used as the input elements for the next steps in the workflow.

4.3.2. Workflow for Execution on the Grid

By adopting Globus as the Grid security and service infrastructure, the workflow
shown in Fig. 8 is used to scheduling application execution among multiple cluster
resources. For a local cluster, we execute the Kepler workflow shown in Fig. 7
through the Globus GRAM service deployed on the cluster. For remote clusters,
besides the workflow execution, two extra tasks need to be added: 1) input data

23

needs to be staged in to the remote clusters in advance of the workflow execution,
and 2) output data needs to be staged out from remote cluster back to the local
cluster. We employ the GridFTP to do the data stage in and out. The computations
on multiple clusters are independent of each other, so there is no control or data
flow connections among the actors for these executions in the workflow, and the
Kepler engine will run them in parallel. The workflows in Section 4.3.1 are easily
reused in the two-level workflow structure. One challenge for this workflow is
how to optimize the load balance on multiple clusters and the data stage in/out
overhead.

Fig. 8. Kepler workflow for enzyme design processes on multiple clusters. The GRAM service
composite actor will invoke the workflow shown in Fig. 7 on the target cluster.

4.3.3. Provenance and Fault Tolerance Support in the Workflow

While using more clusters increases our computational capacity, it also increases
our probability of failure. Although these exceptions happen only occasionally, the
whole execution of the enzyme design workflow will crash without fault tolerance
support.

To support fault tolerance at the workflow level, we adopt the Fault Tolerance
actor for some sub-workflows. A simplified example is shown in Fig. 9, where the
JobExecutionWithFT actor is a customized fault tolerance actor. There are two
sub-workflows (shown in the bottom part of Fig. 9) in the actor, namely default
and clean-and-quit, which will be invoked according to the configurations of the
JobExecutionWithFT actor. The default sub-workflow submits a job, checks the
job status, and throws an exception if the job fails. As specified in its configura-
tion (shown in the right part of Fig.9), after catching the exception, the JobExecu-
tionWithFT actor will re-execute the default sub-workflow after sleeping for 100
seconds. If the default sub-workflow still gets exceptions after three retries, the
clean-and-quit sub-workflow, which cleans intermediate data and stops the whole
execution, will be executed with the same input tokens.

24

Fig.9. Fault tolerance and provenance support in Kepler workflow.

The exception handling logic can be easily expressed with the fault tolerance
actor; no explicit loop and conditional switch is needed in the workflow. Further,
the input data for sub-workflow retry does not need to be explicitly saved since
they are automatically recorded by Provenance Recorder and will be fetched for
re-execution.

Besides fault tolerance, Kepler provenance also supports collection and query
on workflow structure and execution information in both local and distributed en-
vironments. Each enzyme design workflow execution will generate millions of de-
signs and chemists may need the workflow to be executed for many times with
different input models. Kepler provenance can help chemists to track the data effi-
ciently in the future, such as querying which input model was used to generate one
particular design.

4.4. Experiment

To measure the speedup capabilities of the workflows, we experimented on two
clusters where Globus toolkit 4.0.7 and Sun Grid Engine job scheduler are dep-
loyed. Cluster 1 has 8 nodes, each with 24 GB of memory and two 2.6 GHz quad-
core CPUs. Cluster 2 has 30 nodes, each with 4 GB of memory and two 2.2 GHz
single-core CPUs.

Our first experiment executed the enzyme design workflow described in Sec-
tion 4.3.1 on cluster 2 with different usable CPU core configurations. We also ex-
ecuted another workflow that only had the RosettaMatch part of the enzyme de-
sign workflow in order to determine the speedup difference. We ran the
workflows with different inputs. As shown in Table 1, all these tests, no matter the

25

differences of workflow structures and inputs, have good scalability and speedup
when the usable core number grows.

Table 1. Workflow execution with different usable CPU cores.

workflow workflow
input

output
data

total job
number

workflow execution time
(unit: hour)

1 core 25 core 60 core
RosettaMatch 10 scaffold 0.29

GB
10 3.38 0.69 0.63

RosettaMatch 226 scaffold 27.96
GB

226 128.61 5.52 3.06

RosettaMatch + RemoveBChain
+ RosettaDesign

10 scaffold 10.92
GB

296 533.61 29.32 11.24

We also tested the enzyme design workflow in Section 4.3.1 and 4.3.2 to know
the concurrence performance on these two clusters. From the execution data of the
workflow execution only on cluster 1 and 2, we know cluster 1 is about twice as
fast. So approximately twice as many inputs are distributed to cluster 1 and cluster
1 is set as the local cluster when the workflow is executed on the two clusters. The
experiment data, shown in Table 2, demonstrates the good concurrence perfor-
mance in the second and third test. The poor performance in the first test is be-
cause there are too few jobs compared to the number of CPU cores. We can also
see the speedup ratios are not as good as those in the first experiment. The reasons
are twofold: 1) it is hard to realize good load balance on multiple clusters since the
execution time for different scaffold varies; 2) the data stage in and out phases for
remote cluster may cause a big overhead if the transferred data is very large.

Table 2. Workflow execution with different clusters.

workflow workflow
input

total job
number

workflow execution time (unit: hour)

cluster 1
(64 core)

cluster 2
 (60 core)

cluster 1 and
2

RosettaMatch 10 scaffold 10 0.33 0.63 0.36

RosettaMatch 226 scaffold 226 1.52 3.06 1.33

RosettaMatch + Remove-
BChain + RosettaDesign

10 scaffold 296 6.17 11.24 4.21

5. Conclusions

Increasingly e-Science discoveries are being made based on the enhanced capa-
bility and usability of cyberinfrastructure. In this chapter, we have summarized the

26

core services to support e-Science discovery in Grid environments. The five ser-
vice dimensions, namely computation management, data management, scientific
process automation, user interaction and non-functional services, are all important
constituents and complementary to each other. To demonstrate how these services
can be seamlessly assembled, we explained an integration of the Kepler workflow
system with the UC Grid, and its application in computational chemistry. The im-
plementation and experiments validate the capability of this integrated architecture
to make a scientific computation process automated, pipelined, efficient, extensi-
ble, stable, and easy-to-use. We believe that, as the complexity and size of scien-
tific problems grow larger, it is increasingly critical to leverage workflow logic
and task distribution across federated computing resources to solve e-Science
problems efficiently.

Acknowledgments: The authors would like to thank the rest of the Kepler and UC Grid commu-
nity for their collaboration. We also like to explicitly acknowledge the contribution of Tajendra
Vir Singh, Shao-Ching Huang, Sveta Mazurkova and Paul Weakliem during the UC Grid archi-
tecture design phase. This work was supported by NSF SDCI Award OCI-0722079 for Ke-
pler/CORE, NSF CEO:P Award No. DBI 0619060 for REAP, DOE SciDac Award No. DE-
FC02-07ER25811 for SDM Center, and UCGRID Project. We also thank the support to the
Houk group from NIH-NIGMS and DARPA.

Reference
[1]. Foster I (2002) What is the Grid? - a three point checklist. GRIDtoday, Vol. 1, No. 6.

http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf
[2] Sudholt W, Altintas I, Baldridge K (2006) Scientific Workflow Infrastructure for Computa-

tional Chemistry on the Grid. In Proceedings of the 1st Computational Chemistry and Its Ap-
plications Workshop at the 6th International Conference on Computational Science (ICCS
2006). LNCS 3993, pp. 69-76

[3] Tiwari A, Sekhar AKT (2007) Workflow based framework for life science informatics. Com-
putational Biology and Chemistry 31(5-6), pp. 305-319

[4] Taylor I, Deelman E, Gannon D, Shields M (eds) (2007), Workflows for e-Science, pp. 376-
394. Springer, New York, Secaucus, NJ, USA

[5] Yu Y, Buyya R (2006) A Taxonomy of Workflow Management Systems for Grid Compu-
ting. J. Grid Computing, 2006 (3), pp.171-200

[6]. Foster I, Kesselman C (eds) (2003) The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, The Elsevier Series in Grid Computing, ISBN 1558609334,
2nd edition

[7]. Berman F, Fox GC, Hey AJG (eds) (2003) Grid Computing: Making The Global Infrastruc-
ture a Reality. Wiley. ISBN 0-470-85319-0

[8] Richardson L, Ruby S (2007) RESTful Web Services. O’Reilly Media, Inc., ISBN: 978-0-
596-52926-0

[9] Foster I, Kesselman C, Nick J, Tuecke S (2002) The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration.
www.globus.org/research/papers/ogsa.pdf

[10] Singh MP, Huhns MN (2005) Service-Oriented Computing: Semantics, Processes, Agents.
John Wiley & Sons

[11] Buyya R (ed.) (1999) High Performance Cluster Computing: Architectures and Systems.
Volume 1, ISBN 0-13-013784-7, Prentice Hall, NJ, USA

[12] Buyya R (ed.) (1999) High Performance Cluster Computing: Programming and Applica-
tions. Volume 2, ISBN 0-13-013785-5, Prentice Hall, NJ, USA

27

[13] El-Rewini H, Lewis TG, Ali HH (1994) Task Scheduling in Parallel and Distributed Sys-
tems, ISBN: 0130992356, PTR Prentice Hall

[14] Dong F, Akl SG (2006) Scheduling Algorithms for Grid Computing: State of the Art and
Open Problems. Technical Report No. 2006-504, Queen's University, Canada,
http://www.cs.queensu.ca/TechReports/Reports/2006-504.pdf

[15] Gray J, Liu DT, Nieto-Santisteban M, Szalay A, DeWitt DJ, Heber G (2005) Scientific data
management in the coming decade, ACM SIGMOD Record, v.34 n.4, p.34-41,
doi://10.1145/1107499.1107503

[16] Shoshani A, Rotem D (eds) (2009) Scientific Data Management: Challenges, Existing
Technology, and Deployment, Computational Science Series. Chapman & Hall/CRC

[17] Chervenak A, Foster I, Kesselman C, Salisbury C, Tuecke S (2000) The data Grid: Towards
an architecture for the distributed management and analysis of large scientific datasets. Jour-
nal of Network and Computer Applications. Volume 23, Issue 3, July 2000, pp. 187-200.
doi:10.1006/jnca.2000.0110

[18] Moore RW, Jagatheesan A, Rajasekar A, Wan M, Schroeder W (2004) Data Grid Manage-
ment Systems. Proceedings of the 21st IEEE/NASA Conference on Mass Storage Systems
and Technologies (MSST)

[19] Venugopal S, Buyya R, Ramamohanarao K (2006) A taxonomy of Data Grids for distri-
buted data sharing, management, and processing. ACM Comput. Surv. 38(1)

[20] Yick J, Mukherjee B, Ghosal D (2008) Wireless sensor network survey. Computer Net-
works, 52(12): 2292-2330, DOI: 10.1016/j.comnet.2008.04.002.

[21] Fox G, Gadgil H, Pallickara S, Pierce M, Grossman RL, Gu Y, Hanley D, Hong X (2004)
High Performance Data Streaming in Service Architecture. Technical Report.
http://www.hpsearch.org/documents/HighPerfDataStreaming.pdf

[22] Rajasekar A, Lu S, Moore R, Vernon F, Orcutt J, Lindquist K (2005) Accessing sensor data
using meta data: a virtual object ring buffer framework. Proceedings of the 2nd Workshop on
Data Management for Sensor Networks (DMSN 2005): 35-42

[23] Tilak S, Hubbard P, Miller M, Fountain T (2007) The Ring Buffer Network Bus (RBNB)
DataTurbine Streaming Data Middleware for Environmental Observing Systems. eScience
2007: 125-133

[24] Greenberg J (2002) Metadata and the World Wide Web. The Encyclopedia of Library and
Information Science, Vol.72: 224-261, Marcel Dekker, New York

[25] Wittenburg P, Broeder D (2002) Metadata Overview and the Semantic Web, in Proceedings
of the International Workshop on Resources and Tools in Field Linguistics

[26] Davies J, Fensel D, van Harmelen F. (eds.) (2002) Towards the Semantic Web: Ontology-
driven Knowledge Management. Wiley

[27] Wolstencroft K, Alper P, Hull D, Wroe C, Lord PW, Stevens RD, Goble C (2007) The my-
Grid Ontology: Bioinformatics Service Discovery. International Journal of Bioinformatics
Research and Applications, 3(3):326-340

[28] Ludäscher B, Altintas I, Bowers S, Cummings J, Critchlow T, Deelman E, Roure DD, Freire
J, Goble C, Jones M, Klasky S, McPhillips T, Podhorszki N, Silva C, Taylor I, Vouk M
(2009) Scientific Process Automation and Workflow Management. In Shoshani A, Rotem D
(eds) Scientific Data Management: Challenges, Existing Technology, and Deployment, Com-
putational Science Series. 476-508. Chapman & Hall/CRC

[29] Deelman E, Gannon D, Shields MS, Taylor I (2009) Workflows and e-Science: An over-
view of workflow system features and capabilities. Future Generation Comp. Syst. 25(5):
528-540

[30] Brooks C, Lee EA, Liu X, Neuendorffer S, Zhao Y, Zheng H (2007), Chapter 7: MoML,
Heterogeneous Concurrent Modeling and Design in Java (Volume 1: Introduction to Ptolemy
II), EECS Department, University of California, Berkeley, UCB/EECS-2007-7,
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html

[31] Scufl Language, Taverna 1.7.1 Manual, http://www.myGrid.org.uk/usermanual1.7/
[32] SwiftScript Language Reference Manual.

http://www.ci.uchicago.edu/swift/guides/historical/languagespec.php

28

[33] Wang J, Altintas I, Berkley C, Gilbert L, Jones MB (2008) A High-Level Distributed Ex-
ecution Framework for Scientific Workflows. In Proceedings of workshop SWBES08: Chal-
lenging Issues in Workflow Applications, 4th IEEE International Conference on e-Science (e-
Science 2008) 634-639

[34] Pautasso C, Alonso G (2006) Parallel Computing Patterns for Grid Workflows, In: Proc.
Workshop on Workflows in Support of Large-Scale Science (WORKS06)

[35] Flynn MJ (1972) Some Computer Organizations and Their Effectiveness. IEEE Trans. on
Computers, C-21(9):948–960

[36] Wieczorek M, Prodan R, Fahringer T (2005) Scheduling of scientific workflows in the
ASKALON grid environment. SIGMOD Record 34(3): 56-62

[37] Singh G, Kesselman C, Deelman E (2005) Optimizing Grid-Based Workflow Execution. J.
Grid Comput. 3(3-4): 201-219

[38] Tierney B, Aydt R, Gunter D, Smith W, Swany M, Taylor V, Wolski R (2002) A Grid Mon-
itoring Architecture. GWDPerf-16–3, Global Grid Forum http://wwwdidc.lbl.gov/GGF-
PERF/GMA-WG/papers/GWD-GP-16-3.pdf

[39] Friendly M (2009) Milestones in the history of thematic cartography, statistical graphics,
and data visualization. Toronto, York University,
http://www.math.yorku.ca/SCS/Gallery/milestone/milestone.pdf

[40] Haber RB, McNabb DA (1990) Visualization Idioms: A Conceptual Model for Scientific
Visualization Systems. IEEE Visualization in Scientific Computing:74-93

[41] Singh JP, Gupta A, Levoy M. (1994) Parallel Visualization Algorithms: Performance and
Architectural Implications, Computer, 27(7):45-55 doi:10.1109/2.299410

[42] Ahrens J, Brislawn K, Martin K, Geveci B, Law CC, Papka M (2001) Large-scale data vi-
sualization using parallel data streaming. IEEE Comput. Graph. Appl., 21(4):34–41

[43] Strengert M, Magallón M, Weiskopf D, Guthe S, Ertl T (2004) Hierarchical visualization
and compression of large volume datasets using GPU clusters. Eurographics symposium on
parallel graphics and visualization (EGPGV04), Eurographics Association: 41–48

[44] Welch V, Siebenlist F, Foster I, Bresnahan J, Czajkowski K, Gawor J, Kesselman C, Meder
S, Pearlman L, Tuecke S (2003) Security for grid services. Proceedings of the Twelfth Inter-
national Symposium on High Performance Distributed Computing (HPDC-12). IEEE Press

[45] Plankensteiner K, Prodan R, Fahringer T, Kertesz A, Kacsuk PK (2007). Fault-tolerant be-
havior in state-of-the-art grid workflow management systems. Technical Report. CoreGRID,
http://www.coregrid.net/mambo/images/stories/TechnicalReports/tr-0091.pdf

[46] Ludäscher B, Altintas I, Berkley C, Higgins D, Jaeger E, Jones M, Lee E, Tao J, Zhao Y
(2005) Scientific workflow management and the Kepler system. Concurrency and Computa-
tion: Practice and Experience, 18 (10):1039-1065

[47] Brooks C, Lee EA, Liu X, Neuendorffer S, Zhao Y, Zheng H (2007) Heterogeneous Con-
current Modeling and Design in Java (Volume 3: Ptolemy II Domains), EECS Department,
University of California, Berkeley, UCB/EECS-2007-9,
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-9.html

[48] Mouallem P, Crawl D, Altintas I, Vouk M, Yildiz U (2010). A Fault-Tolerance Architecture
for Kepler-based Distributed Scientific Workflows. accepted by 22nd International Confe-
rence on Scientific and Statistical Database Management (SSDBM 2010)

[49] Lee EA, Parks T (1995) Dataflow Process Networks. Proceedings of the IEEE, 83(5):773–
799

[50] Altintas I, Barney O, Jaeger-Frank E (2006) Provenance Collection Support in the Kepler
Scientific Workflow System. Proceedings of International Provenance and Annotation Work-
shop (IPAW2006):118-132

[51] Wang J, Altintas I, Hosseini PR, Barseghian D, Crawl D, Berkley C, Jones MB (2009) Ac-
celerating Parameter Sweep Workflows by Utilizing Ad-hoc Network Computing Resources:
an Ecological Example. In Proceedings of IEEE 2009 Third International Workshop on
Scientific Workflows (SWF 2009) at Congress on Services (Services 2009) 267-274

29

[52] Radetzki U, Leser U, Schulze-Rauschenbach SC, Zimmermann J, Lussem J, Bode T, Cre-
mers AB (2006) Adapters, shims, and glue-service interoperability for in silico experiments.
Bioinformatics, 22(9):1137–1143

[53] Wang J, Korambath P, Kim S, Johnson S, Jin K, Crawl D, Altintas I, Smallen S, Labate B,
Houk KN (2010) Theoretical Enzyme Design Using the Kepler Scientific Workflows on the
Grid, accepted by 5th Workshop on Computational Chemistry and Its Applications (5th
CCA) at International Conference on Computational Science (ICCS 2010)

[54] Zanghellini A, Jiang L, Wollacott AM, Cheng G, Meiler J, Althoff EA, Röthlisberger D,
Baker D (2006) New algorithms and an in silico benchmark for computational enzyme de-
sign. Protein Sci. 15(12): 2785-2794

[55] Tantillo DJ, Chen J, Houk KN (1998) Theozymes and compuzymes: theoretical models for
biological catalysis. Curr Opin Chem Biol. 2(6):743-50

View publication stats

https://www.researchgate.net/publication/216034597

