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Abstract: E-Science has been greatly enhanced from the developing capability 
and usability of cyberinfrastructure. This chapter explains how scientific workflow 
systems can facilitate e-Science discovery in Grid environments by providing fea-
tures including resource consolidation, parallelism, provenance tracking, fault to-
lerance and workflow reuse. We first overview the core services to support e-
Science discovery. To demonstrate how these services can be seamlessly assem-
bled, a scientific workflow system, called Kepler, is integrated into the University 
of California Grid. This architecture is being applied to a computational enzyme 
design process, which is a formidable and collaborative problem in computational 
chemistry that challenges our knowledge of protein chemistry. Our implementa-
tion and experiments validate how the Kepler workflow system can make the 
scientific computation process automated, pipelined, efficient, extensible, stable, 
and easy-to-use. 

1. Introduction 

“E-Science is about global collaboration in key areas of science and the next gen-
eration of infrastructure that will enable it.”1. Grid computing “coordinates re-
sources that are not subject to centralized control by using standard, open, general-
purpose protocols and interfaces, and deliver nontrivial qualities of service” [1]. 
For over a decade, Grid techniques have been successfully used to enable or facili-
tate domain scientists on their scientific computational problems by providing fe-
derated resources and services. Yet the software that creates and manages Grid 

                                                           
1 John Taylor, Director General of Research Councils, Office of Science and 

Technology, UK 
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environments, such as the Globus toolkit2, gLite3 and Unicore4, alone is not suffi-
cient to manage the complex job control and data dependencies for many domain-
specific problems. Such problems require combining more than one complex 
computational code into flexible and reusable computational scientific processes 
[2, 3]. Scientific workflow systems [4, 5] enable researchers to design computa-
tional experiments that span multiple distributed computational and analytical 
models, and in the process, store, access, transfer, and query information. This re-
quires the integration of a variety of computational tools, including the domain-
specific software, database programs as well as preparation, visualization, and 
analysis toolkits [2, 3]. 

In this chapter, we explain how scientific workflow systems can facilitate the e-
Science discovery in Grid environments by providing features such as resource 
consolidation, parallelism, provenance tracking, fault tolerance and workflow 
reuse. The chapter is organized as follows. In Section 2, we summarize the core 
services needed for e-Science discovery. Section 3 demonstrates an assembly of 
these services by integrating the Kepler workflow system5 into the University of 
California Grid (UC Grid)6. In Section 4, an application for a theoretical enzyme 
design computation process is explained using the integrated architecture. We 
concluded the chapter in Section 5. 

2. The Core Services to Support E-Science Discovery 

 
Fig 1. A core service classification to support e-Science discovery. 

                                                           
2 http://www.globus.org/toolkit/ 
3 http://glite.web.cern.ch/glite/ 
4 http://www.unicore.eu/ 
5 http://kepler-project.org 
6 http://www.ucgrid.org/ 
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E-Science discoveries currently deal with increasingly growing scientific data and 
sophisticated computation. Usually these data and computation resources are dis-
tributed in geographically sparse locations and have a variety of usage modes. A 
typical computational experiment involves various tasks. By providing pipeline 
tools to connect the tasks and automate their execution, scientific process automa-
tion is increasingly important to help scientists easily and efficiently utilize the da-
ta and computation resources for their domain-specific scientific problems. This 
infrastructure should also enable scientists to interact with during the whole expe-
riment lifecycle, such as triggering and adjusting the processes, monitoring their 
execution and viewing the resulting data. Further, non-functional services, such as 
security and failure recovery, are also important to ensure the whole process to be 
secure and fault tolerant. As shown in Fig. 1, computation management, data man-
agement, scientific process automation, user interaction and non-functional servic-
es are the core service categories to support e-Science discovery. Also these ser-
vices are complementary to each other, and are often integrated in many e-Science 
projects. 

In this section, we describe the main services in each category, discussing their 
purposes, challenges and the approaches and tools to enable them. 

2.1. Computation Management 

Over the past decade, Grid computation techniques have been successfully used to 
facilitate domain scientists with their scientific computational problems. Widely-
used Grid software includes the Globus toolkit, gLite, Unicore, Nimrod/G7, and 
Condor-G8. More details on Grid computation management can be found in [6, 7]. 

2.1.1. Service-Oriented Computation 

A Web service is “a software system designed to support interoperable machine-
to-machine interaction over a network”9. Heterogeneous applications can be virtu-
alized and easily interoperate with each other at Web service level by using the 
same interface definition approach. Original Web services, also called big Web 
services, are based on standards including XML, WSDL and SOAP. Another set 
of Web services, called RESTful Web services, are simple Web services imple-
mented based on HTTP protocol and the principles of Representational State 
Transfer (REST) [8]. The Open Grid Services Architecture [9] defines uniform 
exposed service semantics for Grid components, called Grid services, such that 
Grid functionalities can be incorporated into a Web service framework. 
                                                           

7 http://messagelab.monash.edu.au/NimrodG 
8 http://www.cs.wisc.edu/condor/condorg/ 
9 http://www.w3.org/TR/ws-gloss/#webservice 
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Through the introduction of Web and Grid services, a large number of compu-
tational resources in different scientific domains, e.g. bioinformatics, are becom-
ing available. This presents several new challenges including service semantics, 
discovery, composition and orchestration [10]. 

2.1.2. Local Resource Management 

A compute cluster resource is a collection of compute nodes connected through a 
private fast interconnect fabric, e.g., Infiniband, Myrinet, or even local area net-
work (LAN), and operated by an organization such as a university. A local re-
source manager is an application that is aware of the resources in a cluster and 
provides an interface for users to access them. The job submission and execution 
on a cluster is usually managed through resource manager software, such as the 
Torque10, Sun Grid Engine (SGE, name changed to Oracle Grid Engine recently) 11 
or Load Sharing Facility (LSF)12. A resource scheduler, on the other hand, can 
simply allocate jobs in a first in first out (FIFO) basis, or follow some complex 
scheduling algorithms (e.g., preemption, backfilling, etc.) like the Maui 13 , 
MOAB14 or SGE scheduler. A resource manager can use multiple schedulers. For 
example, Torque can be integrated with either the Maui or MOAB. 

The cluster owner sets policies on resource consumption such as which groups 
have access to it, how many resources can be allocated, whether they can run pa-
rallel jobs or only serial jobs, etc. This information is fed into the resource manag-
er and is used when the scheduler executes jobs. A scheduler constantly monitors 
the cluster status and recalculates job priorities according to changes in the cluster 
environment. 

Detailed techniques on local resource management can be found in [11, 12]. 

2.1.3. Resource Allocation 

Resource allocation is the process of assigning resources associated with a Grid 
for a user application. It is a key service since there are usually many available lo-
cal resources and also many user applications to be executed within one Virtual 
Organization (VO), where many different groups share resources through a colla-
borative effort. 

One challenge here, called resource scheduling, is how to get a resource alloca-
tion result that satisfies user requirements, since resources in the Grid are not ex-
clusive and may meet competing user requirements. It is already proved that the 
                                                           

10 http://www.clusterresources.com/products/torque-resource-manager.php 
11 http://www.sun.com/software/sge/ 
12 http://www.platform.com/workload-management 
13 http://www.clusterresources.com/products/maui-cluster-scheduler.php 
14 http://www.clusterresources.com/products/moab-cluster-suite.php 
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complexity of a general scheduling problem is NP-Complete [13]. So many ap-
proximation and heuristic algorithms are proposed to achieve suboptimal schedul-
ing in the Grid. Scheduling objectives are usually classified into application cen-
tric and resource centric [14]. The former one targets the performance of each 
individual application, such as makespan, economic cost, and quality of service 
(QoS). The latter one targets the performance of the resource, such as resource uti-
lization and economic profit. Although it is active research area, the proposed so-
lutions are not ready to be widely deployed in production environments and it is 
still common that users or communities provide their own simple resource alloca-
tion strategies using Grid interfaces to contact each local resource. 

2.2. Data Management 

Data management in the Grid, sometimes called Data Grid, can be seen as a spe-
cialization and extension of the Grid as an integrating infrastructure for distributed 
data management. This includes data acquisition, storage, sharing, transfer, archiv-
ing, etc. Representative Data Grid software includes the Globus toolkit, OGSA-
DAI15, Storage Resource Broker (SRB)16 and its more recent version called inte-
grated Rule Oriented Data System (iRODS)17. More comprehensive scientific data 
management and Data Grid surveys can be found in [15, 16, 17, 18, 19]. 

2.2.1. Data Acquisition 

In general, scientific data may be created either from computation like scientific 
calculations and image processing, or through data collection instruments such as 
an astronomy telescope, earthquake-monitoring devices, and meteorology sensors, 
etc. 

Once the experimental data is collected, it needs to be stored and transferred to 
the location where computing models can be run using that data to interpret the re-
lationship or predict future events. The data often need to be shared among many 
researchers. 

Data acquisition in large-scale observing systems, such as the National Ecolog-
ical Observatory Network (NEON)18, is an emerging application area. These sys-
tems accommodate a broad spectrum of distributed sensors and continuously gen-
erate very large amount of data in real-time. Heterogeneous sensor integration [20] 
and data stream processing [21, 22] are two main challenges [23]. The details of 
these two problems are not in the scope of this chapter. 
                                                           

15 http://www.ogsadai.org.uk/ 
16 http://www.sdsc.edu/srb/index.php  
17 https://www.irods.org/ 
18 http://www.neoninc.org/ 
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2.2.2. Data Storage 

Reliability, failover and Input/Output (I/O) throughput are critical factors for large 
datasets storage. Typical solutions include storing the data through RAID19 to 
achieve storage reliability by providing redundancy or distributed parallel file sys-
tems using metadata tables, such as Lustre 20  and PVFS 21  to get higher I/O 
throughput. 

One challenge in the Grid is how to provide a logical and simple view for re-
searchers to access various types of geographically distributed data storage across 
a Grid environment. This is commonly handled by data storage abstraction tech-
niques. For example, a logical data identifier, rather than its physical location, is 
provided to users to realize uniformed and easy data access. One tool that provides 
data abstractions is the SRB, which is a client-server middleware that provides a 
uniform interface for connecting to heterogeneous data resources over a network. 
The Replica Location Service (RLS)22 in the Globus toolkit also support data ab-
straction. Additionally, both SRB and RLS support data replica functionality to 
manage the multiple copies of the same data, which will get better response times 
for user applications by accessing data from locally “cached” data stores. 

2.2.3. Data Transfer 

A data transfer moves data between two physical locations. It is necessary to share 
data among the VO or realize better computation balance and performance. Chal-
lenges here include performance, security and fault-tolerance. There are many data 
transfer tools, e.g., FTP, scp, SRB, GridFTP, and others. FTP (File Transfer Pro-
tocol) is one of the universally available file transfer application, which functions 
over a network using TCP/IP based communication protocol such as the current 
Internet. scp (secure copy with OpenSSL encryption) is a simple shell command 
that allows users to copy files between systems quickly and securely. Using the 
above two tools do not need the expertise in Grid systems. GridFTP is built on top 
of FTP for use in Grid computing with the data encryption through the Globus 
Grid Security Infrastructure (GSI)23. Additionally, GridFTP can provide third par-
ty transfer, parallel streams and fault tolerance. The SRB also provides strong se-
curity mechanisms supported by fine-grained access controls on data, and parallel 
data transfer operations. 

2.2.4. Metadata 
                                                           

19 http://en.wikipedia.org/wiki/RAID 
20 http://www.lustre.org/ 
21 http://www.pvfs.org/ 
22 http://www.globus.org/toolkit/data/rls/ 
23 http://www.globus.org/security/overview.html 
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Metadata is usually defined as “data about data”, which is regarded as “struc-
tured data about an object that supports functions associated with the designated 
object” [24]. Metadata is useful to understand, access and query the designated ob-
ject. The metadata structures vary for different targets and usages [25]. Commonly 
used metadata categories in e-Science projects consist of dataset metadata (size, 
creator, format, access method, etc), application metadata (applicable operation 
system information, license, etc), resource metadata (node number, CPU speed, 
memory size, disk capacity, etc) and workflow metadata (creator, language, etc).  

Semantics and ontology are more sophisticate techniques to describe and 
process metadata [26]. A domain ontology represents the particular meanings of 
terms as they apply to that domain. For example, the myGrid ontology helps the 
service discovery and composition in bioinformatics domain [27]. 

2.3. Scientific Process Automation  

Scientific process automation provides pipeline tools to automate task execution. 
Scientific workflows are already regarded as the main solution to realize scientific 
process automation [28, 29]. Workflow is a higher-level “language” comparable to 
classic programming languages, such as scripting and object-oriented languages. 
The advantages of using workflow languages for scientific process include: 1) 
many workflow systems support intuitive process construction by “dragging and 
dropping” via a graphical user interface (GUI); 2) the components or sub-
workflows in workflow are easy to share and reuse; 3) many workflow languages 
support parallelism intuitively; 4) workflow systems usually have built-in prove-
nance support (see Section 2.3.4 for details); 5) some workflow systems are able 
to dynamically optimize process execution in Grid or other distributed execution 
environments. 

Widely-used scientific workflow systems include Kepler, Pegasus24, Taverna25, 
Triana26, ASKALON27 and Swift28. More detailed scientific workflow surveys can 
be found in [4, 5, 28, 29]. 

2.3.1. Workflow Model 

There are different languages for representing scientific workflows [30, 31, 32], 
but they generally includes three types of components: tasks, control dependencies 
and data dependencies [33]. For example, in Fig. 2 the tasks T2 and T3 will be ex-
                                                           

24 http://pegasus.isi.edu/ 
25 http://www.taverna.org.uk 
26 http://www.trianacode.org 
27 http://www.dps.uibk.ac.at/projects/askalon/ 
28 http://www.ci.uchicago.edu/swift/ 
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ecuted under different conditions. Additionally, T4 needs to get data from either 
T2 or T3 before its execution. 

 

 
Fig.2. An example workflow composed of tasks and dependencies. 

The tasks in the scientific computation process need to follow certain depen-
dency logic to be executed. Usually the dependency logic can be described using 
control flow, data flow, or a hybrid of both. In control flows, or control-driven 
workflows, explicit control structures, including sequence, loop, condition and pa-
rallel, describe the dependency. In data flows, or data-driven workflows, data de-
pendencies describe the relationships among tasks. Two tasks are only linked if 
the downstream task needs to consume data from the output of the upstream task. 
The hybrid method uses both control and data dependencies to enable powerful 
and easy logic description. Many scientific workflow systems, e.g., Kepler, Triana 
and Taverna, use hybrid methods. 

2.3.2. Task Parallelism 

Task parallelism occurs when the tasks in one workflow can execute in parallel, 
providing a good execution performance. The task parallelism patterns can be 
classified into three basic categories: simple parallelism, data parallelism and 
pipeline parallelism [34]. Simple parallelism happens when the tasks do not have 
data dependency in a data-driven workflow, or are in the same parallel control 
structure in a control-driven workflow. Data parallelism describes parallel execu-
tion of multiple tasks while different task processing independently on different 
parts of the same dataset. This employs the same principle as single instruction 
multiple data (SIMD) parallelism [35] in computer architecture. Pipeline paral-
lelism describes a set of data are processed simultaneously among some sequential 
tasks, each task processing one or more data elements of the set. For example, the 
tasks in the Fig. 3 are executing simultaneously, each processing its own data. 
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Fig .3. An example of pipeline parallelism in workflow. 

2.3.3. Workflow Scheduling 

Workflow scheduling maps the tasks of a process and its data to proper computa-
tional resources, in order to meet expected performance, such as minimal execu-
tion time. After scheduling, tasks in one workflow might be executed on many lo-
cal resources in parallel on the Grid.  

Workflow scheduling belongs to the application centric scheduling category of 
resource allocation (see Section 2.1.3), and focuses on the scheduling of process-
based applications. Scheduling can be done either statically or automatically. 
Many heuristic scheduling approaches, such as genetic algorithm, are used to 
achieve suboptimal solutions [36, 37]. The local computation resource capacity, 
its advanced reservation capability and real-time status are usually needed to make 
decisions during the scheduling. 

2.3.4. Provenance Management 

Provenance plays a critical role in scientific workflows, since it allows or helps 
scientists to understand the origin of their results, to repeat their experiments, and 
to validate the processes that were used to derive data products. A major challenge 
of provenance management in Grid environments is how to efficiently store prov-
enance information and easily query it in the future. There are three typical ap-
proaches to collect the execution information for data provenance: centralized, de-
centralized and hybrid. Centralized approach stores all data generated during a 
workflow’s distributed execution in one centralized center. However, storing the 
data content of all distributed nodes in a single, centralized center is inefficient, 
especially when the dataset size is large. In a decentralized approach, provenance 
data is stored on the local node when it is generated (i.e., no data needs to move to 
a centralized center). While it is efficient to separate data storage to each distri-
buted node locally, it becomes difficult to query and integrate this data in the fu-
ture. In the hybrid approach, provenance data are stored locally in distributed 
nodes, and a centralized provenance catalog is employed to maintain the metadata 
and location information. After finding the needed data endpoint at the provenance 
catalog, users can get the data content from the corresponding nodes. In the hybrid 
approach, the burden for data transfer is reduced compared to the centralized 



10  

provenance system, and it is easier than the decentralized approach to do future 
provenance tracking. Note that one risk in both decentralized and hybrid ap-
proaches is that users may not be able to access the distributed nodes after the 
workflow execution, which is true when a resource is only open to some users for 
a limited time. 

2.4. User Interaction 

2.4.1. User Authentication 

Grid credentials are commonly used to identify users to Grid resources. All certif-
icate signing authorities (called CAs) need to have a policy to authenticate users 
before they issue credentials. The user requests a Grid certificate only once and 
then must be authorized to use Grid resources. In some organizations like UC 
Grid, all users can be positively identified as members of an organization using a 
Security Assertion Markup Language (SAML)29 assertion from a Shibboleth Iden-
tity Provider (IdP)30. Typically, IdPs will provide sufficient information to issue a 
Grid credential such as first name, last name, unique identifier, e-mail address, etc.  

Some CAs let users keep credentials in their custody whereas other organiza-
tions maintain them in a credential management server such as MyProxy31. In the 
latter case, the credentials never leave the signing machine and only the short-
lived credentials (called delegated proxy credentials) are provided to users. Users 
can always checkout credentials from those servers. The delegated proxy creden-
tials usually have a short lifetime of less than eight hours and will be destroyed 
when they expire. Many CAs additionally have an annual renewal policy for their 
certificate, so when users are no longer associated with the original project, their 
certificates can be revoked. Their identities are published in a certificate revoca-
tion list, which is then distributed to all organizations where their certificates are 
trusted. 

2.4.2. Portal 

A Grid portal is a web server that provides web interfaces to Grid services such as 
job submission, file transfer, job status check, and resource information monitor-
ing like cluster status, cluster workload, job queue information, etc. Some Grid 
portals provided generic capabilities that can be used by many types of users 

                                                           
29 http://saml.xml.org/ 
30 http://shibboleth.internet2.edu/about.html 
31 http://grid.ncsa.illinois.edu/myproxy/ 
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where as others, such as Science Gateways32, typically target a specific communi-
ty of users. A Grid portal stores user information such as login identifier, the Grid 
resources the user is entitled to, the status of their submitted jobs, etc. When users 
login to a portal they are redirected to a credential management server, which al-
lows the portal to authenticate Grid services on behalf of the user through a dele-
gated proxy credential. Because a Grid portal holds some information about the 
role of the user, it can also authorize some Grid services such as application pool 
job submission. 

One challenge here is to allow users to access multiple distributed resources 
and applications without separate authentications, which are usually supported by 
single sign-on techniques. GridShib33 allows a portal to sign proxy certificates for 
the uniquely identifying subject assertion from a federated single sign-on service 
like Shibboleth34. Shibboleth implements a federated identity standard based on 
SAML to provide identification and attributes of members in a federation. The 
primary purpose of Shibboleth is to avoid multiple passwords for multiple applica-
tions, interoperability within and across organizational boundaries, and enabling 
service providers to control access to their resources. 

2.4.3. Job Monitoring 

Users often like to know the overall load status and availability of resources. They 
also want to know the current execution status, e.g., which tasks are executing on 
which computers with which data. Therefore job monitoring services are also im-
portant for user interaction. 

Some general job status information can be retrieved when the job is submitted 
to a Grid resource. For example, the Scheduler Event Generator (SEG) service in 
the Globus toolkit gets the status of jobs like pending, active, or done. The SEG 
service queries local cluster resource managers like SGE or PBS, and the job sta-
tus information can be retrieved through the command-line or optionally pulled in-
to a Grid portal or other GUI interfaces to display to users using a subscription 
API. 

To view overall job statistics, typically cluster monitoring systems such as 
Ganglia35 or Nagios36 are deployed and display queue information, node informa-
tion and the load on the cluster. A Grid monitoring service is also deployed to col-
lect information from each resource’s cluster monitoring tool, summarize it, and 
display it. This provides overall Grid job statistics that can be used by managers to 
ensure users’ needs are being met. Such services are typically modeled after the 
Grid Monitoring Architecture [38], which was defined by Global Grid Forum. It 
                                                           

32 https://www.teragrid.org/web/science-gateways/ 
33 http://gridshib.globus.org/ 
34 http://shibboleth.internet2.edu/ 
35 http://ganglia.sourceforge.net/ 
36 http://www.nagios.org/ 
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includes three main parts: 1) a producer, a process that produces events and im-
plements at least one producer API; 2) a consumer, a process that receives events 
and implements at least one consumer API; and 3) a registry, a lookup service that 
allows producers to publish the event types and consumers to search them. Exam-
ples of Grid monitoring tools include the Globus Monitoring and Discovery Ser-
vice (MDS). 

2.4.4. Data Visualization 

Data visualization is the creation of a visual representation of data, meaning "in-
formation which has been abstracted in some schematic form, including attributes 
or variables for the units of information" [39]. Through the presentation of visua-
lized data, it is easy for scientists to study, analyze and communicate with one 
another. The primary reference model is called the filter-map-render pipeline [40]. 
The filter stage includes data selection, extraction and enrichment; the map stage 
applies a visualization algorithm to generate a viewable scene; and finally the 
render stage generates a series of images from the logical scene. To optimize the 
performance of data visualization, especially for large data set, many parallel vi-
sualization algorithms have been developed [41, 42, 43]. 

2.5. Non-Functional Services 

We categorize a service to be non-functional if it is not usually explicitly used by 
users, but useful to ensure a certain property of the e-Science discovery, such as 
security. These services are often transparently provided in the whole lifecycle of 
user usage. There services are also orthogonal to the above services in that they 
can be integrated with each of them. 

2.5.1. Security 

Several security concerns in specific services have been discussed in Section 2.2.3 
and 2.4.1. A key challenge of security management in Grid environments is that 
there is no centrally managed security system [44]. The GSI provides secure 
communication through authenticated services among resources and is widely 
used in many Grid systems and projects. It operates on the single sign-on concept 
meaning a single user credential will be valid among multiple organizations that 
trust the certificate signing authority of that credential. In GSI, every user needs to 
have a pair of X509 certificates. One is the private key that is used to encrypt the 
data, and the other is public key that is used to decrypt the data once it reaches the 
target resource. This kind of process is called asymmetric encryption because the 
keys that encrypts and decrypts are not the same. In practice, all Grid communica-
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tions including GridFTP uses short-lived proxy certificates that allow the process 
to act on behalf of the user. The bearer of this proxy certificate has exactly the 
same capabilities as the original X-509 certificate holder until the proxy certificate 
expires. In a Grid infrastructure these proxy certificates are often leased from a 
certificate management server, such as MyProxy. The advantage is that a Grid us-
er can securely store the long-lived private key in a secure machine and release 
only short-lived proxy credentials on a publically accessible certificate manage-
ment server during Grid computing. 

2.5.2. Failure Recovery 

Due to the large number of resources in a Grid, there is a high probability of a sin-
gle resource component failure during an application execution. Further, providing 
fault tolerance in a Grid environment can be difficult since resources are often dis-
tributed and under different administrative domains. Failures may occur in every 
level in the Grid architecture [45], which includes: 1) computational platforms, 
e.g., selected nodes for a job may run out of memory or disk space while the job is 
still running; 2) network, e.g., a local resource is temporarily unreachable during 
job execution; 3) middleware, e.g., a Grid service fails to start the job; 4) applica-
tion services, e.g., domain-specific application gets an execution exception due to 
unexpected input; 5) workflow system, e.g., infinite loops during workflow execu-
tion; or 6) user, e.g., a user credential expires during workflow execution. 

Many of these issues fall into the domain of system and network administra-
tors, who must design infrastructure to provide redundant components. Here, we 
address only parts at the workflow level, where redundancy, retry and migration 
are the main fault tolerance policies. Using simultaneous execution on redundant 
resources, workflow execution will have a lower chance to fail. The workflow sys-
tem can also retry a failed resource or service after a certain amount of time. In 
migration, a workflow system will restart on a different resource. For the latter 
two cases, checkpoint and intermediate data usually need to be recorded so that 
only a sub-workflow rather than the whole workflow will be re-executed.  

3. Integrating the Kepler Workflow System in the University 
of California Grid 

To demonstrate how the services in Section 2 can be seamlessly assembled, a 
scientific workflow system, called Kepler, is integrated into the UC Grid. The in-
teroperation of these services and the characteristics of our integration will be dis-
cussed. Almost all the applications we use or discuss in this architecture are open 
source or open standard and can be easily implemented by other organizations. 
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3.1. University of California Grid 

The UC Grid is a federation of all participating compute resources among UC 
campuses. Any organization that is willing to accept or follow the established pol-
icies and trust relations of UC Grid policy management authority can also be an 
autonomous member of UC Grid. Typically, the UC Grid resources are open to all 
faculty, staff and students who are members of any UC campus. The owners of the 
resources determine when and how much of those resources are allocated to the 
UC Grid resource pool.  

 
Fig.4. The architecture of University of California Grid.  

As shown in Fig. 4, the UC Grid architecture mainly consists of four parts. 
The UC Grid Campus Portal. This is the web interface, front-end to the UC 

Grid in a single campus. It provides the user interface and serves as a single point 
of access for users to all campus computing resources. It communicates with the 
Grid Appliances in a single campus. Because the users are known only at the 
campus level, all applications for a Grid account starts at the campus portal. The 
campus portal takes the request from the users and authenticates them through a 
Shibboleth based campus service, and if the authentication process is successful it 
sends a request to UC Grid Portal to sign an X-509 certificate for the user.  

The UC Grid Portal. This is the web interface where users can login to access 
all the clusters in all ten campuses of the University of California. This is the super 
portal of all campus Grid portals and is the certificate signing authority for the en-
tire UC Grid. Once the certificate is signed it is pushed to a MyProxy server that 
leases the short-lived credential every time a user login to the Grid portal. Any re-
source updates on campus portal will be updated on the UC Grid Portal imme-
diately through a web service. 

The UC MyProxy Server. The primary purpose of this server is to store user 
credentials and release them to UC Grid Portal when users login to the Portal. 

Grid Appliance Nodes. These nodes are functionally equivalent to head nodes 
of a compute cluster where the UC Grid Portal software is deployed. These nodes 
need to be open only to the Grid portals and compute nodes inside the cluster. Ad-
ditionally, these nodes need to be a job submission host to the local scheduler such 
as Torque, LSF or SGE. 
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The UC Grid is based on Globus toolkit 4.0.7, using its GridFTP, GRAM, My-
Proxy and MDS services. We have also implemented several services to meet our 
own requirements. Two important ones are the UC Sync Service and the UC Reg-
ister Service. The UC Sync Service makes sure all database on both the campus 
portal and UC wide portal are synchronized so that they have updated user, cluster 
and application information. The UC Register Service is an automated process to 
authenticate, authorize and issue credentials for new users on the UC Grid Portal. 
For authentication purpose, it relies either on a Shibboleth based service or, in the 
absence of such services, make use of an ssh-based authentication mechanism. 
During the authorization process a cluster administrator has to verify the Unix user 
identifier of new user on a cluster. 

The UC Grid Portal consists of application software that runs a portlet that is 
pluggable user-interface components in a portal to provide services such as Grid 
services. We employ Gridsphere37 as our portlets container, which guarantees inte-
roperability among portlets and portals through standard APIs. 

The usage modes are quite different for users who already have access to some 
compute clusters and users who don’t have access to any clusters. So users are 
classified into different user categories in the UC Grid: cluster user and pool user. 
Cluster users are those users with a Unix user identifier on one of the clusters who 
can access their resources directly without the Grid portal web interface. Pool us-
ers on the other hand are those users who do not have an account on any of the 
clusters or on the cluster where they want to run an application. The jobs submit-
ted by pool users are run through guest accounts on all participating clusters when 
unused cycles are available on that cluster. Pool users can access the resources on-
ly by authorizing through their Grid credentials. Currently, pool users can only 
submit precompiled application jobs that are deployed in advance by the cluster 
administrator, as the Grid Portal does not have a mechanism to allow the pool us-
ers to upload their own binary files and guarantee the right run time architecture 
for that job. Some of the applications that pool users regularly use are Mathemati-
ca, Matlab, Q-Chem, NWChem, Amber, CPMD, etc. Typically, pool users need 
not worry about the target cluster as it is determined by the Grid Portal depending 
on the dynamic resource availability, and also the application availability on any 
of the clusters. 

3.2. Kepler Scientific Workflow System 

The Kepler project aims to produce an open source scientific workflow system 
that allows scientists to easily design and efficiently execute scientific workflows. 
Inherited from Ptolemy II38, Kepler adopts the actor-oriented modeling [46] para-
digm for scientific workflow design and execution. Each actor is designed to per-
                                                           

37 http://www.gridsphere.org 
38 http://ptolemy.eecs.berkeley.edu/ptolemyII 
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form a specific independent task that can be implemented as atomic or composite. 
Composite actors, or sub-workflows, are composed of atomic actors bundled to-
gether to perform complex operations. Actors in a workflow can contain ports to 
consume or produce data, called tokens, and communicate with other actors in the 
workflow through communication channels via links. 

Another unique property inherited from Ptolemy II is that the order of execu-
tion of actors in the workflow is specified by an independent entity called director. 
The director defines how actors are executed and how they communicate with 
each other. Since the director is decoupled from the workflow structure, a user can 
easily change the computational model by replacing the director using the Kepler 
graphical user interface. As a consequence, a workflow can execute sequentially, 
e.g., using the Synchronous Data Flow (SDF) director, or in parallel, e.g., using 
the Process Network (PN) director [47]. 

Kepler provides an intuitive graphical user interface and an execution engine to 
help scientists to edit and manage scientific workflows and their execution. In the 
Kepler GUI, actors are dragged and dropped onto the canvas, where they can be 
customized, linked, and executed. Further, the execution engine can be separated 
from the user interface thereby enable the batch mode execution. 

Currently, there are over 200 actors available in Kepler, which largely simplify 
the workflow composition. We will briefly describe the main distinctive actors 
that are used in this chapter.  

Local Execution Actor. The ExternalExecution actor in Kepler is the wrapper 
for executing commands that run legacy codes in a workflow. Its purpose is to call 
the diverse employed external programs or shell-script wrappers. 

Job Submission Actors. Kepler provides two sets of actors that can submit 
jobs to two typical distributed resources: Cluster and Grid. Each set has actors to 
be used for different job operations, e.g. create, submit, and status check. 

Data Transfer Actors. There are multiple sets of data transfer actors in Kepler 
to support moving data from one location to another by different ways, e.g., FTP, 
GridFTP, SRB, scp, and others. 

Fault Tolerance Actor. The fault tolerance actor [48], which is a composite 
actor that contains multiple sub-workflows, supports automatic exception catching 
and handling by re-trying the default sub-workflow or executing the alternative 
sub-workflows. 

Besides the above actors, Kepler also provides the following characteristic ca-
pabilities. 

Inherent and Implicit Parallelism. Kepler supports inherent and implicit par-
allelism since it adopts a dataflow modeling approach [49]. Actors in Kepler are 
independent from each other, and will be triggered once their input data are avail-
able. Since explicit parallel primitives, such as parallel-for, are not needed, 
workflow composition is greatly simplified. The workflow execution engine will 
parallelize actor execution automatically at runtime according to their input data 
availability. 

Pipeline Parallelism. The execution of the tokens in the token set can be inde-
pendent and parallel. Kepler supports pipeline parallelism by token streaming, 
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blocking and buffering techniques [34].  
Provenance Tracking. Kepler provenance framework [50] supports collection 

and query on workflow structure and execution information in both local and dis-
tributed environments [51]. 

3.3. Integrated Architecture  

By integrating Kepler into UC Grid, an overall architecture is presented in Fig. 5. 
Most of the services described in Section 2 are supported here. 

 
Fig. 5. A layered architecture to facilitate e-Science discovery. 

3.3.1 Portal Layer 

The portal layer mainly provides the User Interaction services described in Section 
2.4 to enable users to interact with cyberinfrastructure and accomplish their e-
Science discoveries.  

User Authentication. In order for the Grid portal to execute Grid services on be-
half of users, it must be provided with a delegated credential from a credential 
management server (MyProxy server is used here). When users login to the portal, 
they enter their username and corresponding MyProxy password. The portal will 
retrieve and store the short-lived delegation credential so that users can interact 
with Grid services. When the users log out, the delegated credentials are de-
stroyed. 

Workflow Submission. Users select a workflow by browsing the workflow repo-
sitory in the Grid portal. The Grid portal then presents a web interface for users to 
configure the workflow parameters and upload the required input files that need to 
be staged on the target computing resources. Users are also allowed to upload their 
own workflows to the portal, but require authorization to avoid intentional or un-
intentional security problems. For example, malicious code might be inserted into 
a workflow by executing file delete commands in the Kepler local execution actor. 
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Once approved, the workflow is uploaded to the workflow repository and made 
available to other users through the Grid portal. 

Workflow Monitoring. After a workflow is submitted through the Globus 
GRAM service for execution, the portal will monitor the progress and completion 
of the workflow execution by querying the Globus SEG service running on the 
target resource. Users can log in anytime to check the status, or the portal will 
send a notification email when the execution is done. 

Data Visualization. Users can either download the output data to their local com-
puter to visualize the data locally or chose one of the deployed application visuali-
zation services, e.g. Jmol39, to visualize the data through the portal itself. 

Provenance Query. During and after workflow execution, users can check prove-
nance information via the query user interface in the portal. The query can utilize 
the provenance information from all previous workflow runs. For example, a user 
may want to understand how a parameter change influenced the results of one 
workflow, or how workflows are connected by a certain dataset. 

3.3.2 Workflow Layer 

The workflow layer provides the Scientific Process Automation services described 
in Section 2.3. 

Workflow Scheduler. Currently, static workflow scheduling is supported by ex-
plicitly describing the scheduling policy in a separate workflow. Globus GRAM 
jobs are submitted through the workflow to initiate workflow task execution on re-
sources. For workflow task execution on remote resources, data needs to be staged 
in before execution and staged out after execution. The capabilities of the re-
sources must be known to achieve better overall load balancing. Sophisticated dy-
namic workflow scheduling capability is being studied as future work, such as au-
tomatic data staging and optimally splitting input data on multiple resources based 
on the resources’ capability and real-time load status. 

Workflow Execution Engine. Once an invocation request is received from the 
workflow scheduler along with the corresponding workflow specifications, the 
workflow execution engine will parse the specification, and execute the actors 
based on their dependencies and director configuration.  

Provenance Recorder. During workflow execution, the provenance recorder lis-
tens to the execution messages and saves corresponding information generated by 
the workflow execution engine, such as an actor execution time and its in-
put/output contents. It also saves a copy of the workflow for future verification 
and re-submission. The provenance will be stored locally and optionally merged 
into a centralized provenance database upon the workflow execution completion. 
                                                           

39 http://jmol.sourceforge.net/ 
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Fault Tolerance Manager. The fault tolerance manager will be triggered by ex-
ception messages generated from workflow execution engine, and will check 
whether the source of the exception is contained within the fault tolerance actor. If 
so, the alternative sub-workflows defined in the fault tolerance actor will be in-
voked with the corresponding configuration policy. Otherwise, the exception will 
be passed to the next higher fault tolerance actor, until the top level is reached, 
where the workflow execution failure message will be reported and workflow ex-
ecution stopped. 

3.3.3 Grid Layer 

The Grid layer consolidates multiple resources and manages their computation and 
data resources, providing unified services for the portal and workflow layer. This 
layer is where the Globus toolkit software, such as GRAM, GridFTP and My-
Proxy Server, is located. 

User Certificate Management. There should be at least one certificate signing 
authority, which stores the long-lived credentials for the user. The short-lived cre-
dentials are then pushed into a MyProxy server. The portal gets the delegated cre-
dential when users login to the portal. A workflow can also get the delegated cre-
dential through a MyProxy actor. 

Grid Job Submission. A GRAM service will enable job submission on any ac-
cessible resources. A workflow execution can invoke multiple GRAM services on 
different resources to realize parallel computation. 

Inter-Cluster Data Transfer. GridFTP permits direct transfer of files between 
the portal and the cluster resources or vice versa. Third party transfers can also be 
made between two clusters. A GridFTP actor is used to transfer data during 
workflow execution. 

3.3.4 Local Resource Layer 

The services provided by each compute cluster resource are located in the local re-
source layer. The compute nodes are not accessible directly from a portal. UC 
Grid communicates with the cluster through its Grid Appliance Node (see its de-
tails at Section 3.1) with both public and private interfaces. 

Batch Scripts. The batch job script syntax and terminologies vary according to 
the type of scheduler. The Globus GRAM service executes a job manager service 
at the target to create the job submission script using information such as executa-
ble name, number of processors, memory requirement, etc. It is also useful to 
create ‘shims’ in the workflow [52], such as creating job scripts in accordance 
with the scheduler configuration of the host cluster. 
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Data Storage. Each cluster provides data storage service for their users up to a 
certain size limitation. Cluster users can store their data permanently on the clus-
ters they can access, whereas pool users must save their data in portal provided 
storage servers. The data generated on the cluster by pool users must be down-
loaded; otherwise the data gets cleaned up periodically to make room for other 
pool users.  

Local Resource Manager. A local resource manager is used to manage the job 
submission in a cluster. Several local resource managers are supported by the 
GRAM, such as SGE and PBS, which schedule jobs to the nodes in the cluster. 

Domain-Specific Programs. Domain-specific programs are deployed to clusters 
to accomplish certain domain-specific computation problems. The applications 
widely used in UC Grid include Mathematica, Matlab, Q-Chem, NWChem, Amb-
er, CPMD, etc. 

4. Application in Computational Chemistry 

In this section, we demonstrate how the services and integrated architecture de-
scribed in Section 2 and 3 can facilitate e-Science discovery by applying them to a 
challenging application in computational Chemistry. The detailed information 
about the application can be found at [53]. 

4.1. Theoretical Enzyme Design Process  

Enzymes are nature’s protein catalysts that accelerate and regulate all metabolic 
reactions. To design new catalysts computationally and then to make them with 
molecular biological techniques will be a breakthrough in technology. An inside-
out design approach has been developed [54]. In the process, quantum mechanical 
calculations give a theozyme [55], or theoretical enzyme, which is theoretical op-
timum catalyst. Numerous protein scaffolds are then screened to determine which 
can be used to display the side chains to mimic the geometry of the theozyme; this 
procedure generates a large library of potential catalysts that are evaluated for fi-
delity to the theozyme. The best of these are subjected to mutations to obtain a de-
sign that will both fold and catalyze the reaction. Typically, a theozyme with ac-
tive sites is matched at least once per scaffold (226 protein scaffolds so far) to 
potentially accommodate the orientation of the model functional groups. The 
computation process needs to be repeated for many times with different theo-
zymes and calculation options. The goal of this application is to accelerate and fa-
cilitate this important computation- and data-intensive process for chemists. 
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4.2. Conceptual Enzyme Design Workflow 

 
Fig. 6. Conceptual workflow of enzyme design process.  

As shown in Fig. 6, the conceptual enzyme design workflow takes quantum me-
chanical theozymes as inputs, and goes through three discrete steps before valida-
tion by experiments. The goal of this conceptual workflow is to standardize the 
enzyme design process through automation, and eliminate the need for unneces-
sary human interaction. Sequences of tasks in the enzyme design process are re-
peated using the same series of programs, which must be executed to design and 
evaluate an enzyme for a new chemical reaction. For example, a theozyme with 
active sites is matched at least once per scaffold to potentially accommodate the 
orientation of the model functional groups.  

The entire enzyme design process can be performed independently for different 
scaffolds, and the total computation time for each scaffold can vary. The number 
of matches per theozyme is about 100-4,000 and computation time for a single 
scaffold on one CPU core is usually 1-3 hours. The number of enzyme designs 
generated by RosettaDesign per match is about 100-15,000 and computational 
time on one CPU core is usually 0.5-2 hours. One whole computation time re-
quired for all 226 scaffolds could take months on one single computer core and the 
total number of generated enzyme designs is about 7 million. 

4.3. Executable Enzyme Design Workflow in Kepler 

4.3.1. Workflow for Execution on the Local Cluster Resource 

As shown in Fig. 7, a workflow is implemented to utilize the tens to hundreds of 
computing CPU cores in one cluster. The top-level workflow structure is the same 
as the conceptual workflow in the previous sub-section. Inside a composite actor, 
such as RosettaMatch, the sub-workflow dynamically creates job scripts according 
to a user’s inputs and submits them to a job scheduler like SGE on the cluster us-
ing Kepler job actors. By distributing the jobs for all scaffolds through the job 
scheduler on the cluster, the jobs can be concurrently executed on many nodes on 
the cluster and the concurrency capability is limited only by the node capacity of 
the cluster. 
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Fig.7. Kepler workflow for enzyme design processes on one cluster. 

Many jobs will be executed through one composite actor, for example one job 
will be submitted in the RosettaMatch actor and 1-30 independent jobs in the Ro-
settaDesign actor for each scaffold. Once a job is finished, it will trigger down-
stream actors, such as RemoveBChain actor, which post-process the output data 
from RosettaMatch. Kepler can naturally express the dependencies using connec-
tion links among actors and no explicit primitive or structure is needed to express 
the parallel. Using the PN director, all actors will be executed independently based 
on their input data availability, which can realize automatic parallel computation 
of these actors.  

With pipeline parallel support in Kepler, the workflow input can be a vector of 
data, which greatly simplifies workflow construction. Each workflow execution 
will process many scaffolds, so we list the scaffold directory to create a vector of 
scaffolds and read it as input to the workflow rather than having many explicit pa-
rallel branches or loops on the whole workflow. Each scaffold does not need to 
wait for the completion of the RosettaMatch step for other scaffolds. It also fits 
that different scaffolds complete their execution within very different times. Addi-
tionally the sequence capacity can dynamically change during the workflow ex-
ecution. For example, RosettaMatch can generate anywhere between 100-4,000 
matches, for different scaffolds, and these matches generated as output files will 
dynamically be used as the input elements for the next steps in the workflow. 

4.3.2. Workflow for Execution on the Grid 

By adopting Globus as the Grid security and service infrastructure, the workflow 
shown in Fig. 8 is used to scheduling application execution among multiple cluster 
resources. For a local cluster, we execute the Kepler workflow shown in Fig. 7 
through the Globus GRAM service deployed on the cluster. For remote clusters, 
besides the workflow execution, two extra tasks need to be added: 1) input data 
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needs to be staged in to the remote clusters in advance of the workflow execution, 
and 2) output data needs to be staged out from remote cluster back to the local 
cluster. We employ the GridFTP to do the data stage in and out. The computations 
on multiple clusters are independent of each other, so there is no control or data 
flow connections among the actors for these executions in the workflow, and the 
Kepler engine will run them in parallel. The workflows in Section 4.3.1 are easily 
reused in the two-level workflow structure. One challenge for this workflow is 
how to optimize the load balance on multiple clusters and the data stage in/out 
overhead. 

 
Fig. 8. Kepler workflow for enzyme design processes on multiple clusters. The GRAM service 
composite actor will invoke the workflow shown in Fig. 7 on the target cluster. 

4.3.3. Provenance and Fault Tolerance Support in the Workflow 

While using more clusters increases our computational capacity, it also increases 
our probability of failure. Although these exceptions happen only occasionally, the 
whole execution of the enzyme design workflow will crash without fault tolerance 
support. 

To support fault tolerance at the workflow level, we adopt the Fault Tolerance 
actor for some sub-workflows. A simplified example is shown in Fig. 9, where the 
JobExecutionWithFT actor is a customized fault tolerance actor. There are two 
sub-workflows (shown in the bottom part of Fig. 9) in the actor, namely default 
and clean-and-quit, which will be invoked according to the configurations of the 
JobExecutionWithFT actor. The default sub-workflow submits a job, checks the 
job status, and throws an exception if the job fails. As specified in its configura-
tion (shown in the right part of Fig.9), after catching the exception, the JobExecu-
tionWithFT actor will re-execute the default sub-workflow after sleeping for 100 
seconds. If the default sub-workflow still gets exceptions after three retries, the 
clean-and-quit sub-workflow, which cleans intermediate data and stops the whole 
execution, will be executed with the same input tokens.  
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Fig.9. Fault tolerance and provenance support in Kepler workflow. 

The exception handling logic can be easily expressed with the fault tolerance 
actor; no explicit loop and conditional switch is needed in the workflow. Further, 
the input data for sub-workflow retry does not need to be explicitly saved since 
they are automatically recorded by Provenance Recorder and will be fetched for 
re-execution.  

Besides fault tolerance, Kepler provenance also supports collection and query 
on workflow structure and execution information in both local and distributed en-
vironments. Each enzyme design workflow execution will generate millions of de-
signs and chemists may need the workflow to be executed for many times with 
different input models. Kepler provenance can help chemists to track the data effi-
ciently in the future, such as querying which input model was used to generate one 
particular design. 

4.4. Experiment 

To measure the speedup capabilities of the workflows, we experimented on two 
clusters where Globus toolkit 4.0.7 and Sun Grid Engine job scheduler are dep-
loyed. Cluster 1 has 8 nodes, each with 24 GB of memory and two 2.6 GHz quad-
core CPUs. Cluster 2 has 30 nodes, each with 4 GB of memory and two 2.2 GHz 
single-core CPUs.  

Our first experiment executed the enzyme design workflow described in Sec-
tion 4.3.1 on cluster 2 with different usable CPU core configurations. We also ex-
ecuted another workflow that only had the RosettaMatch part of the enzyme de-
sign workflow in order to determine the speedup difference. We ran the 
workflows with different inputs. As shown in Table 1, all these tests, no matter the 
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differences of workflow structures and inputs, have good scalability and speedup 
when the usable core number grows. 

Table 1. Workflow execution with different usable CPU cores. 

workflow workflow 
input 

output 
data 

total job
number 

workflow execution time 
(unit: hour) 

1 core 25 core 60 core 
RosettaMatch 10 scaffold 0.29  

GB 
10 3.38 0.69 0.63 

RosettaMatch 226 scaffold 27.96 
GB 

226 128.61 5.52 3.06 

RosettaMatch + RemoveBChain 
+ RosettaDesign 

10 scaffold 10.92 
GB 

296 533.61 29.32 11.24 

We also tested the enzyme design workflow in Section 4.3.1 and 4.3.2 to know 
the concurrence performance on these two clusters. From the execution data of the 
workflow execution only on cluster 1 and 2, we know cluster 1 is about twice as 
fast. So approximately twice as many inputs are distributed to cluster 1 and cluster 
1 is set as the local cluster when the workflow is executed on the two clusters. The 
experiment data, shown in Table 2, demonstrates the good concurrence perfor-
mance in the second and third test. The poor performance in the first test is be-
cause there are too few jobs compared to the number of CPU cores. We can also 
see the speedup ratios are not as good as those in the first experiment. The reasons 
are twofold: 1) it is hard to realize good load balance on multiple clusters since the 
execution time for different scaffold varies; 2) the data stage in and out phases for 
remote cluster may cause a big overhead if the transferred data is very large. 

Table 2. Workflow execution with different clusters.  

workflow workflow 
input 

total job 
number 

workflow execution time (unit: hour) 

cluster 1  
(64 core) 

cluster 2 
 (60 core) 

cluster 1 and 
2 

RosettaMatch 10 scaffold 10 0.33 0.63 0.36 

RosettaMatch 226 scaffold 226 1.52 3.06 1.33 

RosettaMatch + Remove-
BChain + RosettaDesign 

10 scaffold 296 6.17 11.24 4.21 

5. Conclusions 

Increasingly e-Science discoveries are being made based on the enhanced capa-
bility and usability of cyberinfrastructure. In this chapter, we have summarized the 
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core services to support e-Science discovery in Grid environments. The five ser-
vice dimensions, namely computation management, data management, scientific 
process automation, user interaction and non-functional services, are all important 
constituents and complementary to each other. To demonstrate how these services 
can be seamlessly assembled, we explained an integration of the Kepler workflow 
system with the UC Grid, and its application in computational chemistry. The im-
plementation and experiments validate the capability of this integrated architecture 
to make a scientific computation process automated, pipelined, efficient, extensi-
ble, stable, and easy-to-use. We believe that, as the complexity and size of scien-
tific problems grow larger, it is increasingly critical to leverage workflow logic 
and task distribution across federated computing resources to solve e-Science 
problems efficiently. 
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