Skip to main content

A Multiple Ant Colony Optimisation Approach for a Multi-objective Manufacturing Rescheduling Problem

  • Chapter
  • First Online:
Book cover Multi-objective Evolutionary Optimisation for Product Design and Manufacturing
  • 3948 Accesses

Abstract

Manufacturing scheduling is a well-known complex optimisation problem. A flexible manufacturing system on one side eases the manufacturing processes but on the other hand it increases the complexity in the decision making processes. This complexity further enhances when disruption in the manufacturing processes occurs or when arrival of new orders is considered. This requires rescheduling of the whole operation, which is a complex decision making process. Realising this complexity and taking into account the contradictory objective of making a trade-off between costs and time, this research aims to generate an effective manufacturing schedule. The existing approach of rescheduling sometimes generates entirely a new plan that requires a lot of changes in the decisions, which is not preferable by manufacturing firms. Therefore, in this research whenever a disruption occurs or a new order arrives, the proposed approach reschedules the remaining manufacturing operations in such a way that minimum changes occur in the original manufacturing plan. Evolutionary optimisation methods have been quite successful and widely addressed by researchers to handle such complex multi-objective optimisation problems because of their ability to find multiple optimal solutions in one single simulation run. Inspired by this, the present research proposes a multiple ant colony optimisation (MACO) algorithm to resolve the computational complexity of a manufacturing rescheduling problem. The performance of the proposed MACO algorithm will be compared with the simple ant colony optimisation (ACO) to judge its robustness and efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamamoto, M. (1985). Scheduling/rescheduling in the manufacturing operating system environment. International Journal of Production Research, 23(4), 705–722.

    Article  Google Scholar 

  2. Wu, S. D., Storer, R. H., & Chang, P. C. (1993). One-machine rescheduling heuristics with efficiency and stability as criteria. Computers and Operations Research, 20(1), 1–14.

    Article  MATH  Google Scholar 

  3. Abumaizar, A. J., & Svestka, J. A. (1997). Rescheduling job shops under random disruptions. International Journal of Production Research, 35(7), 2065–2082.

    Article  MATH  Google Scholar 

  4. Jain, A. K., & ElMaraghy, H. A. (1997). Production scheduling/rescheduling in flexible manufacturing. International Journal of Production Research, 35(1), 281–309.

    Article  MATH  Google Scholar 

  5. Fang, H.L., Ross, P. & Corne, D. (1993). A promising genetic algorithm approach to job-shop scheduling, rescheduling, and open-shop scheduling problems. In S. Forrest (Ed.), Proceedings of the 1st Annual Conference on Genetic Algorithms (pp. 375–382) San Mateo: Morgan Kaufmann.

    Google Scholar 

  6. Vieira, G. E., Herrmann, J. W., & Lin, E. (2003). Rescheduling manufacturing systems: a framework of strategies, policies, and methods. Journal of Scheduling, 6(1), 39–62.

    Article  MathSciNet  MATH  Google Scholar 

  7. Silva, C. A., Sousa, J. M. C., & Runkler, T. A. (2008). Rescheduling and optimization of logistic processes using GA and ACO. Engineering Applications of Artificial Intelligence, 21(3), 343–352.

    Article  Google Scholar 

  8. Hozak, K., & Hill, J. A. (2009). Issues and opportunities regarding replanning and rescheduling frequencies. International Journal of Production Research, 47(18), 4955–4970.

    Article  MATH  Google Scholar 

  9. Potthoff, D., Huisman, D. & Desaulniers, G. (2010). Column generation with dynamic duty selection for railway crew rescheduling. Transportation Science, published online in Articles in Advance, May 25, 2010.

    Google Scholar 

  10. Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks. Vol. 4. (pp. 1942–1948).

    Google Scholar 

  11. Dorigo, M. (1992). Optimization, Learning and Natural Algorithms, PhD Thesis, Politecnico di Milano, Italie.

    Google Scholar 

  12. Pham, D.T. & Ghanbarzadeh, A. (2007). Multi-objective optimization using the Bees Algorithm. Proceedings of IPROMS 2007 Conference.

    Google Scholar 

  13. Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms: empirical results. Evolutionary Computation, 8(2), 173–195.

    Article  Google Scholar 

  14. Tan, K. C., Goha, C. K., Mamuna, A. A., & Ei, E. Z. (2008). An evolutionary artificial immune system for multi-objective optimization. European Journal of Operational Research, 187(2), 371–392.

    Article  MathSciNet  MATH  Google Scholar 

  15. Wei, L., & Yuying, Y. (2008). Multi-objective optimization of sheet metal forming process using Pareto-based genetic algorithm. Journal of Materials Processing Technology, 208(1–3), 499–506.

    Article  Google Scholar 

  16. Sbalzarini, I.F., Müller, S. & Koumoutsakos, P. (2000). Multiobjective optimization using evolutionary algorithms. Proceedings of the Summer Program, Center for Turbulence Research, NASA.

    Google Scholar 

  17. Jozefowiez, N., Semet, F., & Talbi, E. G. (2008). Multi-objective vehicle routing problems. European Journal of Operational Research, 189(2), 293–309.

    Article  MathSciNet  MATH  Google Scholar 

  18. Coello, C. A. (2006). Evolutionary multiobjective optimization: a historical view of the field. IEEE Computational Intelligence Magazine, 1(1), 28–36.

    Article  Google Scholar 

  19. Schaffer, J.D. (1984). Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. PhD Thesis, Vanderbilt University.

    Google Scholar 

  20. Hajela, P., & Lin, C. Y. (1992). Genetic search strategies in multi-criterion optimal design. Structural Optimization, 4, 99–107.

    Article  Google Scholar 

  21. Deb, K. & Jain, S. (2002). Running performance metrics for evolutionary multi-objective optimization. Technical Report, KanGAL, Indian Institute of Technology, Kanpur 208016, India.

    Google Scholar 

  22. Loetamonphong, J., Fang, S. H., & Young, R. E. (2002). Multi-objective optimization problems with fuzzy relation equation constraints. Fuzzy Sets and Systems, 127(2), 141–164.

    Article  MathSciNet  MATH  Google Scholar 

  23. Srinivas, N., & Deb, K. (1994). Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. MIT Press, 2(3), 221–248.

    Google Scholar 

  24. Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: a tutorial. Reliability Engineering and System Safety, 91(9), 992–1007.

    Article  Google Scholar 

  25. Dorigo, M., Birattari, M. & Stǘtzle, T. (2006). Ant colony optimization: artificial ants as a computational intelligence technique. IRIDIA—Technical Report Series, Technical Report No. TR/IRIDIA/2006-023.

    Google Scholar 

  26. Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, Cybernetics—Part B: Cybernetics, 26(1), 29–41.

    Article  Google Scholar 

  27. Gravel, M., Price, W. L., & Gagné, C. (2002). Scheduling continuous casting of aluminium using a multiple objective ant colony optimization metaheuristic. European Journal of Operational Research, 143(1), 218–229.

    Article  MATH  Google Scholar 

  28. García-Martínez, C., Cordón, O., & Herrera, F. (2007). A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP. European Journal of Operational Research, 180(1), 116–148.

    Article  MATH  Google Scholar 

  29. Yagmahan, B., & Yenisey, M. M. (2008). Ant colony optimization for multi-objective flow shop scheduling problem. Computers and Industrial Engineering, 54(3), 411–420.

    Article  Google Scholar 

  30. Chan, F. T. S., Kumar, V. & Mishra, N. (2007). A CMPSO algorithm based approach to solve the multi-plant supply chain Problem. In Felix T.S. Chan & Manoj Kumar Tiwari (Ed.), Swarm Intelligence, Focus on Ant and Particle Swarm Optimization. Vienna, Austria: I-Tech Education and Publishing, ISBN: 978-3-902613-09-7.

    Google Scholar 

  31. Chong, C. S., Low, M. Y. H., Sivakumar, A. I. & Gay, K. L. (2006). A bee colony optimization algorithm to job shop scheduling. Proceedings of the 2006 Winter Simulation Conference. December 3−6, 2006. (pp. 1954–1961) Monterey, CA USA.

    Google Scholar 

  32. Chan, F. T. S., & Swarnkar, R. (2006). Ant colony optimization approach to a fuzzy goal programming model for a machine tool selection and operation allocation problem in an FMS. Robotics and Computer-Integrated Manufacturing, 22, 353–362.

    Article  Google Scholar 

  33. Deneubourg, J. L., Aron, S., Goss, S., & Pasteels, J. M. (1990). The self organizing exploratory pattern of the Argentine ant. Journal of Insect Behavior, 3, 159–168.

    Article  Google Scholar 

  34. Chan, F. T. S., & Kumar, N. (2009). Effective allocation of customers to distribution centres: a multiple ant colony optimization approach. Robotics and Computer-Integrated Manufacturing, 25, 1–12.

    Article  Google Scholar 

  35. Kawamura, H., Yamamoto, M., Suzuki, K. & Ohcuhi, A. (2000). Multiple ant colonies algorithm based on colony level interactions. Publication in the IEICE Transactions, Fundamentals, E83-A (Vol. 2, pp. 372–379).

    Google Scholar 

  36. Bullnheimer, B., Hartl, R. F., & Strauss, C. (1999a). Applying the ant systems to the vehicle routing problem. In S. Voss, S. Martello, I. H. Osman, & C. Roucairol (Eds.), Meta-Heuristics: Advances and Trends in Local search Paradigms for Optimization. (pp. 285–296), Dordrecht, Netherlands, Kluwer Academic Publishers.

    Google Scholar 

  37. Golden, B. & Stewart, W. (1985). Empiric Analysis of Heuristics in the Travelling Salesman Problem, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy-Kan & D.B. Shmoys (Eds.), New York: Wiley.

    Google Scholar 

  38. Lawler, E. L., Lenstra, J. K., Rinnooy-Kan, A. H. G., & Shmoys, D. B. (1985). The Travelling Salesman Problem. New York: Wiley.

    Google Scholar 

  39. Dorigo, M., & Gambardella, L. M. (1997). Ant Colonies for the travelling salesman problem. BioSystems, 43, 73–81.

    Article  Google Scholar 

  40. Maniezzo, V., & Colorini, A. (1999). The ant system applied to the quadratic assignment problem. IEEE Transactions on Knowledge and Data Engineering, 11(5), 769–778.

    Article  Google Scholar 

  41. Ying, K. C., & Liao, C. J. (2003). An ant colony system approach for scheduling problems. Production Planning and Control, 14(1), 68–75.

    Article  Google Scholar 

  42. Goss, S., Beckers, R., Denebourg, J. L., Aron, S. & Pasteels, J. M. (1990) How trail laying and trail following can solve foraging problems for ant colonies. In R.N. Hughes (Ed.). Behavioural Mechanisms of Food Selection, NATO-ASI Series, (Vol. G 20, pp. 661–678) Berlin: Springer

    Google Scholar 

  43. Gambardella, L. M. & Dorigo, M. (1996). Solving symmetric and asymmetric TSPs by ant colonies. In Proceedings of the IEEE Conference on the Evolutionary Computation (pp. 622–627).

    Google Scholar 

  44. Dorigo, M., Maniezzo, V. & Colorni, A. (1991). Positive Feedback as a Search Strategy, Technical report (pp. 91–106), Dipartimento di Elettronica, Politechnico di milano, Italy.

    Google Scholar 

  45. Colorni, A., Dorigo, M. & Maniezzo, V. (1991). Distributed optimization by ant colonies. In F. Vareladn & P. Bourgine (Eds.), Proceedings of European Conference on Artificial Life. (pp. 134–142) Paris, France: Elsevier Publishing.

    Google Scholar 

  46. Colorni, A., Dorigo, M. & Maniezzo, V. (1992). An investigation of some properties of an ant algorithm. R. Manner & B. Manderick (Eds.), In Proceedings of Conference on Parallel Problem Solving from Nature (pp. 509–520). Brussels, Belgium: Elsevier Publishing.

    Google Scholar 

  47. Gambardella, L.M., Dorigo, M. (1995). Ant-Q: A reinforcement learning approach to the travelling salesman problem. In Proceedings of the Twelfth International Conference on Machine Learning (pp. 252–260).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Kumar .

Editor information

Editors and Affiliations

Appendices

Appendix 12.A

   

Appendix 12.B

   

Appendix 12.C: Steps of MACO algorithm

   

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Kumar, V., Mishra, N., Chan, F.T.S., Kumar, N., Verma, A. (2011). A Multiple Ant Colony Optimisation Approach for a Multi-objective Manufacturing Rescheduling Problem. In: Wang, L., Ng, A., Deb, K. (eds) Multi-objective Evolutionary Optimisation for Product Design and Manufacturing. Springer, London. https://doi.org/10.1007/978-0-85729-652-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-652-8_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-617-7

  • Online ISBN: 978-0-85729-652-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics