Skip to main content

A Simulation Optimisation Framework for Container Terminal Layout Design

  • Chapter
  • First Online:

Abstract

Port designers are facing challenges in choosing appropriate terminal layouts to maximise operational efficiencies. This study aims to address this problem by providing a simulation optimisation framework for container terminal layout design. This framework consists of three main modules which are automated layout generator (ALG), the multi-objective optimal computing budget allocation (MOCBA) algorithm and the genetic algorithm (GA). ALG is to automatically generate a simulation model for a set of given design parameters; MOCBA is to intelligently determine the simulation replications to different designs for identifying promising designs; GA is to help generate new design parameters for optimisation. Numerical examples are used to demonstrate the applicability of this framework.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Steenken, D., Voß, S., & Stahlbock, R. (2004). Container terminal operation and operations research—a classification and literature review. OR Spectrum, 26, 3–49.

    Google Scholar 

  2. Vis, I. F. A., & de Koster, R. (2003). Transshipment of containers at a container terminal: An overview. European Journal of Operational Research, 147, 1–16.

    Article  MATH  Google Scholar 

  3. Kozan, E. (1997). Comparison of analytical and simulation planning models of seaport container terminals. Transportation Planning and Technology, 20, 235–248.

    Article  Google Scholar 

  4. Bruzzone, A.G., Giribone, P., & Revetria, R. (1999). Operative requirements and advances for the new generation simulators in multimodal container terminals: Proceedings of the 1999 Winter Simulation Conference (pp. 1243–1252).

    Google Scholar 

  5. Yun, W. Y., & Choi, Y. S. (1999). A simulation model for container-terminal operation analysis using an object-oriented approach. International Journal of Production Economics, 59, 221–230.

    Article  Google Scholar 

  6. Nam, K., Kwak, K., & Yu, M. (2002). Simulation study of container terminal performance. Journal of Waterway, Port, Coastal, and Ocean Engineering, 128, 126–132.

    Article  Google Scholar 

  7. Shabayek, A. A., & Yeung, W. W. (2002). A simulation model for the Kwai Chung container terminals in Hong Kong. European Journal of Operational Research, 140, 1–11.

    Article  MATH  Google Scholar 

  8. Sgouridis, S. P., Makris, D., & Angelides, D. C. (2003). Simulation analysis for midterm yard planning in container terminal. Journal of Waterway, Port Coastal and Ocean Engineering, 129, 178–187.

    Article  Google Scholar 

  9. Yang, C. H., Choi, Y. S., & Ha, T. Y. (2004). Simulation-based performance evaluation of transport vehicles at automated container terminals. OR Spectrum, 26, 149–170.

    Article  MATH  Google Scholar 

  10. Lee, L.H., Chew, E.P., Cheng, H.X. & Han Y.B. (2008). A study of port design automation concept: Proceedings of the 2008 Winter Simulation Conference, 15 (pp. 2726–2731).

    Google Scholar 

  11. Olafsson, S., & Kim, J. (2002). Simulation optimization: Proceedings of the 2002 Winter Simulation Conference.

    Google Scholar 

  12. Fu, M.C., Glover, F.W. & April, J. (2005). Simulation optimization: A review, new developments, and applications: Proceedings of the 2005 Winter Simulation Conference, 14 (pp. 83–95).

    Google Scholar 

  13. Ramaekers, K. (2009). A simulation optimization approach for inventory management decision support based on incomplete information. 4OR: A Quarterly Journal of Operations Research, 7, 93–96.

    Article  MathSciNet  MATH  Google Scholar 

  14. Adewunmi, A., & Aickelin, U. (2007). Noise Reduction Technique for a Simulation Optimization Study, 2007.

    Google Scholar 

  15. Lee, L. H., Chew, E. P., Teng, S. Y., & Chen, Y. K. (2008). Multi-objective simulation-based evolutionary algorithm for an aircraft spare parts allocation problem. European Journal of Operational Research, 189, 476–491.

    Article  MATH  Google Scholar 

  16. Lee, L.H., Chew, E.P., & Teng, S.Y. (2006). Integration of statistical selection with search mechanism for solving multiobjective simulation-optimization problems: Proceedings of the 2006 Winter Simulation Conference, 15 (pp. 359–368).

    Google Scholar 

  17. Lee, L. H., Chew, E. P., Teng, S. Y., & Goldsman, D. (2010). Finding the non-dominated Pareto set for multi-objective simulation models. IIE Transactions, 42(9), 656–674.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loo Hay Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Lee, L.H., Chew, E.P., Chua, K.H., Sun, Z., Zhen, L. (2011). A Simulation Optimisation Framework for Container Terminal Layout Design. In: Wang, L., Ng, A., Deb, K. (eds) Multi-objective Evolutionary Optimisation for Product Design and Manufacturing. Springer, London. https://doi.org/10.1007/978-0-85729-652-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-652-8_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-617-7

  • Online ISBN: 978-0-85729-652-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics