A Framework for n-dimensional Visibility
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Abstract This chapter introduces global visibility computationngiGrassmann
Algebra. Visibility computation is a fundamental task imngouter graphics, as in
many other scientific domains. While it is well understoodvito dimensions, this
does not remain true in higher dimensional spaces.

Grassmann Algebra allows to think about visibility at a hligvel of abstraction,
and to design a framework for solving visibility problemsany n-dimensional
space, fon > 2. Contrary to Stolfi's framework which allows only the repeata-
tion of real lines, it's algebraic nature dealt naturallyhwiut any particular cases.

This chapter shows how the space of lines can be defined ajeztpre space
over the bivector vector space. Then line classificatiorgyagoint for the visibil-
ity computation, is achieved using the exterior productuady, line classification
turns out to be equivalent to point vs. hyperplane classifioaelatively to a non-
degenerate bilinear form. This ensures well-defined ptgmerd computationally
robustness.

Using the previous result, the lines stabbing-dimensional convex face are
characterized. This set of lines appears to be the intéosect the decomposable
bivectors seti(e. bivectors that represent a line) and a convex polytope. Mane
this convex polytope is proved to be minimal. This propettyves useful algorith-
mic improvements.

To illustrate the use of our framework in practice, we prédle® computation of
soft shadows for 3-dimensional illuminated scene.
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1 Problem statement

1.1 About Visibility

Visibility is a fundamental problem in computer graphicdl. ndering algorithms
aim at simulating the light transport in a virtual environmhewhich strongly de-
pends on the mutual visibility of each element in the scehés iE clearly illustrated
by the following well-known rendering equation:

cosBy cosfy
X—y?

The radiancé. leaving a poink in the directionw is the sum of the emitted radiance
E atx, plus the reflected light as the sum of the incoming radiarara &l the points
y in the scene, according to the surface propergnd the incident angles. In this
equationyV (x,y) is the visibility function, whose value is 1 ¥andy are visible, 0
otherwise.

As a consequence, the accuracy of the visibility solution dodirect impact on
the quality of the result. This explains why visibility is artral question. And it
goes beyond the scope of computer graphics: Other domaios,as electromag-
netism or acoustics for instance, derive algorithms to kiteuvave propagation.

There are many visibility problems. The simplest one is leetwtwo points. A
classical solution uses a visibility ray, which works in atignension where such a
ray approach is available [9]. But visibility queries canrhere complicated. For
example: "What parts of the scene can be seen from this poimt¥Vhat parts of
the scene can be seen from this region?”. In the latter clhseyisibility problem
becomes very complex. Contrary to the point-to-point vigjbquery, it is not suf-
ficient to answer "It is visible” or "It is invisible”. The cHienge is to compute the
whole visibility set,i.e. a global visibility information between two continuousset
of points. This implies to study all the discontinuitiesetvisibility that may occur
because of the occluders lying between the sets of poirggily discontinuities,
sometimes called visibility events, happen at the occlbdeindaries. They are the
frontiers where the visibility changes.

For simplifying global visibility problems, a common appiah consists first to
sample the continuous sets of points, and then to perforeessive point-to-point
visibility queries. However, this sampling step introdsiemise, altering the quality
of the result. Increasing the sample number helps to mimrthie problem, but may
badly affect the computational time. In addition, noticatth sampling strategy may
be unusable. Considering the following problem: "Prové tha continuous sets of
points are not mutually visible”, an infinite number of saagplvould be required!

This illustrates the need for algorithms able to sawactlyany global visibility
problem: On the one hand it ensures high quality resultsjtieations, on the other
hand it is the only way to solve some visibility problems.

L(x,w) = E(X, w) +/p(x, W, X—= Y)L(X,x—=Y) V(x,y)dy
y
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1.2 The dimension problem

Global visibility problems take place in line-space. Foample the visibility of
two continuous sets of points correspond to the lines iateirsg the two sets with-
out intersecting their occluders. Thus, visibility distianities correspond to lines
incident to occluder boundaries. As a consequence, the leaitypof a visibility
problem is strongly related to the dimension of its undagdyline-space.

In a 2-dimensional space, the line-space is also 2-dimeakiGlobal visibility
in 2D has been studied for convex objects through the visilibmplex [16] and
used in different applications such as radiosity compentgtl4]. Using another line
parametrization, Bittneet al. [4] focus on the visibility from a region in the plane.

In a 3-dimensional space, the line-space is not 3-dimeakton, but of dimen-
sion 5. As a consequence, visibility problems are much mdfiewdt to appre-
hend, and the generalization of 2-dimensional visibilityogithms is not possible.
So, dedicated algorithms were proposed. F. Durand hasageatthe 3D visibility
complex [7], a data structure that encodes the global Vitsibiy tracking all the dis-
continuities generated by the vertices, edges and facepalf/gonal environment.
This data structure illustrates the complexity of the 3-sional visibility, but is
not practicable due to robustness issues. The visibil&jyet&n [6] is a derivative of
the 3D visibility complex. It is a multi-purpose visibilityol, but it does not encode
all the visibility data.

A line in 3D has 4 degrees of freedom, but a 4D parametrizasorot possi-
ble without singularities (for instance, we can considerltounding sphere of the
scene ; then any line intersects the sphere in 2 differemtgand since the sphere
is a surface of degree 2, then a line can be defined using 4 ptaesm however, sin-
gularities remain at the poles: the azimuthal coordinatetake any value, leading
to different coordinates describing a same line). This cakevalgorithms sensitive
to numerical stability. For avoiding this problem, othepegaches use the iRiker
line parametrization. The &tker space is a five dimensional projective space em-
bedding all the 3D lines in a 4-dimensional manifold. It iefu$ to group lines
according to the objects they intersect. Pellegrini [15suthis formalism to find
upper bounds on geometric problems involving 3-dimengitimes. In the Plicker
space, lines stabbing a sequence of convex polygons capieseated as a convex
polytope. This property is used by Teller [18] for compultingibility through a se-
quence ofportals, or convex transparent polygons. Nirenstein [13] and Bit{i3]
take into account occlusion to compute from-region vigipifurther improved by
Haumont [8] and Mora [11, 10].

The first practicable global visibility algorithms in 3-démsional space are quite
recent. This area of research is still investigated. If guge difficult to apprehend
visibility in a 3-dimensional space, it is worse in a 4-dirsgmal spacee.g.in
dynamic environments. At present, we are not aware of argtipedle algorithms
dedicated to 4D space.
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1.3 Toward a global visibility framework

This brief overview highlights several difficulties. At firvisibility algorithms are
dependent on the geometrical space dimension. The gap qexity, for example
from 2-dimensional to 3-dimensional space, prevents argéapproach. In addi-
tion, since global visibility is expressed in a line spate, parametrization choice
greatly affects the algorithm design, properties and rviass.

Geometry algebra gives the opportunity to think about Vigitat a higher level
of abstraction. It allows to analyse problems, and to detigim solutions regardless
of the dimension of space, using a single approach.

In this chapter, we propose a global visibility frameworkéd on ar-dimensional
line space, defined using Grassmann Algebra [5]. While trascigssical definition
of lines in mathematics, it remains uncommon in computeplgics. Thanks to this
formalism, we prove a major theorem on the representatica st of lines by a
convex polytope. Next, we propose a generalization of Monairk [10], into an-
dimensional visibility framework. Finally, as an appliicat, we explain how it can
be used to compute very high quality soft shadows.

2 Line spaces

For computing visibility between objects, let us dendig the n-dimension geo-
metrical space of the geometric objects. It is embeddedigrojective spacg”.
As P" is built from R™1, linear subspaces & can be represented by elements of

/\ (Rn+1)'

2.1 n-dimensional lines

A line is, whatever the dimension of the space it belongs tb,damensional sub-
space. It expresses a dependency between two distincspBmtwe can formulate
the following definition:

Definition 1. A n-dimensional line, passing through two projective poihiand B
of &, with respective 1-vector coordinatasandb, is represented by the exterior
productaAb.

Example 1 As an example, let us considering in 2 dimensions the linaggoi
through the points of homogeneous coordingte®, 1) and(2,1,1). Using the ex-
terior product, it follows that the expression of this lime/, (R%) isegAe; —ey A

e — ey Aeg, where the 1-vector&y, e, ) form the basis of\* (R3).

Example 2 In computer graphics, th8-dimensional lines are most known using
Plucker coordinates. In fact, they can be retrieved using @&finl. Using again a
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homogeneous notation, a point P is denoted by 4 coordinadieg the vector: p=
(X,Y,Z, W)T. The line going through A and B with respective coordin@xgsya, za, 1)
and (Xy, Yb, Zy, 1) is known as [15]:

Xp — Xa

Yb—VYa

Zh—2Zy
YaZo — YbZa
ZaXp — ZpXa
XaYb — XpYa

With our definition, the same line through A and B is definedgithie Grassmann
exterior product, adlag = aA b — see Exercise 1 —. Then, it is quite easy to show
that Plucker coordinates are coordinates if (R?).

2.2 From lineto line space

The elements of\" (R"+1), for k < n, are homogeneous: I¥ € N (R"™1) repre-
sents a subspace B2, then.#”’ = AK, for A € R*, represents the same subspace.
Hence ()1 = P(AX (R™1)) is the space of the 1-subspaceg\6{R™*). Each
point of]P’(ntl)*l represents a unique linear manifold®§. This leads to the fol-
lowing definition of the line spacg, of &:

Definition 2. The space of lines o&,, denoted by£,, is the projective space

P(A? (R™1)).

From this definition, the line space is a projective space'mbdsion(”gl) —1.
With &, the line space is of dimensi(@ —1=2, while with®3, it corresponds to
the classical Ricker space of dimension 5. This is directly related to timeestision
problem, as presented in Sect. 1.2.

Considering again the example 1, the line passing througiptiints with ho-
mogeneous coordinatés, 0,1) and(2,1,1) has coordinatesl, —1, —1) using the
basis(ey A €1, €1 A 2,8 A &) Of A2 (RS).

2.3 About the Grassmanian

From previous works on visibility computations [19, 13],ist well known that
3-dimensional Ricker lines do not fill all the space lings. The mapping of 3-
dimensional lines to the Btker space is not surjective. Indeed, a line must pass
through at least two distinct points, and then is represkasea 2-blade. They are
all located on the Grassmanni@t (2,4) — or Grassmann manifold —, defined as
the set of all 2-subspaces Bf. It is also the set of all decomposable bivectors, or
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2-blades. In dimension, the set ofactual lines are located on the Grassmannian
GR(2,n+1).

For deciding if a given point of,, is on the Grassmannian, and so is a actual line,
it is sufficient to verify it is a decomposable vector. Thddaling theorem gives an
easy way to solve this:

Theorem 1.Let A\ (]R“”) be the Grassmann algebra. A non zero bivector M from
A (R™1) is a 2-blade — a decomposable vector — if and only it M = 0.

Proof. If M is a 2-blade, then there exist two linearly independentorsety and
mp from R™! so thatM = my Amp # 0. Then,M AM = my A mp Amy A mp, and
using the antisymmetry property of the exterior proditty M = 0.

Now, assumingM is not decomposable, by definition it can be written as a finite
sum of linearly independent 2-bladég? ; M;, ("5*) > p> 2. It follows that:

MAMzQiMJAQiMJ (1)

:ziMmMj (2)

i<]
Since all these terms are 4-vectors linearly independestM AM #£0. O

This theorem helps for computing the intersection betweset ®f lines ing, and
the Grassmannian, for instance to decide if it containsaet lene actual line, or can
be dropped in future computations.

2.4 Lineorientation

Previous works on visibility computation use line oriefdatas a key element. In
Grassmann algebra, it is expressed using the exterior proghich expresses the
dependency between vector subspaces.

Property 1.Let M andM’ be two projective linear subspaces®f. There intersec-
tion is non empty if and only iM AM’ = 0.

This property can be applied to a bivectorand a (n-1)-vectoF of A (R”*l),
allowing to check if a line is incident to the boundary of arcloder,i.e. a (n-2)-
variety or flat. For instance, as proposed in Exercise 3, ieetldimensions it is
possible to check that theiRIker relation corresponds to the testH, whereH is
also a line since— 1 = 2. A particular case of this first property is the following:

Property 2.Let M andM’ be respectively &vector and &n— k+ 1)-vector, repre-
senting two projective linear subspaces¥gf. Their relative orientation is denoted
by the sign ofA € R using the exterior produdtt AM’ = Al, wherel is the pseudo-
scalar inA (R"1).
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For instance, in 2 dimensions, it allows to check if a dirddbee turn clockwise or
counterclockwise with respect to a point. This propertysseatial for computing
the line stabbing a convex — 1) face, as presented in Sect. 3.1.

In order to work with lines ir,, we need a similar product using only bivectors.
Moreover, we want a robust solution, working with actuaknbut also with any
bivector. In fact, it is possible to express the propertyta the line space, using only
bivectors and the inner product. This is based on the duzditween\? (R”*l) and

/\n—l (]Rm—l) )

Theorem 2.Let § be an isomorphism from\? (R™1) to A" (R™1), such that
o(I) =1]ln+1, where| denotes the left contraction angl is the pseudoscalar over
A (R”*l). Then, the inner product between any bivectaraind Ly is equivalent to
check the orientation of the ling lwith a (n— 2)-flat :

L]_~L2£L1/\5(L2)

up to an identification of pseudoscalars and scalar;s\i("R”*l).
From this result, it follows two immediate and important peaties:

1. Since the inner product is non degenerate, there is naolsirty. It asserts that
the line orientation test is always defined, whatever thedind the flat are.

2. The duality does not depend on the Grassmannian: Theopieproperty is also
valid for non decomposable bivectors amd- 1)-vectors, or equivalently, when
they do not respectively represent a line ar{d a 2)-flat.

The first property plays a fundamental role in our visibilitgmework. Firstly, it
explains that the visibility computations work for all dimstons and all configura-
tions, without any singularity, ensuring the generalitytlug approach. Secondly,
it is computationally simple, as is it reduced to evaluaiafh a particular scalar
product of vectors of dimensioff’;?), this ensures its robustness.

The n-dimensional proof of this theorem is left to the realiat we illustrate it
in 2 dimensions. Letey, e1,€) be an orthogonal basis &, andey A e; A e be
the pseudoscalar fgk (R®). Let (e1 A&, A en, €9 A1) be a basis of\? (R%). We
know that any 2-dimensional line can be represented usirgp&imates in such a
basis. The left contraction is used to define the isomorp@isity? (R3) = AL (R3)
as:

S(e1Ng) = (a1 &) erNE =&
S(e &) = (2/N&) | 1N =6
S(epNer) = (N ene =6
So, any 2-dimensional line can be mapped to a 1-vector usjrand conversely

with 6. Without loss of generality, leA: (ao, a1, az) andB : (Bo, B, B2) be two
lines,i.e. bivectors. Using the anticommutativity of the exterior gwot, it follows:

ANS(B) = (aoe1 A e+ a1e2 A e+ azeg Aer) A (Boeo + Brer + Bo€2)
= (aofo+a1B1+ 02B2) 0 ANer A&
A-B
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Using any isomorphism betwedt? and A® (R3), the obtained expression can be
recognized as a classical inner produc}.’\i%(R3).

2.5 Dual line representation

Theorem 2 has a nice and useful interpretation in the lirzea,.

As a classical result of vector algebra, in a vector sgaoé dimensionm, it is
well known that the set of vectors orthogonal to any othetarec(the set ofv such
thatv-x = 0, where-: is the inner product), describes a vector subspace of dimen-
sionm—1in E, i.e. a hyperplane. Transposed to our problem, this classicaltres
means that eacfn — 1)-vector {.e. 3(Ly) in the theorem statement) can be dually
associated to a hyperplane At (R“*l) (the set of bivector& orthogonalto L in
A? (R“*l), i.e.such that - L, = 0), which corresponds to a projective hyperplane in
the line-space,. In dimension 2, it can be remarked that some similaritiést éve-
tween this model of line-spac& with the well known dual plane where lines map
to points and conversely points map to lines. This reveals ¢tassifying a linel
against gn— 2)-flat F, by computing the sign of the produci\ F, for the bivector
L and the(n— 1)-vectorF, can always be seen as determining in which half-space
is the pointL of £y, according to the oriented hyperplade! (F) associated t& in
£n. The product is zero if and only if is a point on the hyperplar& 1(F).

This interpretation will be particularly helpful in Sect.23 to give a geometri-
cal significance to the global visibility computation angnesentation, which only
makes sense in the line-space.

3 Visibility in £,
3.1 Lines stabbing a convex (n—1)-face

The following theorem unambiguously characterizes thefiates stabbing a con-
vex face in any dimension.

Theorem 3.LetF be a convexn— 1)-face in®y, supported by the hyperplang¢
(i.e. a(n—1)-flat in &,) and bounded by thén— 2)-flats f fori € [1,...,r]. The
flats f have two orientations such that for any line L)\L7#¢ # L, L stabsF if and
only if one of the following two properties is verified:

Vie[l...r,LAf >0 ®)
Vie[l...r,LAfi<0 4)

Let.#; be the set of lines stabbing the faee
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The proof of the theorem is based on the following remarkstllj F is a con-
vex polytope, delimited by the flatg and restricted to the hyperplanét in &,
Secondly, when a link does not lay o7, it has one and only one intersection
point with ¢, at infinity if L is parallel to7Z¢. Thirdly, L stabs the fac€& if and
only if its intersection point withvZg is in F.

Proof. The lineL corresponds to a 2-vector and the hyperplaffeto an-vector in

A (R™1). Sincen+2 > n-+1, thenL A 4 = 0. So, there is always an intersection
betweenL and 7, either of dimension 1 (a point) or Z (tself). This allows to
propose the following lemma:

Lemma 1. Every line L in®,, intersects7¢ in a unique point, except if L lays in
HE.

Let P be the intersection df with . AssumingL does not lay oz, P
is a non zero 1-vector. Obviously,stabsF if and only if P is insideF. Let F; be
any other point orL. out of 7, such thatR, A 7% > 0, i.e. By is in the positive
half-space of’Zf. We can writel = P, A Py It follows:

By hypothesisP; is not incident tof;, and then-vectorPy; A fi # O represents
a hyperplane i®,. The sign of the pseudoscalg A (P A fi) indicates in which
half-space of the hyperplar® A fi the pointR, is.

Let & be the polytope generated Byand the vertex;. SinceF is convex, so
is Z: Itis the intersection betwees#z" and the positive half-spaces associated to
the hyperplane& A fi, i € [1...r], for a particular but consistant orientation of
them. By hypothesis; A 7 is a non zero pseudoscalar. The orientation of each
hyperplane?; A fi can be determined from any poiRt into F, such thab: A (R4 A
fi) are only positively oriented pseudoscalars. Figm (Pm Afi)= —PiAB=A i,
and sinceP: A fi generates the flatZz, thenP:= A f; has an opposite orientation
than the one ofZ¢, sinceVi € [1...r], B= A fi = AF,A < 0. This shows that the
orientations of the flat$; can be determined uniquely from those#f and the
position ofP; relatively to 7.

The orientation of the flat§ allows to state that a poiRtof &, is in the polytope
2 ifand only if PA 2 > 0 andP A (RyA fi) >0, Vi € [1...r]. In particular, this
concerns every point iR, includingP-. Then,P, is a point of Z2 if and only if it:

PRA(PaAT) >0 Viell...r]
In other wordsL stabs the fac€ if and only if:
LAfi>0 Vie[l...r]
Considering the opposite lirg = P /A Pn, obviously it stabg- if and only:

L'Afi<0 Vie[l...r]
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This result does not depend By with respect to the sign of the half-space asso-
ciated to the hyperplang#z, it remains valid for all lined. not in 77¢.

Changing the orientation of some but not all of the flgtsnakes the previous
result false. On the contrary, changing the orientationl@fahem — or equivalently
the orientation of’#¢ or the position oF; relatively to#¢ — only interchanges all
signs in the in-equations, and so the result remains truie.fbans there are only
two valid orientations for the flat§. O

Theorem 3 has a fundamental consequence: It gives an ailgebethod for
determining whether or not a line stabs a given face in radymensional space.
This method has no singularity, since our algebraic franmkvatso handles flats
at infinity. However, the lines laying on the hyperplag& are excluded, since
they cannot properly “stabF. But this distinction does not impact the visibility
computation, both from a theoretical and an algorithmiapof view.

Moreover, this theorem has a useful interpretatiortin It first reveals what
the visibility computation through faces relies on, geamatly, and then indicates
what kind of data-structures and algorithms can be usedrtgate the visibility in
practice. The following section aims to explain this intetation.

3.2 Convex cells and visibility eventsin the line-space

3.2.1 Interpretation in £, and consequences

Theorem 3 has a suitable geometrical meaning,irBy duality, every flatf; bound-
ing the faceF can be associated to an unique hyperplhén £,, Vi € [1...r].
Then, by choosing a positive orientation for the flats, TeeoB8 implies that7,
the set of lines stabbing in £y, is the intersection betwedd®(2,n+ 1) and the
convex polytope defined as the intersection of the positaredpaces delimited by
the hyperplaned;*. This is a useful result, as convex polytopes have the fatigw
well known properties in computational geometry:

e They have multiple representations: A hyperplane set, eexeset, and a face
lattice.

e |t can easily be determined if a point is either inside or ioigts polytope.

e It can be easily determined if two polytopes intersect edahbro

e Boolean operations are expressed as geometrical comgngasiuch as split, in-
tersectionsetc....

Nevertheless, a single faéeis not sufficient to define a polytope: The hyper-
planesf*V i € [1...r] delimit a region ing, partially bounded by infinity. This is
stated by the dimension &, (see Sect. 2.3): While at least 2 1 hyperplanes are
required to define a simplex i8,, an(n— 1)-face can only hava facets in general
(i.e.independent) positions, for instance those ¢fia 1)-simplex in®,. As a con-
sequence of this closure by the infinity f3, it becomes impossible to determine a
convex-hull representation of the polytogé..
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While this interpretation leads to some interesting proesrit also illustrates the
fundamental role of the Grassmanniaf(2,n+ 1) and its embedding line-space
£n. Indeed, the polytope representing the lines stabbing dawes also contains
points outside the Grassmannian. Then, representingriée $tabbing faces 6,
by a convex polytope iy, is only possible by considering the whole line-space
£n, but not the Grassmannia®®(2,n+ 1) alone. This mainly explains why the
Stolfi framework [17], which only represents points locatedthe Grassmannian,
is not suitable for computing the global visibility. On thentrary, by enabling com-
putations on non decomposable multivectors, geometriebats make the global
visibility computation sum up to boolean operations on expolytopes inc.

3.2.2 Global visibility in &, as convex cells int,

Extending this representation to two or more faces is ditiigvard. In the example
depicted in Fig. 1A, B andO are three edges ith,, with bounding vertices
[1...6]. In &2, these vertices are associated to hyperplanes that sdédhe line-
space into cells, grouping together the lines stabbingadhgesedges. Fig. 1 shows
two such cells:Zxg representing lines stabbiry and B but missingO ; Paos
representing lines stabbirdy, O andB. It must be noticed that?ag completely
describes the global visibility betweénandB, by taking into account the occlusion
by O. This example shows that visibility i¢, can be described it, by a set of
convex polytopes, obtained using Theorem 3.

i
: (14)
| [ ]
| » (54)
:’? <’n0B ° (.42)
|
|
N : (15)e
o : ZnB
|
|
| o(23)
|
|3

Fig. 1 Visibility computation and representation. Left (a):d, the edge#\ andB are partially
hidden byO. Right (b): In £, the lines stabbing the three edges is the convex#glhg, while
the lines stabbing\ and FB but notO is represented by the convex cellag. These two cells
or polytopes are obtained from the intersection of the pasitialf-spaces associated to the six
vertices bounding the edges.
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Since Theorem 3 does not depend on the geometric space dimeimgan be
applied to compute the visibility i, Visibility through some faces ii®, can
always be represented by a subdivisiongfin cells which group together the
lines stabbing the same faces. The boundary of the celldharethe hyperplanes
associated to then — 2)-flats which bound the objects .

However, we show in Sect. 4.2 that some special configuraposvent grouping
two or more faces in only one convex cell or polytopegin The distinction and
description of these degenerate cases come as a part ofatieqgbrthe minimal
polytope solution. They give a precise understanding of les in the line-space
subdivision are grouped together.

3.2.3 Visibility events in £,

According to F. Durand [6], a visual event is defined as theidowhere visibil-
ity changes in®,. This notion is central in many approaches concerning Nitsib
computation, since both the visibility modification and dtgmy knowledges are
sufficient to fully describe the visibility. In practice, ésual event appears as a line
tangent to a finite number of geometrical objects. The degiréeedom gives sup-
plementary information, leading to ttkevisual event notion.

As depicted in the Fig. 1, vertex 5 is a locus with importasihility variations.
The red lines 15 and 54 are two examples of visual eventséiparate the visibility
for all the lines passing through 5. Iy, they become two 1-vectors that form a
part of the cells?Zx0 and Zag, as they ly on a common 2-vector, the dual of 5.
Obviously, this is a general rule: The visual events aretkmtan the cell boundaries.

It comes from the visual event definition, and Theorem 3.

In n dimensions, only theeal visual events are of interest, so the whole cell
boundary is not interesting. Ky, the visual events are located on the Grassmannian
too. Then, &-visual event is &-submanifold located at the intersection between
G®(2,n+1) and a cell ing,,. This shows that the visibility is fully described using
a partition in£,.

4 The minimal polytope
4.1 Minimal polytope interest

All the previous approaches fail to give the minimal set 0éB stabbing two convex
faces in®,, for n > 2. The Grassmann algebra allows to define and to compute
the minimal polytope enclosing this set of lines. This is & kar our visibility
framework, as it ensures computation efficiency.

Let us enumerate some properties and goals of a minimalquEytepresenta-
tion, from both the theoretical and practical points of view
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1. It procures a vertex representation of the polytope doimig the lines stabbing
two faces. This is useful for applications needing to splilypopes, to detect
collisions between them, or to classify them according tmedyperplanes in
the line-space.

2. By splitting the minimal polytope with hyperplanes, sachertex representation
can be extended for representing lines stabbing more thafeives.

3. The minimal polytope is a general solution, in any dimensto the open prob-
lem stated in three dimensions [13]. It is also the most gmaite to avoid the
splittings leading to polytopes that do not represent amg ih &, i.e. that do
not intersect the Grassmanniangdp.

4. From the polytope vertices, all the faces in the polytoperidary (edges, hyper-
planes ...) and their incidences can be computed.

5. It unveils the case where a single polytope can not be usexptesent the visi-
bility through two polygons. Thes#egenerateases appear in previous 3 dimen-
sional works [13], and are generalizedd# in this paper.

4.2 The minimal polytope for two convex faces

Let A andB be two convexn—1)-faces in®,, anday,...,aq andby, ..., b, their
respective vertices.

Definition 3. The minimal polytope, denoted%_?, represents the set of Iin%,f‘
stabbingA andB in £,. It is the convex polytope with the following properties:

1.8 CMp
2. #ENGR(2,n+1) C .78
3. If 28 is a convex set g, such that72 C 28, then.#8 C 8.

The properties 1 and 2 mean the polytoﬁ is a representation of”,f in £n,
i.e.alineL stabsA andB if and only if its representation i, is contained in//lAB.
The third property indicates thadé’AB is the minimal polytope: There does not exist
another convex polytope representlﬁ@ and contained in%/AB.

The following theorem gives a computational characteiopadf the minimal
polytope for two faces in some canonical configurations,iaditates the non ex-
istence of any polytope for the other configurations.

Theorem 4.Let s# and 77 be respectively the supporting planes of the fages
and B. If J#a and 27 do not respectively intersect the faddsor A, or only on
their boundary, then the minimal polytopﬂ,ﬁ3 is the convex hull of the linegjl=
aiAbj,(i,j) € [1...9 x [1...r] from the vertices oA to the ones oB. Otherwise,
the set of lines stabbing and B cannot be represented by any convex polytope in
Ln.
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4.3 Proof of the minimal polytope solution

To prove Theorem 4, we consider the tgro— 1)-facesA andB, with respective
verticesay, ...,aq andby, ..., . We suppose that these faces are supported by the
hyperplanes#a and.#, and bounded by thén — 2)-flats f2... f2 and f2,..., fP
respectively.

The proof is decomposed into three steps:

=

If the polytope///,_? exists, then it is minimal.
2. If the hyperplanes#a and.7#g do not intersect the facds andA respectively,
or only their boundary, then:

a. 2 c.up
b. .#2NG*(2,n+1)c. 7P

3. Ifthe polytope///,f is not defined, then the IineS”AB cannot be represented by
only one convex polytope.

4.3.1 Ifthe polytope//lf exists, then it is minimal

Let ///,E‘ be the polytope defined as the convex hull of the vertiged;, according
to the theorem 4. Assuming this polytope represents Liﬁ’ﬁsstabbingA andB.
Then, its verticed,e.the points ing, associated to the linegAbj,Vie [1...q], ] €
[1...r], areing.

Let & be a convex polytope strictly containedME. Obviously, any convex
polytope containing all the vertices oi/,f‘, also contains their convex hu%,f‘.
Then, it follows that%” does not contain at least one of the vertices#§. Since
those vertices are i¥’2, we deduce tha#” does not represent all the lines stabbing
A andB, proving that///AB is minimal.

4.3.2 Proof of. 72 C .48

Let us assume#a and.7Zg do not intersect the inside & or B respectively. The
setﬂAB in &, contains lines defined by any couple of pointsAdandB, such that
the point ofA is not on.s7g, and conversely the point & is not on.za.

Leta € A andb € B be two such points. Sinc& andB are convex, then the
homogeneous representatioreafndb in 4,1 can be represented by combinations
of the vertices oA andB respectively. For instanée

q r
a= Zaiai, a;>0viell...q, and b:ZBibi’ By >0vje[l...r]
i= =1

1 Using homogeneous coordinates, the sum of the coefficients doe®ed to be normalized to
unity, as it is usually done in computational geometry.
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So, the lineD = aAbis:

D =anb

o) (200)

r

= aiBj aiAbj

j=1
Z Y aiAb;
1.q,je[l.r]

Q

I
o~ N

i=
i€

By hypothesis, since; > 0 andg; > 0, theny; = a;3; > 0. This shows that any
lineDin jﬁf is a convex combination of the poirasA bj in £,, Vie [1...9] and
j € [1...r]. These points are precisely the vertices#f . This proves that”2 is
contained inzg.

4.3.3 Proof of #BNG*(2,n+1) C .78

By hypothesis, since#a (resp.##g) does not split the inside & (resp.A), all the
verticesb;,V j € [1...r] (resp.a;,V i € [1...q]) are in a same half-space delimited
by Ja (resp.g).

From this remark and Theorem 3, it can deduced that thererigja@lorientation
of the flatsf2vi e [1...9 andfjbv j € [1...1] verifying the following inequalities:

aAbjAfE>0, V(i,j,k €l...q x[1...r]x[1...9
aAbjAfP>0, V(i,j,1)e[l...q x[1...r] x[1...1]

LetD = Jic1.q.jer..) ¥jdi Abj, ¥j > 0forall(i,j)in [1...q] x [1...r], be any
point inside.#2. It follows that:

Vke[l...d, DATE= Sicn qjem.¥ &AbjA TR
Vie[l...t], DAfP= Yie[l..qlje[L.n Yij @ AbjA fP

Since ally;j, a Abj A f& anda; A bj A fP are positive scalars or pseudoscalars,

then:
DAf2>0, Vkell...d

DAfP >0, VIe[l..t

Let us assum® is in the Grassmannia@R(Z,nJr 1) and.#Za and s#. Then,
from Theorem 3D is in YAB. From the hypothesif) lies on one of the hyperplanes
 and.s#g if and only if it is incident to then — 2)-flat f;, defined as the intersec-
tion of the two hyperplanes?a and.s# in &,,. This (n— 2)-flat corresponds it
to a hyperpland;* that bounds the polytop%AB. Thus, the lines incident t§ can
be easily excluded from the polytopé,_?, by considering ibpenon the boundary
corresponding to the hyperplarig.
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Since the previous results are proved for any poim%ﬁf and on the Grassman-
nianG®(2,n+ 1), we deduce:Zf NG*(2,n+1) C .78.

4.3.4 When the hyperplanesg or 4 intersects the inside of A or B
Assuming the hyperplanesg intersects the inside @&, there are at least two ver-

ticesa, anda;, of A which are in the two opposite half-spaces delimited Ay
(see Fig. 2).

Fig. 2 Degenerate case #,, where it is not possible to determine an orientation of the Hamn
of both the facesA andB, in order to characterize consistantly all the lines stabbirggttvo
polygons: the line$™ andl~ need opposite orientations.

Let b be a point o, and letD; = &, Ab andD; = aj, Ab be two lines in72.
Assuming the flat$2 Vi € [1... 5] are correctly oriented, D1 A f2 are only positive
pseudoscalars, for dlie [1...s], then theD, A f2 are also positive, and conversely.
This comes from the pseudoscalar’s sign which only dependstich half-space
delimited by.7#a the pointb lies (see the proof of Theorem 3).

On the contrary, supposing the ﬂa°[j§ for j € [1...t] correctly oriented, since
the verticess;; anda;, do not lie on the same half-space, according4g, and if
DiAf J-b is a positive pseudoscalar, thBa A fJ-b will be a negative pseudoscalar, and
conversely.

Reversing the orientation of one of the two lines, for ins&y, is not a solu-
tion: The pseudoscalaBy A & and—Da2 A f2 still have an opposite sign.

This proves that it is not possible to point the fl&fsand f}’, Viell...g and
j € [1...t], such that the classification against those flats of all theslistabbing
bothA andB only results in positive pseudoscalars. In other words, it possible
to group together the Iinﬂ,f‘ in only one convex polytope.O
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4.3.5 Dealing with degenerate cases

In this paper, we talk about a degenerate case for two fade=, wt least one of
the two faces has an intersection with the hyperplane thahdxhe second face.
From this definition, two different kinds of degenerate casan be specified: Firstly
when the intersection is limited to a boundary part of a f&egondly, when the
intersection also concern the inside of a face.

From Theorem 4, we know that there exists a minimal polyt@peasenting the
lines stabbing the two faces for the first kind of degenerabtgreas there is not for
the second one. However, this latter case can always bddrared in the former
one, splitting the two faces along their intersection witha hyperplane supporting
the opposite one. This split allows to divide the initial dagrate configuration in
two or four configurations of the first type, depending on Weebne or both faces
are split.

5 An application example: Soft shadows computation

5.1 Thendimensional visibility framework implementation

As presented in previous sections, the set of lines inténgetwo convexn — 1
facesA andB in &, can be represented aﬁ"gl)-dimensional convex polytofdeng
in PG, Denoting byG;, 1 < i < mthe m occluding(n— 1)-faces, the visibility
betweerA andB is:

m m m
Pag— | Po, = Pas— | Pag = Pas— | J Pos
i—1 i—1 i—1

This can be computed using Computational Solid Geometryatipas: Each poly-
topePao (or Pog) has to be subtracted frofng. All n dimensional CSG opera-
tions can be implemented using Binary Space Partitioniegst{12]. The core of
this method requires to split @dimensional convex polytope againsim— 1)-
dimensional hyperplane. Two different approaches can éé:us

1. An enumeration algorithm such as [1] can solve the lingaiesn induced both
by the splitting hyperplane and the bounding polytope hyiaeres (the so-called
H-representation). However, such an approach is pronerteerical errors, es-
pecially in higher dimensions as noticed by Bittner [3] whosethod relies on a
similar algorithm.

2. Bajajet. al[2] propose a more robust method relying on the relativetjposof
a point and a hyperplane. Nirenstein [13] or Mora [11] uss #igorithm. We
also choose this technique because robustness is crudgiabge synthesis. In
particular, even a small error always leads to a blatan&viadifact.
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As a result, this allows to implement timedimensional visibility framework what-
evern > 2 is, contrary to previous works which are only correct in 2C3D space.
In addition, our framework takes advantage of the miniméltope theorem to opti-
mize CSG computations, whereas previous works construchmiaimal polytopes,
increasing the vertex number and thus the complexity of th& Gperations.

The visibility framework can be considered as a black box easily plugged
into any applications that need to perform visibility qesti

5.2 Soft Shadow computations

In computer graphics, soft shadows are very important tdeerealistic pictures,
because they unveil the relative positions of the objectthénscene. But it is a
difficult problem, since it requires to compute the visilyilof an area light source
from any point in the scene, which is very time consuming.His section, we
explain how the visibility framework can be used to solveatlyathe visibility of
an area light source and to speed-up the computation.

5.2.1 Application overview

We consider a 3D environment made of convex polygons andprgate their vis-
ibility with an area light sourcé&. DenotingT a polygon in the scene, this leads to
compute for each paifL, T) a 6D BSP tree whose inner nodes are 5D projective
hyperplanes corresponding to the duals of occluders’ edgekswhose leaves are
polytopes representing a visible or invisible set of lifeégch a tree is an exact and
coherent representation of the visibilitylofrom any point onil . As a consequence
it is used during the rendering step to query the visibilitydor each point ot
visible from the camera. A simple algorithm to perform suduary is presented
in [10]. It provides an exact polygonal subdivision of thsikle parts ofL from a
given point. This result is then used to compute the dir&atination received by
the point.

We compare our approach to the solution commonly used inuygtah render-
ing software: A stratified sampling of the area light soutaéhis case, the visibility
of L from a given point is evaluated by shooting shadow rays tdesaach sample
on L. The quality of the result increases with the number of sempk well as the
computation time.

5.2.2 Results

All tests are run on an Intel Core 2 Duo at 2.4 GHz with 3 Gbyteneimory. For
comparison purposes, all pictures are rendered at 800x6@he thread without
anti-aliasing. The comparison method uses 256 samplesgeetight source, since
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Polygong|BSP-tre¢ Ptime | Rtime| Ctime
Eagle | 5520 || 19154 | 9min 34s|| 2.9s |1min 24
Panther 12993 || 47684 |54min 123 4.1s|1min 459

Fig. 3 Result details for the two test scen&sgleandPanther with one area light source. The
first column gives the number of polygons in a scene. The seconthogbuesents the total num-
ber of inner nodes for all precomputed BSP trees. The thirdnoolindicates the time spent for
precomputing all BSP trees. The fourth column gives the time spestft shadows computation
using our framework, whereas the last columns gives this time tisengomparison method.

this number is usually considered sufficient for producinglify results. The ray
tracer is an implementation of [20], taking advantage of & uctions to trace
four rays at a time.

Fig. 4 presents the pictures. The first scene, Eagle, is almathea moderate
shadow complexity, while the second scene, Panther, is @ owmplex case. De-
spite the high number of samples used by the comparison dhettnise remains
in soft shadows as illustrated by the close-ups. Using aibility framework, the
soft shadows quality is optimal, whatever the zooming ig;&ithe visibility queries
are exact. It is worth underlying that we were not able to pnagute correctly the
visibility on the Panther scene using a non-minimal polgtbke in [13] or [10]: Be-
cause of numerical instabilities, errors occur in the viigjbdata, leading to visual
artifacts in soft shadows. Using the minimal polytope, weid¥o perform useless
CSG operations, improving robustness.

Table 3 presents the computation details. The size of the-tB&#B illustrates
their compactness and ability to efficiently encode thebilisy data. The precom-
putation times are significant since CSG operations in higtedsions are time
consuming. However the method remains practicable ance# dot depend on the
point of view. As a consequence it can be computed once tbesdsinto files to be
reused later. Finally, the time spent in soft shadows coatjmut during the render-
ing step clearly shows the efficiency of the visibility fran@k. Indeed, the visibil-
ity queries used on the BSP trees depend on their average aegtcompactness.
Thus, the benefit from the precomputation step is really irtzmo.

In this application, our visibility framework manages t@oacile accuracy and
efficiency, often considered as two opposite qualities imgater graphics.
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Exercises

Pgove that Ricker's coordinates correspond to the coordinates of actaivén
A% (R%).

Fro(m t)he parametric equation of a linee(Pxt 4+ Q= (1—t) whereP andQ are
n-dimensional points) find one of its representing bivector.

The Plicker relation between two lines expressed with their sixclkdr coordi-
nates(o, ..., Ms) and(Ay,...,As) is: MoAz+ M1Ag+ [MoAs + M3A0 + M4A1 +
sA;. Show that it is equivalent to the inner productdg
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. LetA, B, andC three euclidean points i3, with respective coordinatés, 0,0),

(2,1,1) and(1,0,2). Let F be the trianglgA,B,C). Let P, Q, andR three eu-
clidean points in®3, with respective coordinatd®,1,1), (2,0,2) and(4,0,4).
Are the lines(PQ) and (RP) stab the fac& ? Same question for the linéBR)
and(QP), but without any new computations.

. Find a bivector that is not decomposable. Show that thiedbdr cannot represent

a line into the space of the geometric objects. (hint: carsiimension 4).

. Prove Theorem 2. Notice that the duality cannot be exptesasily directly in

A (R”*l). The left contraction allows to express it, so the difficudtyly resides
in dimensiom.

. Consider two face& andB, show that any line that is outside the minimal poly-

tope cannot crosa andB.



