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Abstract This chapter introduces global visibility computation using Grassmann
Algebra. Visibility computation is a fundamental task in computer graphics, as in
many other scientific domains. While it is well understood in two dimensions, this
does not remain true in higher dimensional spaces.

Grassmann Algebra allows to think about visibility at a highlevel of abstraction,
and to design a framework for solving visibility problems inany n-dimensional
space, forn≥ 2. Contrary to Stolfi’s framework which allows only the representa-
tion of real lines, it’s algebraic nature dealt naturally without any particular cases.

This chapter shows how the space of lines can be defined as a projective space
over the bivector vector space. Then line classification, a key point for the visibil-
ity computation, is achieved using the exterior product. Actually, line classification
turns out to be equivalent to point vs. hyperplane classification relatively to a non-
degenerate bilinear form. This ensures well-defined property and computationally
robustness.

Using the previous result, the lines stabbing an-dimensional convex face are
characterized. This set of lines appears to be the intersection of the decomposable
bivectors set (i.e. bivectors that represent a line) and a convex polytope. Moreover,
this convex polytope is proved to be minimal. This property allows useful algorith-
mic improvements.

To illustrate the use of our framework in practice, we present the computation of
soft shadows for 3-dimensional illuminated scene.
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1 Problem statement

1.1 About Visibility

Visibility is a fundamental problem in computer graphics. All rendering algorithms
aim at simulating the light transport in a virtual environment, which strongly de-
pends on the mutual visibility of each element in the scene. This is clearly illustrated
by the following well-known rendering equation:

L(x,ω) = E(x,ω)+
∫

y
ρ(x,ω,x→ y)L(x,x→ y)

cosθx cosθy

|x−y|2
V(x,y)dy

The radianceL leaving a pointx in the directionω is the sum of the emitted radiance
E atx, plus the reflected light as the sum of the incoming radiance from all the points
y in the scene, according to the surface propertyρ and the incident angles. In this
equation,V(x,y) is the visibility function, whose value is 1 ifx andy are visible, 0
otherwise.

As a consequence, the accuracy of the visibility solution has a direct impact on
the quality of the result. This explains why visibility is a central question. And it
goes beyond the scope of computer graphics: Other domains, such as electromag-
netism or acoustics for instance, derive algorithms to simulate wave propagation.

There are many visibility problems. The simplest one is between two points. A
classical solution uses a visibility ray, which works in anydimension where such a
ray approach is available [9]. But visibility queries can bemore complicated. For
example: ”What parts of the scene can be seen from this point?”or ”What parts of
the scene can be seen from this region?”. In the latter case, the visibility problem
becomes very complex. Contrary to the point-to-point visibility query, it is not suf-
ficient to answer ”It is visible” or ”It is invisible”. The challenge is to compute the
whole visibility set,i.e. a global visibility information between two continuous sets
of points. This implies to study all the discontinuities in the visibility that may occur
because of the occluders lying between the sets of points. Visibility discontinuities,
sometimes called visibility events, happen at the occluderboundaries. They are the
frontiers where the visibility changes.

For simplifying global visibility problems, a common approach consists first to
sample the continuous sets of points, and then to perform successive point-to-point
visibility queries. However, this sampling step introduces noise, altering the quality
of the result. Increasing the sample number helps to minimize the problem, but may
badly affect the computational time. In addition, notice that a sampling strategy may
be unusable. Considering the following problem: ”Prove that two continuous sets of
points are not mutually visible”, an infinite number of samples would be required!

This illustrates the need for algorithms able to solveexactlyany global visibility
problem: On the one hand it ensures high quality results in applications, on the other
hand it is the only way to solve some visibility problems.
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1.2 The dimension problem

Global visibility problems take place in line-space. For example the visibility of
two continuous sets of points correspond to the lines intersecting the two sets with-
out intersecting their occluders. Thus, visibility discontinuities correspond to lines
incident to occluder boundaries. As a consequence, the complexity of a visibility
problem is strongly related to the dimension of its underlying line-space.

In a 2-dimensional space, the line-space is also 2-dimensional. Global visibility
in 2D has been studied for convex objects through the visibility complex [16] and
used in different applications such as radiosity computation [14]. Using another line
parametrization, Bittneret al. [4] focus on the visibility from a region in the plane.

In a 3-dimensional space, the line-space is not 3-dimensional too, but of dimen-
sion 5. As a consequence, visibility problems are much more difficult to appre-
hend, and the generalization of 2-dimensional visibility algorithms is not possible.
So, dedicated algorithms were proposed. F. Durand has developed the 3D visibility
complex [7], a data structure that encodes the global visibility by tracking all the dis-
continuities generated by the vertices, edges and faces of apolygonal environment.
This data structure illustrates the complexity of the 3-dimensional visibility, but is
not practicable due to robustness issues. The visibility skeleton [6] is a derivative of
the 3D visibility complex. It is a multi-purpose visibilitytool, but it does not encode
all the visibility data.

A line in 3D has 4 degrees of freedom, but a 4D parametrizationis not possi-
ble without singularities (for instance, we can consider the bounding sphere of the
scene ; then any line intersects the sphere in 2 different points, and since the sphere
is a surface of degree 2, then a line can be defined using 4 parameters ; however, sin-
gularities remain at the poles: the azimuthal coordinate can take any value, leading
to different coordinates describing a same line). This can make algorithms sensitive
to numerical stability. For avoiding this problem, other approaches use the Plücker
line parametrization. The Plücker space is a five dimensional projective space em-
bedding all the 3D lines in a 4-dimensional manifold. It is useful to group lines
according to the objects they intersect. Pellegrini [15] uses this formalism to find
upper bounds on geometric problems involving 3-dimensional lines. In the Pl̈ucker
space, lines stabbing a sequence of convex polygons can be represented as a convex
polytope. This property is used by Teller [18] for computingvisibility through a se-
quence ofportals, or convex transparent polygons. Nirenstein [13] and Bittner [3]
take into account occlusion to compute from-region visibility, further improved by
Haumont [8] and Mora [11, 10].

The first practicable global visibility algorithms in 3-dimensional space are quite
recent. This area of research is still investigated. If it isquite difficult to apprehend
visibility in a 3-dimensional space, it is worse in a 4-dimensional space,e.g. in
dynamic environments. At present, we are not aware of any practicable algorithms
dedicated to 4D space.
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1.3 Toward a global visibility framework

This brief overview highlights several difficulties. At first, visibility algorithms are
dependent on the geometrical space dimension. The gap of complexity, for example
from 2-dimensional to 3-dimensional space, prevents a general approach. In addi-
tion, since global visibility is expressed in a line space, the parametrization choice
greatly affects the algorithm design, properties and robustness.

Geometry algebra gives the opportunity to think about visibility at a higher level
of abstraction. It allows to analyse problems, and to designtheir solutions regardless
of the dimension of space, using a single approach.

In this chapter, we propose a global visibility framework based on an-dimensional
line space, defined using Grassmann Algebra [5]. While this isa classical definition
of lines in mathematics, it remains uncommon in computer graphics. Thanks to this
formalism, we prove a major theorem on the representation ofa set of lines by a
convex polytope. Next, we propose a generalization of Mora’s work [10], into an-
dimensional visibility framework. Finally, as an application, we explain how it can
be used to compute very high quality soft shadows.

2 Line spaces

For computing visibility between objects, let us denoteGn the n-dimension geo-
metrical space of the geometric objects. It is embedded intothe projective spacePn.
As P

n is built fromR
n+1, linear subspaces ofPn can be represented by elements of

∧
(

R
n+1
)

.

2.1 n-dimensional lines

A line is, whatever the dimension of the space it belongs to, a1-dimensional sub-
space. It expresses a dependency between two distinct points. So, we can formulate
the following definition:

Definition 1. A n-dimensional line, passing through two projective pointsA andB
of Gn with respective 1-vector coordinatesa andb, is represented by the exterior
producta∧b.

Example 1 As an example, let us considering in 2 dimensions the line going
through the points of homogeneous coordinates(1,0,1) and(2,1,1). Using the ex-
terior product, it follows that the expression of this line in

∧
(

R
3
)

is e0∧e1−e1∧

e2−e2∧e1, where the 1-vectors(e0,e1,e2) form the basis of
∧1(

R
3
)

.

Example 2 In computer graphics, the3-dimensional lines are most known using
Plücker coordinates. In fact, they can be retrieved using definition 1. Using again a
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homogeneous notation, a point P is denoted by 4 coordinates using the vector: p=
(x,y,z,w)T . The line going through A and B with respective coordinates(xa,ya,za,1)
and(xb,yb,zb,1) is known as [15]:

















xb−xa

yb−ya

zb−za

yazb−ybza

zaxb−zbxa

xayb−xbya

















With our definition, the same line through A and B is defined using the Grassmann
exterior product, asΠAB = a∧b – see Exercise 1 –. Then, it is quite easy to show
that Plücker coordinates are coordinates in

∧2(
R

4
)

.

2.2 From line to line space

The elements of
∧k(

R
n+1
)

, for k≤ n, are homogeneous: IfK ∈
∧k(

R
n+1
)

repre-
sents a subspace ofRn+1, thenK ′ = λK, for λ ∈R

∗, represents the same subspace.

Hence,P(
n+1

k )−1 =P(
∧k(

R
n+1
)

) is the space of the 1-subspaces of
∧k(

R
n+1
)

. Each

point of P(
n+1

k )−1 represents a unique linear manifold ofGn. This leads to the fol-
lowing definition of the line spaceLn of Gn:

Definition 2. The space of lines ofGn, denoted byLn, is the projective space
P(
∧2(

R
n+1
)

).

From this definition, the line space is a projective space of dimension
(n+1

2

)

−1.
With G2, the line space is of dimension

(3
2

)

−1= 2, while withG3, it corresponds to
the classical Plücker space of dimension 5. This is directly related to the dimension
problem, as presented in Sect. 1.2.

Considering again the example 1, the line passing through the points with ho-
mogeneous coordinates(1,0,1) and(2,1,1) has coordinates(1,−1,−1) using the
basis(e0∧e1,e1∧e2,e2∧e0) of

∧2(
R

3
)

.

2.3 About the Grassmanian

From previous works on visibility computations [19, 13], itis well known that
3-dimensional Pl̈ucker lines do not fill all the space lineL3. The mapping of 3-
dimensional lines to the Plücker space is not surjective. Indeed, a line must pass
through at least two distinct points, and then is represented as a 2-blade. They are
all located on the GrassmannianGR(2,4) – or Grassmann manifold –, defined as
the set of all 2-subspaces ofR4. It is also the set of all decomposable bivectors, or



6 L. Aveneau, S. Charneau, L Fuchs and F. Mora

2-blades. In dimensionn, the set ofactual lines are located on the Grassmannian
GR(2,n+1).

For deciding if a given point ofLn is on the Grassmannian, and so is a actual line,
it is sufficient to verify it is a decomposable vector. The following theorem gives an
easy way to solve this:

Theorem 1.Let
∧
(

R
n+1
)

be the Grassmann algebra. A non zero bivector M from
∧
(

R
n+1
)

is a 2-blade – a decomposable vector – if and only if M∧M = 0.

Proof. If M is a 2-blade, then there exist two linearly independent vectorsm1 and
m2 from R

n+1 so thatM = m1∧m2 6= 0. Then,M ∧M = m1∧m2∧m1∧m2, and
using the antisymmetry property of the exterior product,M∧M = 0.

Now, assumingM is not decomposable, by definition it can be written as a finite
sum of linearly independent 2-blades:∑p

i=1Mi ,
(n+1

2

)

≥ p≥ 2. It follows that:

M∧M =

(

p

∑
i=1

Mi

)

∧

(

p

∑
j=1

M j

)

(1)

= 2
p

∑
i≤ j

Mi ∧M j (2)

Since all these terms are 4-vectors linearly independent, thenM∧M 6= 0. ⊓⊔

This theorem helps for computing the intersection between aset of lines inLn and
the Grassmannian, for instance to decide if it contains at least one actual line, or can
be dropped in future computations.

2.4 Line orientation

Previous works on visibility computation use line orientation as a key element. In
Grassmann algebra, it is expressed using the exterior product, which expresses the
dependency between vector subspaces.

Property 1.Let M andM′ be two projective linear subspaces ofGn. There intersec-
tion is non empty if and only ifM∧M′ = 0.

This property can be applied to a bivectorL and a (n-1)-vectorF of
∧
(

R
n+1
)

,
allowing to check if a line is incident to the boundary of an occluder, i.e. a (n-2)-
variety or flat. For instance, as proposed in Exercise 3, in three dimensions it is
possible to check that the Plücker relation corresponds to the testL∧H, whereH is
also a line sincen−1= 2. A particular case of this first property is the following:

Property 2.Let M andM′ be respectively ak-vector and a(n−k+1)-vector, repre-
senting two projective linear subspaces ofGn. Their relative orientation is denoted
by the sign ofλ ∈R using the exterior productM∧M′ = λ I , whereI is the pseudo-
scalar in

∧
(

R
n+1
)

.
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For instance, in 2 dimensions, it allows to check if a directed line turn clockwise or
counterclockwise with respect to a point. This property is essential for computing
the line stabbing a convex(n−1) face, as presented in Sect. 3.1.

In order to work with lines inLn, we need a similar product using only bivectors.
Moreover, we want a robust solution, working with actual lines, but also with any
bivector. In fact, it is possible to express the property 2 into the line space, using only
bivectors and the inner product. This is based on the dualitybetween

∧2(
R

n+1
)

and
∧n−1(

R
n+1
)

.

Theorem 2.Let δ be an isomorphism from
∧2(

R
n+1
)

to
∧n−1(

R
n+1
)

, such that
δ (l) = l⌋In+1, where⌋ denotes the left contraction and In+1 is the pseudoscalar over
∧
(

R
n+1
)

. Then, the inner product between any bivectors L1 and L2 is equivalent to
check the orientation of the line L1 with a (n−2)-flat :

L1 ·L2 ≡ L1∧δ (L2)

up to an identification of pseudoscalars and scalars in
∧
(

R
n+1
)

.

From this result, it follows two immediate and important properties:

1. Since the inner product is non degenerate, there is no singularity. It asserts that
the line orientation test is always defined, whatever the line and the flat are.

2. The duality does not depend on the Grassmannian: The previous property is also
valid for non decomposable bivectors and(n−1)-vectors, or equivalently, when
they do not respectively represent a line and a(n−2)-flat.

The first property plays a fundamental role in our visibilityframework. Firstly, it
explains that the visibility computations work for all dimensions and all configura-
tions, without any singularity, ensuring the generality ofthis approach. Secondly,
it is computationally simple, as is it reduced to evaluations of a particular scalar
product of vectors of dimension

(n+1
2

)

, this ensures its robustness.
The n-dimensional proof of this theorem is left to the reader, but we illustrate it

in 2 dimensions. Let(e0,e1,e2) be an orthogonal basis ofR3, ande0 ∧ e1 ∧ e2 be
the pseudoscalar for

∧
(

R
3
)

. Let (e1∧e2,e2∧e0,e0∧e1) be a basis of
∧2(

R
3
)

. We
know that any 2-dimensional line can be represented using 3 coordinates in such a
basis. The left contraction is used to define the isomorphismδ :

∧2(
R

3
)

7→
∧1(

R
3
)

as:
δ (e1∧e2) = (e1∧e2)⌋e0∧e1∧e2 = e0
δ (e2∧e0) = (e2∧e0)⌋e0∧e1∧e2 = e1
δ (e0∧e1) = (e0∧e1)⌋e0∧e1∧e2 = e2

So, any 2-dimensional line can be mapped to a 1-vector usingδ , and conversely
with δ−1. Without loss of generality, letA : (α0,α1,α2) andB : (β0,β1,β2) be two
lines,i.e.bivectors. Using the anticommutativity of the exterior product, it follows:

A∧δ (B) = (α0e1∧e2+α1e2∧e0+α2e0∧e1)∧ (β0e0+β1e1+β2e2)

= (α0β0+α1β1+α2β2)e0∧e1∧e2

≡ A·B
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Using any isomorphism betweenR3 and
∧3(

R
3
)

, the obtained expression can be
recognized as a classical inner product in

∧2(
R

3
)

.

2.5 Dual line representation

Theorem 2 has a nice and useful interpretation in the line-spaceLn.
As a classical result of vector algebra, in a vector spaceE of dimensionm, it is

well known that the set of vectors orthogonal to any other vector x (the set ofv such
that v · x = 0, where· is the inner product), describes a vector subspace of dimen-
sionm−1 in E, i.e. a hyperplane. Transposed to our problem, this classical result
means that each(n−1)-vector (i.e. δ (L2) in the theorem statement) can be dually
associated to a hyperplane in

∧2(
R

n+1
)

(the set of bivectorsL orthogonalto L2 in
∧2(

R
n+1
)

, i.e.such thatL ·L2 = 0), which corresponds to a projective hyperplane in
the line-spaceLn. In dimension 2, it can be remarked that some similarities exist be-
tween this model of line-spaceL2 with the well known dual plane where lines map
to points and conversely points map to lines. This reveals that classifying a lineL
against a(n−2)-flat F , by computing the sign of the productL∧F , for the bivector
L and the(n−1)-vectorF , can always be seen as determining in which half-space
is the pointL of Ln, according to the oriented hyperplaneδ−1(F) associated toF in
Ln. The product is zero if and only ifL is a point on the hyperplaneδ−1(F).

This interpretation will be particularly helpful in Sect. 3.2, to give a geometri-
cal significance to the global visibility computation and representation, which only
makes sense in the line-space.

3 Visibility in Ln

3.1 Lines stabbing a convex (n−1)-face

The following theorem unambiguously characterizes the setof lines stabbing a con-
vex face in any dimensionn.

Theorem 3.LetF be a convex(n−1)-face inGn, supported by the hyperplaneHF

(i.e. a (n−1)-flat in Gn) and bounded by the(n−2)-flats fi for i ∈ [1, . . . , r]. The
flats fi have two orientations such that for any line L, L

⋂

HF 6= L, L stabsF if and
only if one of the following two properties is verified:

∀i ∈ [1. . . r] ,L∧ fi ≥ 0 (3)

∀i ∈ [1. . . r] ,L∧ fi ≤ 0 (4)

LetSF be the set of lines stabbing the faceF.
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The proof of the theorem is based on the following remarks. Firstly, F is a con-
vex polytope, delimited by the flatsfi and restricted to the hyperplaneHF in Gn.
Secondly, when a lineL does not lay onHF , it has one and only one intersection
point with HF , at infinity if L is parallel toHF . Thirdly, L stabs the faceF if and
only if its intersection point withHF is in F.

Proof. The lineL corresponds to a 2-vector and the hyperplaneHF to an-vector in
∧
(

R
n+1
)

. Sincen+2> n+1, thenL∧HF = 0. So, there is always an intersection
betweenL andHF , either of dimension 1 (a point) or 2 (L itself). This allows to
propose the following lemma:

Lemma 1. Every line L inGn intersectsHF in a unique point, except if L lays in
HF .

Let P∩ be the intersection ofL with HF . AssumingL does not lay onHF , P∩
is a non zero 1-vector. Obviously,L stabsF if and only if P∩ is insideF. Let P∩/ be
any other point onL out of HF , such thatP∩/ ∧HF > 0, i.e. P∩/ is in the positive
half-space ofHF . We can writeL = P∩∧P∩/. It follows:

∀i ∈ [i . . . r] , P∩∧P∩/∧ fi = P∩∧ (P∩/∧ fi)

By hypothesis,P∩/ is not incident tofi , and then-vectorP∩/ ∧ fi 6= 0 represents
a hyperplane inGn. The sign of the pseudoscalarP∩ ∧ (P∩/ ∧ fi) indicates in which
half-space of the hyperplaneP∩/∧ fi the pointP∩ is.

Let P be the polytope generated byF and the vertexP∩/. SinceF is convex, so
is P: It is the intersection betweenH +

F and the positive half-spaces associated to
the hyperplanesP∩/ ∧ fi , i ∈ [1. . . r], for a particular but consistant orientation of
them. By hypothesis,P∩/ ∧HF is a non zero pseudoscalar. The orientation of each
hyperplaneP∩/∧ fi can be determined from any pointPF into F, such thatPF ∧ (P∩/∧
fi) are only positively oriented pseudoscalars. FromPF ∧ (P∩/∧ fi) =−P∩/∧PF ∧ fi ,
and sincePF ∧ fi generates the flatHF , thenPF ∧ fi has an opposite orientation
than the one ofHF , since∀ i ∈ [1. . . r] , PF ∧ fi = λF,λ < 0. This shows that the
orientations of the flatsfi can be determined uniquely from those ofHF and the
position ofP∩/ relatively toHF .

The orientation of the flatsfi allows to state that a pointP of Gn is in the polytope
P if and only if P∧HF ≥ 0 andP∧ (P∩/∧ fi) > 0, ∀i ∈ [1. . . r]. In particular, this
concerns every point inF, includingP∩. Then,P∩ is a point ofP if and only if it:

P∩∧ (P∩/∧ fi)≥ 0 ∀i ∈ [1. . . r]

In other words,L stabs the faceF if and only if:

L∧ fi ≥ 0 ∀i ∈ [1. . . r]

Considering the opposite lineL′ = P∩/∧P∩, obviously it stabsF if and only:

L′∧ fi ≤ 0 ∀i ∈ [1. . . r]
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This result does not depend onP∩/ with respect to the sign of the half-space asso-
ciated to the hyperplaneHF , it remains valid for all linesL not inHF .

Changing the orientation of some but not all of the flatsfi makes the previous
result false. On the contrary, changing the orientation of all of them – or equivalently
the orientation ofHF or the position ofP∩/ relatively toHF – only interchanges all
signs in the in-equations, and so the result remains true. This means there are only
two valid orientations for the flatsfi . ⊓⊔

Theorem 3 has a fundamental consequence: It gives an algebraic method for
determining whether or not a line stabs a given face in anyn-dimensional space.
This method has no singularity, since our algebraic framework also handles flats
at infinity. However, the lines laying on the hyperplaneHF are excluded, since
they cannot properly “stab”F. But this distinction does not impact the visibility
computation, both from a theoretical and an algorithmic point of view.

Moreover, this theorem has a useful interpretation inLn. It first reveals what
the visibility computation through faces relies on, geometrically, and then indicates
what kind of data-structures and algorithms can be used to compute the visibility in
practice. The following section aims to explain this interpretation.

3.2 Convex cells and visibility events in the line-space

3.2.1 Interpretation in Ln and consequences

Theorem 3 has a suitable geometrical meaning inLn. By duality, every flatfi bound-
ing the faceF can be associated to an unique hyperplanef ∗i in Ln, ∀ i ∈ [1. . . r].
Then, by choosing a positive orientation for the flats, Theorem 3 implies thatSF,
the set of lines stabbingF in Ln, is the intersection betweenGR(2,n+1) and the
convex polytope defined as the intersection of the positive half-spaces delimited by
the hyperplanesf ∗i . This is a useful result, as convex polytopes have the following
well known properties in computational geometry:

• They have multiple representations: A hyperplane set, a vertex set, and a face
lattice.

• It can easily be determined if a point is either inside or outside a polytope.
• It can be easily determined if two polytopes intersect each other.
• Boolean operations are expressed as geometrical computations, such as split, in-

tersections,etc....

Nevertheless, a single faceF is not sufficient to define a polytope: The hyper-
planesf ∗i ∀ i ∈ [1. . . r] delimit a region inLn partially bounded by infinity. This is
stated by the dimension ofLn (see Sect. 2.3): While at least 2n−1 hyperplanes are
required to define a simplex inLn, an(n−1)-face can only haven facets in general
(i.e. independent) positions, for instance those of a(n−1)-simplex inGn. As a con-
sequence of this closure by the infinity inLn, it becomes impossible to determine a
convex-hull representation of the polytopeSF.



A Framework forn-dimensional Visibility Computations 11

While this interpretation leads to some interesting properties, it also illustrates the
fundamental role of the GrassmannianGR(2,n+ 1) and its embedding line-space
Ln. Indeed, the polytope representing the lines stabbing somefaces also contains
points outside the Grassmannian. Then, representing the lines stabbing faces inGn

by a convex polytope inLn, is only possible by considering the whole line-space
Ln, but not the GrassmannianGR(2,n+ 1) alone. This mainly explains why the
Stolfi framework [17], which only represents points locatedon the Grassmannian,
is not suitable for computing the global visibility. On the contrary, by enabling com-
putations on non decomposable multivectors, geometric algebras make the global
visibility computation sum up to boolean operations on convex polytopes inLn.

3.2.2 Global visibility in Gn as convex cells inLn

Extending this representation to two or more faces is straightforward. In the example
depicted in Fig. 1,A, B andO are three edges inG2, with bounding verticesi ∈
[1. . .6]. In G2, these vertices are associated to hyperplanes that subdivide the line-
space into cells, grouping together the lines stabbing the same edges. Fig. 1 shows
two such cells:PAB representing lines stabbingA andB but missingO ; PAOB
representing lines stabbingA, O andB. It must be noticed thatPAB completely
describes the global visibility betweenA andB, by taking into account the occlusion
by O. This example shows that visibility inG2 can be described inL2 by a set of
convex polytopes, obtained using Theorem 3.

b

b

b

b

b

b

1
2

3

4

5
6

(13)

(23)

(42)
(54)

(14)

(15)

G
2

L
2

A

B

O

PAB

PAOB

Fig. 1 Visibility computation and representation. Left (a): InG2, the edgesA andB are partially
hidden byO. Right (b): InL2, the lines stabbing the three edges is the convex cellPAOB , while
the lines stabbingA andFB but notO is represented by the convex cellPAB. These two cells
or polytopes are obtained from the intersection of the positive half-spaces associated to the six
vertices bounding the edges.
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Since Theorem 3 does not depend on the geometric space dimension, it can be
applied to compute the visibility inGn: Visibility through some faces inGn can
always be represented by a subdivision ofLn in cells which group together the
lines stabbing the same faces. The boundary of the cells are then the hyperplanes
associated to the(n−2)-flats which bound the objects inGn.

However, we show in Sect. 4.2 that some special configurations prevent grouping
two or more faces in only one convex cell or polytope inLn. The distinction and
description of these degenerate cases come as a part of the proof of the minimal
polytope solution. They give a precise understanding of howlines in the line-space
subdivision are grouped together.

3.2.3 Visibility events inLn

According to F. Durand [6], a visual event is defined as the locus where visibil-
ity changes inGn. This notion is central in many approaches concerning visibility
computation, since both the visibility modification and topology knowledges are
sufficient to fully describe the visibility. In practice, a visual event appears as a line
tangent to a finite number of geometrical objects. The degreeof freedom gives sup-
plementary information, leading to thek-visual event notion.

As depicted in the Fig. 1, vertex 5 is a locus with important visibility variations.
The red lines 15 and 54 are two examples of visual events that separate the visibility
for all the lines passing through 5. InL2, they become two 1-vectors that form a
part of the cellsPAOB andPAB, as they ly on a common 2-vector, the dual of 5.
Obviously, this is a general rule: The visual events are located on the cell boundaries.
It comes from the visual event definition, and Theorem 3.

In n dimensions, only thereal visual events are of interest, so the whole cell
boundary is not interesting. InGn, the visual events are located on the Grassmannian
too. Then, ak-visual event is ak-submanifold located at the intersection between
GR(2,n+1) and a cell inLn. This shows that the visibility is fully described using
a partition inLn.

4 The minimal polytope

4.1 Minimal polytope interest

All the previous approaches fail to give the minimal set of lines stabbing two convex
faces inGn, for n > 2. The Grassmann algebra allows to define and to compute
the minimal polytope enclosing this set of lines. This is a key for our visibility
framework, as it ensures computation efficiency.

Let us enumerate some properties and goals of a minimal polytope representa-
tion, from both the theoretical and practical points of view:
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1. It procures a vertex representation of the polytope containing the lines stabbing
two faces. This is useful for applications needing to split polytopes, to detect
collisions between them, or to classify them according to some hyperplanes in
the line-space.

2. By splitting the minimal polytope with hyperplanes, sucha vertex representation
can be extended for representing lines stabbing more than two faces.

3. The minimal polytope is a general solution, in any dimension, to the open prob-
lem stated in three dimensions [13]. It is also the most appropriate to avoid the
splittings leading to polytopes that do not represent any line inGn, i.e. that do
not intersect the Grassmannian inLn.

4. From the polytope vertices, all the faces in the polytope boundary (edges, hyper-
planes ...) and their incidences can be computed.

5. It unveils the case where a single polytope can not be used to represent the visi-
bility through two polygons. Thesedegeneratecases appear in previous 3 dimen-
sional works [13], and are generalized inGn in this paper.

4.2 The minimal polytope for two convex faces

Let A andB be two convex(n−1)-faces inGn, anda1, . . . ,aq andb1, . . . ,br their
respective vertices.

Definition 3. The minimal polytope, denotedM B
A , represents the set of linesS B

A
stabbingA andB in Ln. It is the convex polytope with the following properties:

1. S B
A ⊆ M B

A

2. M B
A ∩GR(2,n+1)⊆ S B

A

3. If PB
A is a convex set inLn such thatS B

A ⊆ PB
A , thenM B

A ⊆ PB
A .

The properties 1 and 2 mean the polytopeM B
A is a representation ofS B

A in Ln,
i.e.a lineL stabsA andB if and only if its representation inLn is contained inM B

A .
The third property indicates thatM B

A is the minimal polytope: There does not exist
another convex polytope representingS B

A and contained inM B
A .

The following theorem gives a computational characterization of the minimal
polytope for two faces in some canonical configurations, andindicates the non ex-
istence of any polytope for the other configurations.

Theorem 4.Let HA andHB be respectively the supporting planes of the facesA
and B. If HA and HB do not respectively intersect the facesB or A, or only on
their boundary, then the minimal polytopeM B

A is the convex hull of the lines Li j =
ai ∧b j ,(i, j) ∈ [1. . .q]× [1. . . r] from the vertices ofA to the ones ofB. Otherwise,
the set of lines stabbingA andB cannot be represented by any convex polytope in
Ln.
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4.3 Proof of the minimal polytope solution

To prove Theorem 4, we consider the two(n− 1)-facesA andB, with respective
verticesa1, . . . ,aq andb1, . . . ,br . We suppose that these faces are supported by the
hyperplanesHA andHB, and bounded by the(n−2)-flats f a

1 . . . f a
s and f b

1 , . . . , f b
t

respectively.
The proof is decomposed into three steps:

1. If the polytopeM B
A exists, then it is minimal.

2. If the hyperplanesHA andHB do not intersect the facesB andA respectively,
or only their boundary, then:

a. S B
A ⊂ M B

A
b. M B

A ∩GR(2,n+1)⊂ S B
A

3. If the polytopeM B
A is not defined, then the linesS B

A cannot be represented by
only one convex polytope.

4.3.1 If the polytopeM B
A exists, then it is minimal

Let M B
A be the polytope defined as the convex hull of the verticesai ∧b j , according

to the theorem 4. Assuming this polytope represents linesS B
A stabbingA andB.

Then, its vertices,i.e. the points inLn associated to the linesai ∧b j ,∀ i ∈ [1. . .q] , j ∈
[1. . . r], are inS B

A .
Let P be a convex polytope strictly contained inM B

A . Obviously, any convex
polytope containing all the vertices ofM B

A , also contains their convex hullM B
A .

Then, it follows thatP does not contain at least one of the vertices ofM B
A . Since

those vertices are inS B
A , we deduce thatP does not represent all the lines stabbing

A andB, proving thatM B
A is minimal.

4.3.2 Proof ofS B
A ⊆ M B

A

Let us assumeHA andHB do not intersect the inside ofA or B respectively. The
setS B

A in Gn contains lines defined by any couple of points onA andB, such that
the point ofA is not onHB, and conversely the point ofB is not onHA.

Let a ∈ A andb ∈ B be two such points. SinceA andB are convex, then the
homogeneous representation ofa andb in Gn+1 can be represented by combinations
of the vertices ofA andB respectively. For instance1:

a=
q

∑
i=1

αiai , αi ≥ 0∀ i ∈ [1. . .q] , and b=
r

∑
j=1

β jbi , β j ≥ 0∀ j ∈ [1. . . r]

1 Using homogeneous coordinates, the sum of the coefficients does not need to be normalized to
unity, as it is usually done in computational geometry.
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So, the lineD = a∧b is:

D = a∧b

=

(

q

∑
i=1

αiai

)

∧

(

r

∑
j=1

β jbi

)

=
q

∑
i=1

r

∑
j=1

αiβ j ai ∧b j

= ∑
i∈[1...q], j∈[1...r]

γi j ai ∧b j

By hypothesis, sinceαi ≥ 0 andβ j ≥ 0, thenγi j = αiβ j ≥ 0. This shows that any
line D in S B

A is a convex combination of the pointsai ∧b j in Ln, ∀ i ∈ [1. . .q] and
j ∈ [1. . . r]. These points are precisely the vertices ofM B

A . This proves thatS B
A is

contained inM B
A .

4.3.3 Proof ofM B
A ∩GR(2,n+1)⊆ S B

A

By hypothesis, sinceHA (resp.HB) does not split the inside ofB (resp.A), all the
verticesb j ,∀ j ∈ [1. . . r] (resp.ai ,∀ i ∈ [1. . .q]) are in a same half-space delimited
by HA (resp.HB).

From this remark and Theorem 3, it can deduced that there is a unique orientation
of the flatsf a

i ∀ i ∈ [1. . .s] and f b
j ∀ j ∈ [1. . . t] verifying the following inequalities:

ai ∧b j ∧ f a
k > 0, ∀ (i, j,k) ∈ [1. . .q]× [1. . . r]× [1. . .s]

ai ∧b j ∧ f b
l > 0, ∀ (i, j, l) ∈ [1. . .q]× [1. . . r]× [1. . . t]

Let D = ∑i∈[1...q], j∈[1...r] γi j ai ∧b j , γi j ≥ 0 for all (i, j) in [1. . .q]× [1. . . r], be any
point insideM B

A . It follows that:

∀ k∈ [1. . .s] , D∧ f a
k = ∑i∈[1...q], j∈[1...r] γi j ai ∧b j ∧ f a

k
∀ l ∈ [1. . . t] , D∧ f b

l = ∑i∈[1...q], j∈[1...r] γi j ai ∧b j ∧ f b
l

Since allγi j , ai ∧b j ∧ f a
k andai ∧b j ∧ f b

l are positive scalars or pseudoscalars,
then:

D∧ f a
k ≥ 0, ∀ k∈ [1. . .s]

D∧ f b
l ≥ 0, ∀ l ∈ [1. . . t]

Let us assumeD is in the GrassmannianGR(2,n+ 1) andHA andHB. Then,
from Theorem 3,D is in S B

A . From the hypothesis,D lies on one of the hyperplanes
HA andHB if and only if it is incident to the(n−2)-flat fi , defined as the intersec-
tion of the two hyperplanesHA andHB in Gn. This (n−2)-flat corresponds inLn

to a hyperplanef ∗i that bounds the polytopeM B
A . Thus, the lines incident tofi can

be easily excluded from the polytopeM B
A , by considering itopenon the boundary

corresponding to the hyperplanef ∗i .
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Since the previous results are proved for any point inM B
A and on the Grassman-

nianGR(2,n+1), we deduce:M B
A ∩GR(2,n+1)⊆ S B

A .

4.3.4 When the hyperplaneHB or HA intersects the inside of A or B

Assuming the hyperplaneHB intersects the inside ofA, there are at least two ver-
ticesai1 andai2 of A which are in the two opposite half-spaces delimited byHB

(see Fig. 2).

a

a

A B
b

b

l

l

1

2

+

-

1
2

Fig. 2 Degenerate case inG2, where it is not possible to determine an orientation of the boundary
of both the facesA and B, in order to characterize consistantly all the lines stabbing the two
polygons: the linesl+ andl− need opposite orientations.

Let b be a point ofB, and letD1 = ai1 ∧b andD2 = ai2 ∧b be two lines inS B
A .

Assuming the flatsf a
i ∀ i ∈ [1. . .s] are correctly oriented, ifD1∧ f a

i are only positive
pseudoscalars, for alli ∈ [1. . .s], then theD2∧ f a

i are also positive, and conversely.
This comes from the pseudoscalar’s sign which only depends on which half-space
delimited byHA the pointb lies (see the proof of Theorem 3).

On the contrary, supposing the flatsf b
j for j ∈ [1. . . t] correctly oriented, since

the verticesai1 andai2 do not lie on the same half-space, according toHB, and if
D1∧ f b

j is a positive pseudoscalar, thenD2∧ f b
j will be a negative pseudoscalar, and

conversely.
Reversing the orientation of one of the two lines, for instanceD2, is not a solu-

tion: The pseudoscalarsD1∧ f a
i and−D2∧ f a

i still have an opposite sign.
This proves that it is not possible to point the flatsf a

i and f b
j , ∀ i ∈ [1. . .s] and

j ∈ [1. . . t], such that the classification against those flats of all the lines stabbing
bothA andB only results in positive pseudoscalars. In other words, it is not possible
to group together the linesS B

A in only one convex polytope.⊓⊔
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4.3.5 Dealing with degenerate cases

In this paper, we talk about a degenerate case for two faces, when at least one of
the two faces has an intersection with the hyperplane that extend the second face.
From this definition, two different kinds of degenerate cases can be specified: Firstly
when the intersection is limited to a boundary part of a face;Secondly, when the
intersection also concern the inside of a face.

From Theorem 4, we know that there exists a minimal polytope representing the
lines stabbing the two faces for the first kind of degeneracy,whereas there is not for
the second one. However, this latter case can always be transformed in the former
one, splitting the two faces along their intersection with the hyperplane supporting
the opposite one. This split allows to divide the initial degenerate configuration in
two or four configurations of the first type, depending on whether one or both faces
are split.

5 An application example: Soft shadows computation

5.1 The n dimensional visibility framework implementation

As presented in previous sections, the set of lines intersecting two convexn− 1
facesA andB in Gn can be represented as a

(n+1
2

)

-dimensional convex polytopePAB

in P
(n+1
2 ). Denoting byOi , 1 ≤ i ≤ m the m occluding(n− 1)-faces, the visibility

betweenA andB is:

PAB−
m
⋃

i=1

POi = PAB−
m
⋃

i=1

PAOi = PAB−
m
⋃

i=1

POiB

This can be computed using Computational Solid Geometry operations: Each poly-
topePAOi (or POiB) has to be subtracted fromPAB. All n dimensional CSG opera-
tions can be implemented using Binary Space Partitioning trees [12]. The core of
this method requires to split an-dimensional convex polytope against a(n− 1)-
dimensional hyperplane. Two different approaches can be used:

1. An enumeration algorithm such as [1] can solve the linear system induced both
by the splitting hyperplane and the bounding polytope hyperplanes (the so-called
H-representation). However, such an approach is prone to numerical errors, es-
pecially in higher dimensions as noticed by Bittner [3] whose method relies on a
similar algorithm.

2. Bajajet. al [2] propose a more robust method relying on the relative position of
a point and a hyperplane. Nirenstein [13] or Mora [11] use this algorithm. We
also choose this technique because robustness is crucial inimage synthesis. In
particular, even a small error always leads to a blatant visual artifact.
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As a result, this allows to implement then-dimensional visibility framework what-
evern≥ 2 is, contrary to previous works which are only correct in 2D or 3D space.
In addition, our framework takes advantage of the minimal polytope theorem to opti-
mize CSG computations, whereas previous works construct non-minimal polytopes,
increasing the vertex number and thus the complexity of the CSG operations.

The visibility framework can be considered as a black box andeasily plugged
into any applications that need to perform visibility queries.

5.2 Soft Shadow computations

In computer graphics, soft shadows are very important to render realistic pictures,
because they unveil the relative positions of the objects inthe scene. But it is a
difficult problem, since it requires to compute the visibility of an area light source
from any point in the scene, which is very time consuming. In this section, we
explain how the visibility framework can be used to solve exactly the visibility of
an area light source and to speed-up the computation.

5.2.1 Application overview

We consider a 3D environment made of convex polygons and precompute their vis-
ibility with an area light sourceL. DenotingT a polygon in the scene, this leads to
compute for each pair(L,T) a 6D BSP tree whose inner nodes are 5D projective
hyperplanes corresponding to the duals of occluders’ edges, and whose leaves are
polytopes representing a visible or invisible set of lines.Such a tree is an exact and
coherent representation of the visibility ofL from any point onT. As a consequence
it is used during the rendering step to query the visibility of L for each point onT
visible from the camera. A simple algorithm to perform such aquery is presented
in [10]. It provides an exact polygonal subdivision of the visible parts ofL from a
given point. This result is then used to compute the direct illumination received by
the point.

We compare our approach to the solution commonly used in production render-
ing software: A stratified sampling of the area light source.In this case, the visibility
of L from a given point is evaluated by shooting shadow rays towards each sample
on L. The quality of the result increases with the number of samples as well as the
computation time.

5.2.2 Results

All tests are run on an Intel Core 2 Duo at 2.4 GHz with 3 Gbyte ofmemory. For
comparison purposes, all pictures are rendered at 800x600 on one thread without
anti-aliasing. The comparison method uses 256 samples per area light source, since
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Polygons BSP-tree Ptime Rtime Ctime
Eagle 5 520 19 154 9min 34s 2.9s 1min 24s
Panther 12 993 47 684 54min 12s 4.1s 1min 45s

Fig. 3 Result details for the two test scenes,EagleandPanther, with one area light source. The
first column gives the number of polygons in a scene. The second column presents the total num-
ber of inner nodes for all precomputed BSP trees. The third column indicates the time spent for
precomputing all BSP trees. The fourth column gives the time spentin soft shadows computation
using our framework, whereas the last columns gives this time usingthe comparison method.

this number is usually considered sufficient for producing quality results. The ray
tracer is an implementation of [20], taking advantage of SSEinstructions to trace
four rays at a time.

Fig. 4 presents the pictures. The first scene, Eagle, is a model with a moderate
shadow complexity, while the second scene, Panther, is a more complex case. De-
spite the high number of samples used by the comparison method, noise remains
in soft shadows as illustrated by the close-ups. Using our visibility framework, the
soft shadows quality is optimal, whatever the zooming is, since the visibility queries
are exact. It is worth underlying that we were not able to precompute correctly the
visibility on the Panther scene using a non-minimal polytope like in [13] or [10]: Be-
cause of numerical instabilities, errors occur in the visibility data, leading to visual
artifacts in soft shadows. Using the minimal polytope, we avoid to perform useless
CSG operations, improving robustness.

Table 3 presents the computation details. The size of the BSP-trees illustrates
their compactness and ability to efficiently encode the visibility data. The precom-
putation times are significant since CSG operations in high dimensions are time
consuming. However the method remains practicable and it does not depend on the
point of view. As a consequence it can be computed once then stored into files to be
reused later. Finally, the time spent in soft shadows computation during the render-
ing step clearly shows the efficiency of the visibility framework. Indeed, the visibil-
ity queries used on the BSP trees depend on their average depth and compactness.
Thus, the benefit from the precomputation step is really important.

In this application, our visibility framework manages to reconcile accuracy and
efficiency, often considered as two opposite qualities in computer graphics.
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19. Seth J. Teller and Carlo H. Séquin. Visibility preprocessing for interactive walkthroughs. In
Proceedings of the 18th annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’91, pages 61–70, New York, NY, USA, 1991. ACM.

20. Ingo Wald, Philipp Slusallek, Carsten Benthin, and MarkusWagner. Interactive rendering
with coherent ray tracing.Comput. Graph. Forum, 20(3):153–164, 2001.

6 Exercises

1. Prove that Pl̈ucker’s coordinates correspond to the coordinates of a bivector in
∧2(

R
4
)

.
2. From the parametric equation of a line (i.e. P∗ t +Q∗ (1− t) whereP andQ are

n-dimensional points) find one of its representing bivector.
3. The Pl̈ucker relation between two lines expressed with their six Plücker coordi-

nates(Π0, . . . ,Π5) and(∆0, . . . ,∆5) is: Π0∆3+Π1∆4+Π2∆5+Π3∆0+Π4∆1+
Π5∆2. Show that it is equivalent to the inner product inL3.
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4. LetA, B, andC three euclidean points inG3, with respective coordinates(1,0,0),
(2,1,1) and(1,0,2). Let F be the triangle(A,B,C). Let P, Q, andR three eu-
clidean points inG3, with respective coordinates(0,1,1), (2,0,2) and(4,0,4).
Are the lines(PQ) and(RP) stab the faceF ? Same question for the lines(PR)
and(QP), but without any new computations.

5. Find a bivector that is not decomposable. Show that this bivector cannot represent
a line into the space of the geometric objects. (hint: consider dimension 4).

6. Prove Theorem 2. Notice that the duality cannot be expressed easily directly in
∧
(

R
n+1
)

. The left contraction allows to express it, so the difficultyonly resides
in dimensionn.

7. Consider two facesA andB, show that any line that is outside the minimal poly-
tope cannot crossA andB.


