Skip to main content

Inverse Kinematics Solutions Using Conformal Geometric Algebra

  • Chapter
Book cover Guide to Geometric Algebra in Practice

Abstract

This paper describes a novel iterative Inverse Kinematics (IK) solver, FABRIK, that is implemented using Conformal Geometric Algebra (CGA). FABRIK uses a forward and backward iterative approach, finding each joint position via locating a point on a line. We use the IK of a human hand as an example of implementation where a constrained version of FABRIK was employed for pose tracking. The hand is modelled using CGA, taking advantage of CGA’s compact and geometrically intuitive framework and that basic entities in CGA, such as spheres, lines, planes and circles, are simply represented by algebraic objects. This approach can be used in a wide range of computer animation applications and is not limited to the specific problem discussed here. The proposed hand pose tracker is real-time implementable and exploits the advantages of CGA for applications in computer vision, graphics and robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Editorial note: Note here that in this chapter CGA equations are given in terms of n and \(\bar{n}\), where \(\bar{n}= -2 n_{o}\).

  2. 2.

    Editorial note: This is essentially (4.2) for n=3.

References

  1. Hestens, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics. Reidel, Dordrecht (1984)

    Google Scholar 

  2. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  3. Aristidou, A., Lasenby, J.: Inverse kinematics: a review of existing techniques and introduction of a new fast iterative solver. Cambridge University Department of Engineering Technical Report, CUED/F-INFENG/TR-632 (2009)

    Google Scholar 

  4. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry. Morgan Kaufmann, San Mateo (2009)

    Google Scholar 

  5. Bayro-Corrochano, E., Kähler, D.: Motor algebra approach for computing the kinematics of robot manipulators. J. Robot. Syst. 17(9), 495–516 (2000)

    Article  MATH  Google Scholar 

  6. Bayro-Corrochano, E.: Robot perception and action using conformal geometric algebra. In: Handbook of Geometric Computing, pp. 405–458, Chap. 13. Springer, Berlin (2005)

    Chapter  Google Scholar 

  7. Zamora, J., Bayro-Corrochano, E.: Inverse kinematics, fixation and grasping using conformal geometric algebra. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS ’04), vol. 4, pp. 3841–3846 (2004). doi:10.1109/IROS.2004.1390013

    Google Scholar 

  8. Hildenbrand, D.: Tutorial: Geometric computing in computer graphics using conformal geometric algebra. Comput. Graph. 29(5), 795–803 (2005)

    Article  Google Scholar 

  9. Zamora, J., Bayro-Corrochano, E.: Kinematics and grasping using conformal geometric algebra. In: Lenarčič, J., Roth, B. (eds.) Advances in Robot Kinematics, pp. 473–480. Springer, Berlin (2006)

    Chapter  Google Scholar 

  10. Hildenbrand, D., Zamora, J., Bayro-Corrochano, E.: Inverse kinematics computation in computer graphics and robotics using conformal geometric algebra. Adv. Appl. Clifford Algebras 18, 699–713 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hildenbrand, D., Fontijne, D., Wang, Y., Alexa, M., Dorst, L.: Competitive runtime performance for inverse kinematics algorithms using conformal geometric algebra. In: Proceedings of Eurographics Conference, 2006

    Google Scholar 

  12. Tanev, T.K.: Geometric algebra approach to singularity of parallel manipulators with limited mobility. In Lenarcic, J., Wenger, P. (eds.) Advances in Robot Kinematics: Analysis and Design, pp. 39–48. Springer, Dordrecht (2008)

    Chapter  Google Scholar 

  13. Bayro-Corrochano, E., Zamora, J.: Differential and inverse kinematics of robot devices using conformal geometric algebra. Robotica 25(1), 43–61 (2007)

    Article  Google Scholar 

  14. Hildenbrand, D., Lange, H., Stock, F., Koch, A.: Efficient inverse kinematics algorithm based on conformal geometric algebra (using reconfigurable hardware). In: Proceedings of the 3rd International Conference on Computer Graphics Theory and Applications, Madeira, Portugal, 2008

    Google Scholar 

  15. Wang, L.-C.T., Chen, C.C.: A combined optimization method for solving the inverse kinematics problems of mechanical manipulators. IEEE Trans. Robot. Autom. 7(4), 489–499 (1991)

    Article  Google Scholar 

  16. Aristidou, A., Lasenby, J.: FABRIK: a fast, iterative solver for the inverse kinematics problem. Graph. Models 73(5), 243–260 (2011)

    Article  Google Scholar 

  17. PhaseSpace Inc: Optical motion capture systems. http://www.phasespace.com

  18. Lasenby, A.N., Lasenby, J., Wareham, R.: A covariant approach to geometry using geometric algebra. Cambridge University Department of Engineering Technical Report, CUED/F-INFENG/TR-483 (2004)

    Google Scholar 

  19. Lasenby, J., Fitzgerald, W.J., Lasenby, A.N., Doran, C.J.L.: New geometric methods for computer vision: an application to structure and motion estimation. Int. J. Comput. Vis. 26(3), 191–213 (1998)

    Article  Google Scholar 

  20. Aristidou, A.: Tracking and modelling motion for biomechanical analysis. PhD Thesis, University of Cambridge, Cambridge, UK (October 2010)

    Google Scholar 

  21. Kaimakis, P., Lasenby, J.: Physiological modelling for improved reliability in silhouette-driven gradient-based hand tracking. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, Miami, USA, 25 June 2009, pp. 19–26

    Google Scholar 

  22. The Mathworks—MATLAB and Simulink for technical computing. http://www.mathworks.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Aristidou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Aristidou, A., Lasenby, J. (2011). Inverse Kinematics Solutions Using Conformal Geometric Algebra. In: Dorst, L., Lasenby, J. (eds) Guide to Geometric Algebra in Practice. Springer, London. https://doi.org/10.1007/978-0-85729-811-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-811-9_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-810-2

  • Online ISBN: 978-0-85729-811-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics